Course Control Number: 24846
Instructor: David Nadler
Office Hours: Fridays 3:30-4:30pm, zoom id: 936 2923 9224
GSI: German Stefanich
Office Hours: Fridays 11am-1pm, zoom id: 982 5809 2595
Lectures: Mondays and Wednesdays 3-4:30pm, zoom id: 941 2768 9910, passcode: 264259
Lectures will be a mix of traditional presentations and breakout sessions with group discussion.
Lecture notes:
- Lecture 1 (W 8/26/20)
- Lecture 2 (M 8/31/20)
- Lecture 3 (W 9/2/20)
- Lecture 4 (W 9/9/20)
- Lecture 5 (M 9/14/20)
- Lecture 6 (W 9/16/20)
- Lecture 7 (M 9/21/20)
- Lecture 8 (W 9/23/20)
- Lecture 9 (M 9/28/20)
- Lecture 10 (W 9/30/20)
- Lecture 11 (M 10/5/20)
- Lecture 12 (W 10/7/20)
- Lecture 13 (M 10/12/20)
- Lecture 14 (W 10/14/20)
- Lecture 15 (M 10/19/20)
- Lecture 16 (W 10/21/20)
- Lecture 17 (M 10/26/20)
- Lecture 18 (W 10/28/20)
- Lecture 19 (M 11/2/20)
- Lecture 20 (W 11/4/20)
- Lecture 21 (M 11/9/20)
- Lecture 22 (M 11/16/20)
- Lecture 23 (W 11/18/20)
- Lecture 24 (M 11/23/20)
- Lecture 25 (M 11/30/20)
- Lecture 26 (W 12/2/20)
Question? Try asking on Piazza.
Prerequisites: Familiarity with point-set topology and abstract algebra.
Primary source:
A. Hatcher, Algebraic Topology, available
here.
Syllabus:
Fundamental group and covering spaces, simplicial and singular homology, cohomology and Poincare duality.
Roughly Chapters 0-3 of Hatcher's textbook, covered roughly as follows:
- Week 1 (8/24-8/28): (i) Classes start on Wednesday 8/26; (ii) Ch 0, p1-10 (cell complexes, operations on spaces).
- Week 2 (8/31-9/4): (i) Ch 0, p11-17 (criteria for homotopy equivalence); (ii) Ch 1, p21-28 (fundamental group).
- Week 3 (9/7-9/11): (i) No class Monday 9/7: Labor Day; (ii) Ch 1, p29-34 (fundamental group of circle)
- Week 4 (9/14-9/18): (i) Ch 1, p34-38 (functoriality of fundamental group); (ii) Ch 1, p40-46 (van Kampen).
- Week 5 (9/21-9/25): (ii) Ch 1, p46-52 (applications of van Kampen); (ii) Ch 1, p56-62 (covering spaces).
- Week 6 (9/28-10/2): (ii) Ch 1, p63-70 (Galois theory of coverings);
(ii) Ch 1, p70-78 (deck transformations).
- Week 7 (10/5-10/9): (ii) Ch1, p87-96 (K(G, 1)); (ii) Ch 2, p97-107 (simplicial homology).
- Week 8 (10/12-10/16): (i) Ch1, p108-113 (singular homology); (ii) Ch 2, p113-131 (structures/properties of singular homology).
- Week 9 (10/19-10/23): (i) Ch 2, p134-137 (degree); (ii) Ch 2, p137-146 (cellular homology).
- Week 10 (10/26-10/30): (i) Ch 2, p146-149 (Euler characteristic, group homology); (ii) Ch 2, p149-153 (Mayer-Vietoris).
- Week 11 (11/2-11/6): (i) Ch 2, p153-155 (coefficients); (ii) Ch 2, p160-165 (Eilenberg-Steenrod axioms).
- Week 12 (11/9-11/13): (i) Ch 2, p166-176 (Hurewicz and classical applications); (ii) No class Wednesday 11/11: Veterans Day.
- Week 13 (11/16-11/20): (i) Ch 3, p185-204 (cohomology of spaces); (ii) Ch 3, p206-214 (cup product).
- Week 14 (11/23-11/27): (i) Ch 3, p214-219 (Kunneth formula); (ii) No class Wednesday 11/25: Thanksgiving week.
- Week 15 (11/30-12/4): (i) Ch 3, p230-249 (Poincare duality); (ii) Ch 3, p249-252 (duality and cup product).
Evaluation:
Each week there will be homework. There will also be two midterms and a final exam.
Midterm 1: during Week 6 (9/28-10/2); covering material through end of Week 4 (9/14-9/18).
Midterm 1
Midterm 1 solutions
Midterm 2: during Week 12 (11/9-11/16); covering material through end of Week 9 (10/26-10/30).
Midterm 2
Midterm 2 solutions
Grades will be determined by homework (20%), the midterms (20% each), and the final (40%).
Homework: Unless otherwise noted,
problems are from Hatcher's textbook.
Homework is due each Monday at noon. Please submit assignments on Gradescope. Contact the GSI German with any questions.
- Due Monday 8/31/20: Ch. 0, Ex. 3, 6, 10, 14, 16, 18.
- Due Monday 9/7/20: Ch. 0, Ex. 19, 23; Ch. 1.1, Ex. 2, 3, 5, 6.
- Due Monday 9/14/20: Ch. 1.1, Ex. 8, 9, 10, 12, 13, 14.
- Due Monday 9/21/20: Ch. 1.1, Ex. 16, 18; Ch 1.2, Ex. 3, 4, 10, 14.
- Due Monday 9/28/20: Ch 1.2, Ex. 16, 21, 22; Ch 1.3, Ex. 4, 5, 7.
- Due Monday 10/5/20: Ch 1.3, Ex. 8, 10, 11, 14, 16, 18.
- Due Monday 10/12/20: Ch 1.3, Ex. 23, 32; Ch 1.B, Ex. 2; Ch 2.1, Ex. 2, 5, 9.
- Due Monday 10/19/20: Ch 2.1, Ex. 17, 20, 21, 22, 23, 29.
- Due Monday 10/26/20: Ch 2.2, Ex. 1, 2, 7, 8, 9, 11.
- Due Monday 11/2/20: Ch 2.2, Ex. 16, 17, 18, 21, 24, 29.
- Due Monday 11/9/20: Ch 2.3, Ex. 1; Ch 2.B, Ex. 1, 2, 3, 4, 8.
- Due Monday 11/16/20: Ch 2.B, Ex. 10; Ch 2.C, Ex. 4, 5.
- Due Monday 11/23/20: Ch 3.1, Ex. 3, 4, 5, 6, 11, 13.
- Due Friday 12/4/20: Ch 3.2, Ex. 4, 8, 12; Ch 3.3, Ex. 6, 7, 8, 24, 26.