Exercise 1. Let X be the union of the unit sphere in \mathbb{R}^3 and the segment $\{(0,0,z): -1 < 0 \}$ $z \leq 1$. Let $R: X \to X$ be the self-homeomorphism that sends each point (x, y, z) in X to (x, y, -z). Let T_R be the mapping torus of R; in other words, T_R is the quotient of $X \times I$ by the relation which identifies (p, 0) with (R(p), 1) for all p in X. Show that the fundamental group of T_R admits a presentation with two generators a, b and one relation $ab = b^{-1}a$.

Solution. We equip X with a cell structure with:

- Two 0-cells given by the points (0,0,1) and (0,0,-1).
- Three 1-cells given by the segment $\{(0, 0, z) : -1 \le z \le 1\}$, and the half-meridians $\{(0, y, z) : y^2 + z^2 = 1, y > 0\}$ and $\{(0, y, z) : y^2 + z^2 = 1, y < 0\}$. Two 2-cells given by the left hemisphere $\{(x, y, z) : x^2 + y^2 + z^2 = 1, x < 0\}$ and the right hemisphere $\{(x, y, z) : x^2 + y^2 + z^2 = 1, x < 0\}$.

There is an induced cell structure on $X \times I$ with four 0-cells, eight 1-cells, seven 2-cells, and two 3-cells. Since the map R is cellular, we have an induced cell structure on T_R with two 0-cells, five 1-cells, five 2-cells and two 3-cells.

The 1-skeleton of T_R is the following graph:

The fundamental group of the above graph (based at q) is free on the generators b' =

 $ba^{-1}, c' = ca^{-1}, d' = da^{-1}$ and $e' = ea^{-1}$. The 2-cells give us the five relations

$$ac^{-1} = 1$$
$$ac^{-1} = 1$$
$$ad^{-1}ae^{-1} = 1$$
$$bd^{-1}be^{-1} = 1$$
$$cd^{-1}ce^{-1} = 1.$$

We can rewrite the above relations as

$$c'^{-1} = 1$$

$$c'^{-1} = 1$$

$$d'^{-1}e'^{-1} = 1$$

$$b'd'^{-1}b'e'^{-1} = 1$$

$$c'd'^{-1}c'e'^{-1} = 1.$$

The first relation tells us that c' = 1, the third relation tells us that $e' = d'^{-1}$ and the second and fifth relations are redundant. It follows that the fundamental group of T_R is generated freely by the elements d', b'^{-1} under the relation $d'b'^{-1} = b'd'$ which has the desired form.

Exercise 2. Let X be subspace of \mathbb{C}^2 consisting of those points (z, w) such that $z^2 \neq w^3$. Let Y be the subspace of \mathbb{C}^2 consisting of those points (z, w) such that $z \neq 0$. Show that X and Y are not homeomorphic.

Solution. Note that Y is homeomorphic to $(\mathbb{C} - \{0\}) \times \mathbb{C}$ which is homotopy equivalent to S^1 , and so its fundamental group is \mathbb{Z} . We claim that the fundamental group of X is not \mathbb{Z} .

Observe that X is a subspace of $\mathbb{C}^2 - \{0\}$. Consider the self homeomorphism of $\mathbb{C}^2 - \{0\}$ which sends a pair (z, w) to $(z|w|^{1/2}, w)$. The image of X under the inverse of this map is the space X' of points (z, w) in \mathbb{C}^2 such that $z^2|w| \neq w^3$. This is invariant under scaling, so we have a deformation retraction of X' onto the space $S^3 \cap X'$ (where we identify S^3 with the subspace of \mathbb{C}^2 of vectors of norm 1).

Let C be the space of pairs (z, w) in S^3 such that $z^2|w| = w^3$. We have that X is homotopy equivalent to $S^3 \cap X' = S^3 - C$. Note that every point in C satisfies $|z| = |w| = 1/\sqrt{2}$. These conditions define a torus T inside S^3 .

Write $w = x_1 + x_2 i$ and $z = x_3 + x_4 i$, and identify \mathbb{C}^2 with \mathbb{R}^4 using the coordinates x_i . By Van-Kampen, we have that the fundamental group of $S^3 - C$ is isomorphic to the fundamental group of $S^3 - C - (0, 0, 0, 1)$. Consider now the stereographic projection

$$P: S^3 - \{(0, 0, 0, 1)\} \to \mathbb{R}^3.$$

For every complex number $w_0 = x + iy$ with $|w_0| = 1/\sqrt{2}$, the set of points (z, w_0) with $|z| = 1/\sqrt{2}$ gets mapped under P to a circle inside the half plane $\mathbb{R}_{>0}(x, y, 0) \oplus \mathbb{R}(0, 0, 1)$, centered at a point in the line $\mathbb{R}(x, y, 0)$. As we vary w_0 , these circles trace out the torus P(T) in \mathbb{R}^3 .

Note that P(C) is a torus knot $K_{n,m}$ inside P(T). For each fixed w_0 there are two values of z for which (z, w_0) belongs to C (namely, the two square roots of $w^3/|w|$), which implies that n = 2. Since P(C) crosses the x_1x_2 plane six times we have that m = 3. We conclude

3

that P(C) is a trefoil knot, and therefore the fundamental group of $\mathbb{R}^3 - P(C)$ is generated by two elements a, b with a relation $a^2 = b^3$. This is not abelian, so we conclude that the fundamental group of X is not isomorphic to Z, as desired.

Exercise 3. Let X be a topological space and let $i : A \to X$ be the inclusion of a subspace. Assume that A is path connected, and that the pair (X, A) satisfies the homotopy extension property. Let x_0 be a point in A. Show that there is an isomorphism

$$\pi_1(X/A, [x_0]) = \pi_1(X, x_0)/N$$

where N is the smallest normal subgroup of $\pi_1(X, x_0)$ containing the image of the morphism $i_*: \pi_1(A, x_0) \to \pi_1(X, x_0)$.

Solution. Let CA be the cone of A and let $Y = X \cup_A CA$. We claim that the pair (Y, CA) satisfies the homotopy extension property. In other words, we claim that the inclusion

$$j: (CA \times I) \cup_{CA \times \{0\}} (X \times \{0\}) \to Y \times I$$

admits a retraction. Note that $Y \times I$ is homeomorphic to $(CA \times I) \cup_{A \times I} (X \times I)$. We can then define a retraction for j to be the identity on $CA \times I$, and on $X \times I$ to be a retraction of the inclusion

$$(A \times I) \cup_{A \times \{0\}} (X \times \{0\}) \to X \times I$$

which is guaranteed to exist since (X, A) satisfies the homotopy extension property.

Let c be the cone point of CA and let x'_0 be a point in $CA - \{c\}$ whose image under the projection $CA - \{c\} \to A$ is x_0 . Since (Y, CA) satisfies the homotopy extension property, we have that the quotient map $Y \to Y/CA = X/A$ is a homotopy equivalence, and in particular we have an isomorphism $\pi_1(X/A, [x_0]) = \pi_1(Y, x'_0)$. Applying Van-Kampen for Y with its open sets $Y - \{c\}$ and CA - A yields an isomorphism

$$\pi_1(Y, x'_0) = \pi_1(Y - \{c\}, x'_0)/N'$$

where N' is the smallest normal subgroup of $\pi_1(Y - \{c\}, x'_0)$ containing the image of the pushforward map

$$\pi_1((CA - A) - \{c\}, x'_0) \to \pi_1(Y - \{c\}, x'_0).$$

Observe that X is a deformation retract of $Y - \{c\}$, where the retraction map $r: Y - \{c\} \rightarrow X$ is given on $CA - \{c\}$ by the composition of the projection $q: CA - \{c\} \rightarrow A$ and the inclusion $i: A \rightarrow X$. It follows that we have an isomorphism

$$r_*: \pi_1(Y - \{c\}, x'_0) \xrightarrow{=} \pi_1(X, x_0)$$

and under this isomorphism, the subgroup N' corresponds to the smallest subgroup of $\pi_1(X, x_0)$ containing the image of the composite map

$$\pi_1((CA - A) - \{c\}, x'_0) \xrightarrow{(q|_{(CA - A) - \{c\}})_*} \pi_1(A, x_0) \xrightarrow{i_*} \pi_1(X, x_0).$$

Since $q|_{(CA-A)-\{c\}}$ is a homotopy equivalence, we see that the first map in the above composition is an isomorphism. Hence the image of N' under r_* is the smallest subgroup of $\pi_1(X, x_0)$ containing the image of i_* , as desired.