Exercise 1. Let X be the union of the unit sphere in \mathbb{R}^{3} and the segment $\{(0,0, z):-1 \leq$ $z \leq 1\}$. Let $R: X \rightarrow X$ be the self-homeomorphism that sends each point (x, y, z) in X to $(x, y,-z)$. Let T_{R} be the mapping torus of R; in other words, T_{R} is the quotient of $X \times I$ by the relation which identifies $(p, 0)$ with $(R(p), 1)$ for all p in X. Show that the fundamental group of T_{R} admits a presentation with two generators a, b and one relation $a b=b^{-1} a$.

Solution. We equip X with a cell structure with:

- Two 0 -cells given by the points $(0,0,1)$ and $(0,0,-1)$.
- Three 1 -cells given by the segment $\{(0,0, z):-1 \leq z \leq 1\}$, and the half-meridians $\left\{(0, y, z): y^{2}+z^{2}=1, y>0\right\}$ and $\left\{(0, y, z): y^{2}+z^{2}=1, y<0\right\}$.
- Two 2-cells given by the left hemisphere $\left\{(x, y, z): x^{2}+y^{2}+z^{2}=1, x<0\right\}$ and the right hemisphere $\left\{(x, y, z): x^{2}+y^{2}+z^{2}=1, x>0\right\}$.

There is an induced cell structure on $X \times I$ with four 0 -cells, eight 1-cells, seven 2 -cells, and two 3 -cells. Since the map R is cellular, we have an induced cell structure on T_{R} with two 0 -cells, five 1 -cells, five 2 -cells and two 3 -cells.

The 1-skeleton of T_{R} is the following graph:

1

The fundamental group of the above graph (based at q) is free on the generators $b^{\prime}=$ $b a^{-1}, c^{\prime}=c a^{-1}, d^{\prime}=d a^{-1}$ and $e^{\prime}=e a^{-1}$. The 2-cells give us the five relations

$$
\begin{aligned}
a c^{-1} & =1 \\
a c^{-1} & =1 \\
a d^{-1} a e^{-1} & =1 \\
b d^{-1} b e^{-1} & =1 \\
c d^{-1} c e^{-1} & =1 .
\end{aligned}
$$

We can rewrite the above relations as

$$
\begin{aligned}
c^{\prime-1} & =1 \\
c^{\prime-1} & =1 \\
d^{\prime-1} e^{\prime-1} & =1 \\
b^{\prime} d^{\prime-1} b^{\prime} e^{\prime-1} & =1 \\
c^{\prime} d^{\prime-1} c^{\prime} e^{\prime-1} & =1 .
\end{aligned}
$$

The first relation tells us that $c^{\prime}=1$, the third relation tells us that $e^{\prime}=d^{\prime-1}$ and the second and fifth relations are redundant. It follows that the fundamental group of T_{R} is generated freely by the elements $d^{\prime}, b^{\prime-1}$ under the relation $d^{\prime} b^{\prime-1}=b^{\prime} d^{\prime}$ which has the desired form.

Exercise 2. Let X be subspace of \mathbb{C}^{2} consisting of those points (z, w) such that $z^{2} \neq w^{3}$. Let Y be the subspace of \mathbb{C}^{2} consisting of those points (z, w) such that $z \neq 0$. Show that X and Y are not homeomorphic.

Solution. Note that Y is homeomorphic to $(\mathbb{C}-\{0\}) \times \mathbb{C}$ which is homotopy equivalent to S^{1}, and so its fundamental group is \mathbb{Z}. We claim that the fundamental group of X is not \mathbb{Z}.

Observe that X is a subspace of $\mathbb{C}^{2}-\{0\}$. Consider the self homeomorphism of $\mathbb{C}^{2}-\{0\}$ which sends a pair (z, w) to $\left(z|w|^{1 / 2}, w\right)$. The image of X under the inverse of this map is the space X^{\prime} of points (z, w) in \mathbb{C}^{2} such that $z^{2}|w| \neq w^{3}$. This is invariant under scaling, so we have a deformation retraction of X^{\prime} onto the space $S^{3} \cap X^{\prime}$ (where we identify S^{3} with the subspace of \mathbb{C}^{2} of vectors of norm 1).

Let C be the space of pairs (z, w) in S^{3} such that $z^{2}|w|=w^{3}$. We have that X is homotopy equivalent to $S^{3} \cap X^{\prime}=S^{3}-C$. Note that every point in C satisfies $|z|=|w|=1 / \sqrt{2}$. These conditions define a torus T inside S^{3}.

Write $w=x_{1}+x_{2} i$ and $z=x_{3}+x_{4} i$, and identify \mathbb{C}^{2} with \mathbb{R}^{4} using the coordinates x_{i}. By Van-Kampen, we have that the fundamental group of $S^{3}-C$ is isomorphic to the fundamental group of $S^{3}-C-(0,0,0,1)$. Consider now the stereographic projection

$$
P: S^{3}-\{(0,0,0,1)\} \rightarrow \mathbb{R}^{3}
$$

For every complex number $w_{0}=x+i y$ with $\left|w_{0}\right|=1 / \sqrt{2}$, the set of points $\left(z, w_{0}\right)$ with $|z|=1 / \sqrt{2}$ gets mapped under P to a circle inside the half plane $\mathbb{R}_{>0}(x, y, 0) \oplus \mathbb{R}(0,0,1)$, centered at a point in the line $\mathbb{R}(x, y, 0)$. As we vary w_{0}, these circles trace out the torus $P(T)$ in \mathbb{R}^{3}.

Note that $P(C)$ is a torus knot $K_{n, m}$ inside $P(T)$. For each fixed w_{0} there are two values of z for which $\left(z, w_{0}\right)$ belongs to C (namely, the two square roots of $w^{3} /|w|$), which implies that $n=2$. Since $P(C)$ crosses the $x_{1} x_{2}$ plane six times we have that $m=3$. We conclude
that $P(C)$ is a trefoil knot, and therefore the fundamental group of $\mathbb{R}^{3}-P(C)$ is generated by two elements a, b with a relation $a^{2}=b^{3}$. This is not abelian, so we conclude that the fundamental group of X is not isomorphic to \mathbb{Z}, as desired.

Exercise 3. Let X be a topological space and let $i: A \rightarrow X$ be the inclusion of a subspace. Assume that A is path connected, and that the pair (X, A) satisfies the homotopy extension property. Let x_{0} be a point in A. Show that there is an isomorphism

$$
\pi_{1}\left(X / A,\left[x_{0}\right]\right)=\pi_{1}\left(X, x_{0}\right) / N
$$

where N is the smallest normal subgroup of $\pi_{1}\left(X, x_{0}\right)$ containing the image of the morphism $i_{*}: \pi_{1}\left(A, x_{0}\right) \rightarrow \pi_{1}\left(X, x_{0}\right)$.

Solution. Let $C A$ be the cone of A and let $Y=X \cup_{A} C A$. We claim that the pair ($Y, C A$) satisfies the homotopy extension property. In other words, we claim that the inclusion

$$
j:(C A \times I) \cup_{C A \times\{0\}}(X \times\{0\}) \rightarrow Y \times I
$$

admits a retraction. Note that $Y \times I$ is homeomorphic to $(C A \times I) \cup_{A \times I}(X \times I)$. We can then define a retraction for j to be the identity on $C A \times I$, and on $X \times I$ to be a retraction of the inclusion

$$
(A \times I) \cup_{A \times\{0\}}(X \times\{0\}) \rightarrow X \times I
$$

which is guaranteed to exist since (X, A) satisfies the homotopy extension property.
Let c be the cone point of $C A$ and let x_{0}^{\prime} be a point in $C A-\{c\}$ whose image under the projection $C A-\{c\} \rightarrow A$ is x_{0}. Since (Y,CA) satisfies the homotopy extension property, we have that the quotient map $Y \rightarrow Y / C A=X / A$ is a homotopy equivalence, and in particular we have an isomorphism $\pi_{1}\left(X / A,\left[x_{0}\right]\right)=\pi_{1}\left(Y, x_{0}^{\prime}\right)$. Applying Van-Kampen for Y with its open sets $Y-\{c\}$ and $C A-A$ yields an isomorphism

$$
\pi_{1}\left(Y, x_{0}^{\prime}\right)=\pi_{1}\left(Y-\{c\}, x_{0}^{\prime}\right) / N^{\prime}
$$

where N^{\prime} is the smallest normal subgroup of $\pi_{1}\left(Y-\{c\}, x_{0}^{\prime}\right)$ containing the image of the pushforward map

$$
\pi_{1}\left((C A-A)-\{c\}, x_{0}^{\prime}\right) \rightarrow \pi_{1}\left(Y-\{c\}, x_{0}^{\prime}\right) .
$$

Observe that X is a deformation retract of $Y-\{c\}$, where the retraction map $r: Y-\{c\} \rightarrow$ X is given on $C A-\{c\}$ by the composition of the projection $q: C A-\{c\} \rightarrow A$ and the inclusion $i: A \rightarrow X$. It follows that we have an isomorphism

$$
r_{*}: \pi_{1}\left(Y-\{c\}, x_{0}^{\prime}\right) \xrightarrow{=} \pi_{1}\left(X, x_{0}\right)
$$

and under this isomorphism, the subgroup N^{\prime} corresponds to the smallest subgroup of $\pi_{1}\left(X, x_{0}\right)$ containing the image of the composite map

$$
\pi_{1}\left((C A-A)-\{c\}, x_{0}^{\prime}\right) \xrightarrow{\left(\left.q\right|_{(C A-A)-\{c\}}\right)_{*}} \pi_{1}\left(A, x_{0}\right) \xrightarrow{i_{*}} \pi_{1}\left(X, x_{0}\right) .
$$

Since $\left.q\right|_{(C A-A)-\{c\}}$ is a homotopy equivalence, we see that the first map in the above composition is an isomorphism. Hence the image of N^{\prime} under r_{*} is the smallest subgroup of $\pi_{1}\left(X, x_{0}\right)$ containing the image of i_{*}, as desired.

