MATH 215A FALL 2020 MIDTERM 2 SOLUTIONS

Exercise 1. Let T = S! x S* be the torus and let K be the Klein bottle. Consider
embeddings v, : S' — T and ~, : S' — K whose images are the oriented circles depicted in
the following picture:

T: 5 K:
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Let X = T'|Jq: K be the space obtained from the disjoint union of 7" and K by identifying
the points 7, (t) and 7»(¢) for each ¢ in S'. Compute the homology groups of X.

Solution. Note that 7" and K are subspaces of X, and their intersection inside X is home-
omorphic to S'. Choose open neighborhoods U of T and V of K such that the inclusions
T U, K—Vand S' = UNV are homotopy equivalences. Recall that we have

ifn>2
; N 0 ifn>1 0 ifn>1
Ho(T) = = HoK)=!Z®2/22 itn=1 H,(S)={Z ifn=1
ZoZ ifn=1 z itn=0 7 itn=0
Z if n =0 B B

and therefore similar values also for the homology of U, V and U N V.
We apply Van Kampen for the decomposition X = U U V. For each n > 2 we obtain an
exact sequence
H,U)® H,(V) — H,(X) = H, 1,(UNYV)
which simplifies to 0 — H,,(X) — 0. It follows that H,(X) = 0 for n > 2.
We also have an exact sequence

which simplifies to

07— Hy(X) = Z I (20 7) 0 (ZeZ/22) — H(X) — 0.

We note that the morphisms j;, jo are the morphisms induced on H; by 7; and 7. These
maps are in turn homotopic to embeddings 71,7, whose images are the oriented circles
depicted in the following picture:

RL T
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It follows that we have
1) =(0,1) € ZDZ j2(1) = (0,1) € Z® Z/27Z.

Therefore the map (ji, j2) is injective, and our previous exact sequence breaks up into two
exact sequences
0—>Z— Hy(X)—0
and
0522 707020 2/22 — H(X) - 0.

We see from our first sequence that Hy(X) = Z. The second sequence admits a splitting
given by the map Z @& Z & Z & 7Z/27Z — 7 of projection onto the second coordinate. We
conclude that H;(X) is isomorphic to the kernel of this projection, which is Z & Z @ Z/27.

We finally observe that X is path connected and therefore Hy(X) = Z. In conclusion, we

have
0 ifn>2

7 ifn=2
ZOLZDOZL/2Z ifn=1
7 ifn=0.

H,(X) =
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Exercise 2. Let n > 2 and consider the standard embedding i : RP' — RP", induced by
passing to the quotient the map (R?—0) — (R"*!1—0) which sends (1, z2) to (71, 22,0,0,...,0).
(a) Show that if n is odd then there exists a neighborhood U of i(RP') inside RP" and a

homeomorphism h : U — RP' xR"~! such that for every p in RP' we have hi(p) = (p,0).
(b) Show that if a pair (U, h) as in (a) exists, then n is odd.

Solution. (a) Consider the subspace H inside R™! consisting of those points (w1, z, . . ., Ty11)
such that (z1,z5) has Euclidean norm 1, and x; > 0. Note that H is homeomorphic to
[0,1] x R"™L. The projection H — RP" factors through the space H' obtained from H by
identifying (0,p) with (1, —p) for each p in R""'. The resulting map j : H' — RP" is an
open embedding whose image is an open neighborhood of i(RP'). Moreover, the inclusion
RP! — H’ induced by corestriction of i is the same as the map obtained by passage to the
quotient of the composite map

0,1] = [0, 1] xR ' =H — H

where the first map sends ¢ to (¢,0), and the second map is the canonical projection.

Let v : [0,1] x R"™! — R""! be a homotopy from the identity idgn-1 to — idgn-1, such that
for each ¢ in [0, 1] the induced map v, : R®™! — R"~! is an invertible linear transformation
(this exists since n — 1 is even). Then we have a homeomorphism

(idpap, ) : [0,1] x R™1 — [0,1] x R™.

This induces a homeomorphism between H’ and the quotient of [0, 1] x R*~! by the equiva-
lence relation which identifies (0, p) with (1, p) for each p in R*~!. The latter is in turn home-
omorphic to RP' xR"~!. The resulting homeomorphism between U = j(H’) and RP' xR
satisfies the desired condition.

(b) Assume that n is even. We will compare the homology of U relative to the complement
of i(RP') with the the homology of RP* xR"~! relative to the complement of RP' x {0}, and
show that these are different.

We begin with H.(U, U —i(RP')). By excision, this is the same as H.(RP", RP" —i(RP')).
Note that RP" —i(RP') deformation retracts to the complement of a point inside RP™*,
which in turn deformation retracts to a copy of RP" 2. Here the embedding g : RP" % —
RP" is obtained passing to the quotient the map (R"! — 0) — (R"™! — 0) which sends
(ZEl, o, ... ,ZL’n_l) to (0, 0, T1,T2, ... ,In_l).

Observe that after choosing an appropriate cell structure on RP", we can think about
g as the inclusion of the (n — 2)-skeleton (the cell structure being obtained as the usual
one, by reversing the order of the coordinates on RP"). Hence g induces an isomorphism
in homology in all degrees except in degree n — 1, where g induces the zero map between
H, 1(RP"?) = 0 and H, ;(RP") = Z/27Z (here we are using the fact that n is even). It
now follows from the long exact sequence in homology for the pair (RP", g(RP"?) together
with the fact that the inclusion of g(RP"?) inside RP"™ —i(RP") is a homotopy equivalence,
that we have isomorphisms

H,_1(RP",RP" —i(RP")) = H,_|(RP", g(RP"?)) = Z/27Z

and that every other relative homology group is zero.
We now consider the homology of RP' xR"! relative to RP* xR"~! —RP! x{0}. Observe

that the space RP* xR"! — RP! x{0} deformation retracts to a copy of RP' xS"~2. The



4 MATH 215A FALL 2020 MIDTERM 2 SOLUTIONS

homology of this can be computed via Mayer-Vietoris in various ways. For instance, it can
be computed using example 2.48 in Hatcher, which leads to short exact sequences

0 — Hi(S" %) — Hy(RP' xS"?) = H,,_1(S"%) =0

for every k > 1. This implies in particular that H,_;(RP' x.S"~2) is isomorphic to Z if
n>2 or Z&Zif n = 2. Meanwhile, RP* xR"! deformation retracts to a copy of RP', so
it has the homology of a circle.

It now follows from the long exact sequence in homology for the pair (RP* xR"~ RP* x $"~2)
together with the fact that the inclusion of RP' x.S"~2 inside RP' xR"~! — RP! x{0} is a
homotopy equivalence, that we have an exact sequence

H,(RP' xR"! RP' xR"™! —RP! x{0}) = Z — 0
when n > 2, or
H,(RP* xR"' RP' xR"™! —RP'x{0}) = Z®Z — Z

when n = 2. It follows in particular that H,(RP' xR"~' RP* xR"~! —RP' x{0}) is nonzero.
However we have also shown that when n is even the relative homology group H,(U,U —
i(RP')) is zero. This is a contradiction, so we must have that n is odd.

Remark. With a little more care, one can show that the homology of RP' xR™~! relative
to RP! xR"! —RP' x{0} is Z in degrees n and n— 1, and zero everywhere else. Meanwhile,
we also showed that the homology of U relative to U — i(RP') is Z/2Z in degree n — 1,
and zero everywhere else. An instructive exercise would be to repeat these computations
working with Z/27Z coefficients. In this case, both relative homologies will look identical,
with copies of Z/27 in degrees n and n — 1. One way in which one can phrase the outcome
of this computation is that the inclusion 7 admits a relative orientation integrally if and only
if n is odd, and it always admits a relative orientation with Z/27Z coefficients.
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Exercise 3. Let X,Y be path connected, locally path connected, and semilocally simply
connected topological spaces. Denote by Cov(X) (resp. Cov(Y')) the collection of isomor-
phism classes of (not necessarily path connected) covering spaces of X (resp. Y). Let
f: X — Y be a continuous map, and consider the function f*: Cov(Y) — Cov(X) which
sends the isomorphism class of a covering space p : £ — Y to the isomorphism class of its
base change p' : £ xy X — X. Show that f* is a bijection if and only if f induces an
isomorphism between the fundamental groups of X and Y.

First solution. One way to solve this problem is to use the relation between covering spaces
and group actions from page 68 in Hatcher.

Pick a basepoint x¢ in X and let yo = f(xy). We then have that Cov(X) (resp. Cov(Y))
can be equivalently described as the collection Set™(¥:20) (resp. Setm(y’yo)) of isomorphism
classes of sets with a left action of m (X, zg) (resp. m(Y,40)). Given a covering space
p: E — Y, one attaches to it the set p~'(yo). This is equipped with the (Y, yo)-action
defined so that for each class [y] in m1(Y,yo) and element e in p~(yy) we have

] - e=7(0)
where 7 is the unique lift of v to a path in E such that (1) = e.

Consider now the covering space p’ : E xy X — X. We have a bijection of sets p'~!(z() =
p~(yo) induced from the projection E xy X — E. Let e be an element of this set, and let
(1] be a class in 7 (X, zg). Let i be the lift of u to E Xy X such that (1) = e. Then the
image of ;1 under the projection £ xy X — E is a lift of fu with endpoint e. It follows that

(] - e=[fu]-e
where on the left we are using the action of 71 (X, zo), and on the left the action of 71 (Y, yo).
We conclude that the map
fr:Cov(Y) — Cov(X)
is equivalent to the map
Resy, : Set™ (Y'w0) _y Get™ (X:z0)

that sends the isomorphism class of a set with 7 (Y, yo)-action S to the class of S with the
action of (X, z¢) induced by restriction along f, : 71 (X, zo) — m (Y, v0).

If f induces an isomorphism on fundamental groups then Resy, is also a bijection, and
therefore f*is also a bijection. Conversely, assume that f* (and therefore Resy, ) is a bijection.
Since the image of Res;, has to contain the class of a set with a free m (X, x¢)-action, we
have that f. : m (X, z9) = m1 (Y, y0) is necessarily injective.

It remains to show that f, is surjective. Assume for the sake of contradiction that this is
not the case, and consider the set S = m (Y, yo)/Im(f.) equipped with its natural m (Y, yo)-
action. Then Resy, (5) admits a fixed point, and in particular it can be written as the disjoint
union of two nonempty sets with m; (X, zp)-action. Since Resy, is a bijection and preserves
disjoint unions we conclude that S itself can be written as the union of two nonempty sets
with 71 (Y, yo)-action, which contradicts the fact that the action of m1 (Y, yo) on S is transitive.
Hence f, is surjective and an isomorphism, as desired.

Second solution. Another way to solve this problem is to use the classification of path
connected covering spaces from theorem 1.38.

Pick a basepoint z in X and let yo = f(zg). Assume first that f. : (X, z9) — m (Y, %0)
is an isomorphism. Any covering space is a disjoint union of connected covering spaces, and
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pullbacks of covering spaces map disjoint unions to disjoint unions. To show that f* is a
bijection, it suffices to show that f* maps isomorphism classes of connected covering spaces
to isomorphism classes of connected covering spaces, and that it in fact induces a bijection
between those.

Let p: E — Y be a connected covering space. Since X is path connected, to show that
E xy X is path connected it suffices to show that for every pair of elements e, ¢’ in p'~!(x()
there is a path in E Xy X from e to ¢’. Let ¥ be a path in E from e to ¢ (where we think
about these now as elements in p~'(yy)). Then p(¥) is a loop based at yy. Let u be a loop
based at xy such that f.[u] = [p7], and let fu be the lift of fu to E such that fu(0) = e.
Since fu is homotopic to p(7) as based loops, we have that fu(l) = 7(1) = €. The pair
(i, fpu) defines then a path in E' Xy X from e to €.

We now show that f* induces a bijection between isomorphism classes of connected cov-
ering spaces on X and Y. Let p: E — Y be a connected covering space and let e be an
element in p~(yy) = p' "1 (x). Let pu be a loop in X based at xg, and let i be its lift to
E Xy X such that 12(0) = e. Let fu be the lift of fu to E such that fu(0) =e. Then fu is

the composition of jz with the projection E xy X — E. We conclude that fu is a loop in
E xy X if and only if z is a loop in Y. This means that p.m(E Xy X, e) is the preimage
of p,m(E, e) under f,. Our claim now follows from the fact that f, is a group isomorphism,
together with the classification theorem for path-connected covering spaces.

Conversely, assume that f* is a bijection. We have to show that f, : m (X, z9) = m1 (Y, v0)
is an isomorphism. Since f* maps disjoint unions to disjoint unions, we have that f* restricts
to a bijection on isomorphism classes of connected covering spaces. As discussed in the
previous paragraph, for each connected covering space p : E — Y and element e in p~!(yo)
we have that p,m (E Xy X, e) is the preimage under f, of p,m(E,e). Since the latter always
contains the kernel of f,, we conclude that f, is necessarily injective, otherwise the class
of the fundamental cover of X would not be in the image of f*. Furthermore, since the
preimages under f, of Im(f,) and m (Y, o) agree, we have that the conjugacy classes of
Im(f,) and m(Y,yo) are the same. Since m (Y, yo) is normal inside itself, we conclude that
Im(f.) = m (Y, y0), and therefore f, is surjective.



