MATH 215A FALL 2020 MIDTERM 2 SOLUTIONS

Exercise 1. Let $T=S^{1} \times S^{1}$ be the torus and let K be the Klein bottle. Consider embeddings $\gamma_{1}: S^{1} \rightarrow T$ and $\gamma_{2}: S^{1} \rightarrow K$ whose images are the oriented circles depicted in the following picture:

Let $X=T \bigcup_{S^{1}} K$ be the space obtained from the disjoint union of T and K by identifying the points $\gamma_{1}(t)$ and $\gamma_{2}(t)$ for each t in S^{1}. Compute the homology groups of X.

Solution. Note that T and K are subspaces of X, and their intersection inside X is homeomorphic to S^{1}. Choose open neighborhoods U of T and V of K such that the inclusions $T \rightarrow U, K \rightarrow V$ and $S^{1} \rightarrow U \cap V$ are homotopy equivalences. Recall that we have
$H_{n}(T)=\left\{\begin{array}{ll}0 & \text { if } n>2 \\ \mathbb{Z} & \text { if } n=2 \\ \mathbb{Z} \oplus \mathbb{Z} & \text { if } n=1 \\ \mathbb{Z} & \text { if } n=0\end{array} \quad H_{n}(K)=\left\{\begin{array}{ll}0 & \text { if } n>1 \\ \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z} & \text { if } n=1 \\ \mathbb{Z} & \text { if } n=0\end{array} \quad H_{n}\left(S^{1}\right)= \begin{cases}0 & \text { if } n>1 \\ \mathbb{Z} & \text { if } n=1 \\ \mathbb{Z} & \text { if } n=0\end{cases}\right.\right.$
and therefore similar values also for the homology of U, V and $U \cap V$.
We apply Van Kampen for the decomposition $X=U \cup V$. For each $n>2$ we obtain an exact sequence

$$
H_{n}(U) \oplus H_{n}(V) \rightarrow H_{n}(X) \rightarrow H_{n-1}(U \cap V)
$$

which simplifies to $0 \rightarrow H_{n}(X) \rightarrow 0$. It follows that $H_{n}(X)=0$ for $n>2$.
We also have an exact sequence

$$
H_{2}(U \cap V) \rightarrow H_{2}(U) \oplus H_{2}(V) \rightarrow H_{2}(X) \rightarrow H_{1}(U \cap V) \rightarrow H_{1}(U) \oplus H_{1}(V) \rightarrow H_{1}(X) \rightarrow \widetilde{H}_{0}(U \cap V)
$$

which simplifies to

$$
0 \rightarrow \mathbb{Z} \rightarrow H_{2}(X) \rightarrow \mathbb{Z} \xrightarrow{\left(j_{1}, j_{2}\right)}(\mathbb{Z} \oplus \mathbb{Z}) \oplus(\mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}) \rightarrow H_{1}(X) \rightarrow 0
$$

We note that the morphisms j_{1}, j_{2} are the morphisms induced on H_{1} by γ_{1} and γ_{2}. These maps are in turn homotopic to embeddings $\gamma_{1}^{\prime}, \gamma_{2}^{\prime}$ whose images are the oriented circles depicted in the following picture:

It follows that we have

$$
j_{1}(1)=(0,1) \in \mathbb{Z} \oplus \mathbb{Z} \quad j_{2}(1)=(0,1) \in \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}
$$

Therefore the map $\left(j_{1}, j_{2}\right)$ is injective, and our previous exact sequence breaks up into two exact sequences

$$
0 \rightarrow \mathbb{Z} \rightarrow H_{2}(X) \rightarrow 0
$$

and

$$
0 \rightarrow \mathbb{Z} \xrightarrow{(0,1,0,1)} \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z} \rightarrow H_{1}(X) \rightarrow 0
$$

We see from our first sequence that $H_{2}(X)=\mathbb{Z}$. The second sequence admits a splitting given by the map $\mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z} \rightarrow \mathbb{Z}$ of projection onto the second coordinate. We conclude that $H_{1}(X)$ is isomorphic to the kernel of this projection, which is $\mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}$.

We finally observe that X is path connected and therefore $H_{0}(X)=\mathbb{Z}$. In conclusion, we have

$$
H_{n}(X)= \begin{cases}0 & \text { if } n>2 \\ \mathbb{Z} & \text { if } n=2 \\ \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z} & \text { if } n=1 \\ \mathbb{Z} & \text { if } n=0\end{cases}
$$

Exercise 2. Let $n \geq 2$ and consider the standard embedding $i: \mathbb{R P}^{1} \rightarrow \mathbb{R P}^{n}$, induced by passing to the quotient the $\operatorname{map}\left(\mathbb{R}^{2}-0\right) \rightarrow\left(\mathbb{R}^{n+1}-0\right)$ which sends $\left(x_{1}, x_{2}\right)$ to $\left(x_{1}, x_{2}, 0,0, \ldots, 0\right)$.
(a) Show that if n is odd then there exists a neighborhood U of $i\left(\mathbb{R P}^{1}\right)$ inside $\mathbb{R} \mathrm{P}^{n}$ and a homeomorphism $h: U \rightarrow \mathbb{R} \mathrm{P}^{1} \times \mathbb{R}^{n-1}$ such that for every p in $\mathbb{R} \mathrm{P}^{1}$ we have $h i(p)=(p, 0)$.
(b) Show that if a pair (U, h) as in (a) exists, then n is odd.

Solution. (a) Consider the subspace H inside \mathbb{R}^{n+1} consisting of those points ($x_{1}, x_{2}, \ldots, x_{n+1}$) such that $\left(x_{1}, x_{2}\right)$ has Euclidean norm 1 , and $x_{1}>0$. Note that H is homeomorphic to $[0,1] \times \mathbb{R}^{n-1}$. The projection $H \rightarrow \mathbb{R} P^{n}$ factors through the space H^{\prime} obtained from H by identifying $(0, p)$ with $(1,-p)$ for each p in \mathbb{R}^{n-1}. The resulting map $j: H^{\prime} \rightarrow \mathbb{R} P^{n}$ is an open embedding whose image is an open neighborhood of $i\left(\mathbb{R} \mathrm{P}^{1}\right)$. Moreover, the inclusion $\mathbb{R P}^{1} \rightarrow H^{\prime}$ induced by corestriction of i is the same as the map obtained by passage to the quotient of the composite map

$$
[0,1] \rightarrow[0,1] \times \mathbb{R}^{n-1}=H \rightarrow H^{\prime}
$$

where the first map sends t to $(t, 0)$, and the second map is the canonical projection.
Let $\gamma:[0,1] \times \mathbb{R}^{n-1} \rightarrow \mathbb{R}^{n-1}$ be a homotopy from the identity $\mathrm{id}_{\mathbb{R}^{n-1}}$ to $-\mathrm{id}_{\mathbb{R}^{n-1}}$, such that for each t in $[0,1]$ the induced map $\gamma_{t}: \mathbb{R}^{n-1} \rightarrow \mathbb{R}^{n-1}$ is an invertible linear transformation (this exists since $n-1$ is even). Then we have a homeomorphism

$$
\left(\operatorname{id}_{[0,1]}, \gamma\right):[0,1] \times \mathbb{R}^{n-1} \rightarrow[0,1] \times \mathbb{R}^{n-1}
$$

This induces a homeomorphism between H^{\prime} and the quotient of $[0,1] \times \mathbb{R}^{n-1}$ by the equivalence relation which identifies $(0, p)$ with $(1, p)$ for each p in \mathbb{R}^{n-1}. The latter is in turn homeomorphic to $\mathbb{R} \mathrm{P}^{1} \times \mathbb{R}^{n-1}$. The resulting homeomorphism between $U=j\left(H^{\prime}\right)$ and $\mathbb{R} \mathrm{P}^{1} \times \mathbb{R}^{n-1}$ satisfies the desired condition.
(b) Assume that n is even. We will compare the homology of U relative to the complement of $i\left(\mathbb{R} \mathrm{P}^{1}\right)$ with the the homology of $\mathbb{R} \mathrm{P}^{1} \times \mathbb{R}^{n-1}$ relative to the complement of $\mathbb{R} \mathrm{P}^{1} \times\{0\}$, and show that these are different.

We begin with $H .\left(U, U-i\left(\mathbb{R}^{1}\right)\right)$. By excision, this is the same as $H .\left(\mathbb{R} P^{n}, \mathbb{R P}^{n}-i\left(\mathbb{R} \mathrm{P}^{1}\right)\right)$. Note that $\mathbb{R P}^{n}-i\left(\mathbb{R P}^{1}\right)$ deformation retracts to the complement of a point inside $\mathbb{R} \mathrm{P}^{n-1}$, which in turn deformation retracts to a copy of $\mathbb{R} \mathrm{P}^{n-2}$. Here the embedding $g: \mathbb{R} \mathrm{P}^{n-2} \rightarrow$ $\mathbb{R P}^{n}$ is obtained passing to the quotient the map $\left(\mathbb{R}^{n-1}-0\right) \rightarrow\left(\mathbb{R}^{n+1}-0\right)$ which sends $\left(x_{1}, x_{2}, \ldots, x_{n-1}\right)$ to $\left(0,0, x_{1}, x_{2}, \ldots, x_{n-1}\right)$.

Observe that after choosing an appropriate cell structure on $\mathbb{R P}^{n}$, we can think about g as the inclusion of the $(n-2)$-skeleton (the cell structure being obtained as the usual one, by reversing the order of the coordinates on $\left.\mathbb{R} \mathrm{P}^{n}\right)$. Hence g induces an isomorphism in homology in all degrees except in degree $n-1$, where g induces the zero map between $H_{n-1}\left(\mathbb{R} \mathrm{P}^{n-2}\right)=0$ and $H_{n-1}\left(\mathbb{R} \mathrm{P}^{n}\right)=\mathbb{Z} / 2 \mathbb{Z}$ (here we are using the fact that n is even). It now follows from the long exact sequence in homology for the pair ($\mathbb{R P}^{n}, g\left(\mathbb{R} \mathrm{P}^{n-2}\right)$ together with the fact that the inclusion of $g\left(\mathbb{R} \mathrm{P}^{n-2}\right)$ inside $\mathbb{R} \mathrm{P}^{n}-i\left(\mathbb{R} \mathrm{P}^{1}\right)$ is a homotopy equivalence, that we have isomorphisms

$$
H_{n-1}\left(\mathbb{R} \mathrm{P}^{n}, \mathbb{R} \mathrm{P}^{n}-i\left(\mathbb{R} \mathrm{P}^{1}\right)\right)=H_{n-1}\left(\mathbb{R} \mathrm{P}^{n}, g\left(\mathbb{R} \mathrm{P}^{n-2}\right)\right)=\mathbb{Z} / 2 \mathbb{Z}
$$

and that every other relative homology group is zero.
We now consider the homology of $\mathbb{R} \mathrm{P}^{1} \times \mathbb{R}^{n-1}$ relative to $\mathbb{R} P^{1} \times \mathbb{R}^{n-1}-\mathbb{R} \mathrm{P}^{1} \times\{0\}$. Observe that the space $\mathbb{R} \mathrm{P}^{1} \times \mathbb{R}^{n-1}-\mathbb{R} \mathrm{P}^{1} \times\{0\}$ deformation retracts to a copy of $\mathbb{R} \mathrm{P}^{1} \times S^{n-2}$. The
homology of this can be computed via Mayer-Vietoris in various ways. For instance, it can be computed using example 2.48 in Hatcher, which leads to short exact sequences

$$
0 \rightarrow H_{k}\left(S^{n-2}\right) \rightarrow H_{k}\left(\mathbb{R} \mathrm{P}^{1} \times S^{n-2}\right) \rightarrow H_{k-1}\left(S^{n-2}\right) \rightarrow 0
$$

for every $k \geq 1$. This implies in particular that $H_{n-1}\left(\mathbb{R} P^{1} \times S^{n-2}\right)$ is isomorphic to \mathbb{Z} if $n>2$, or $\mathbb{Z} \oplus \mathbb{Z}$ if $n=2$. Meanwhile, $\mathbb{R} \mathrm{P}^{1} \times \mathbb{R}^{n-1}$ deformation retracts to a copy of $\mathbb{R} \mathrm{P}^{1}$, so it has the homology of a circle.

It now follows from the long exact sequence in homology for the pair $\left(\mathbb{R} \mathrm{P}^{1} \times \mathbb{R}^{n-1}, \mathbb{R P}^{1} \times S^{n-2}\right)$ together with the fact that the inclusion of $\mathbb{R} P^{1} \times S^{n-2}$ inside $\mathbb{R} P^{1} \times \mathbb{R}^{n-1}-\mathbb{R} \mathrm{P}^{1} \times\{0\}$ is a homotopy equivalence, that we have an exact sequence

$$
H_{n}\left(\mathbb{R} \mathrm{P}^{1} \times \mathbb{R}^{n-1}, \mathbb{R} \mathrm{P}^{1} \times \mathbb{R}^{n-1}-\mathbb{R}^{1} \times\{0\}\right) \rightarrow \mathbb{Z} \rightarrow 0
$$

when $n>2$, or

$$
H_{n}\left(\mathbb{R} P^{1} \times \mathbb{R}^{n-1}, \mathbb{R} P^{1} \times \mathbb{R}^{n-1}-\mathbb{R P}^{1} \times\{0\}\right) \rightarrow \mathbb{Z} \oplus \mathbb{Z} \rightarrow \mathbb{Z}
$$

when $n=2$. It follows in particular that $H_{n}\left(\mathbb{R} \mathrm{P}^{1} \times \mathbb{R}^{n-1}, \mathbb{R P}^{1} \times \mathbb{R}^{n-1}-\mathbb{R}^{1} \times\{0\}\right)$ is nonzero. However we have also shown that when n is even the relative homology group $H_{n}(U, U-$ $\left.i\left(\mathbb{R P}^{1}\right)\right)$ is zero. This is a contradiction, so we must have that n is odd.

Remark. With a little more care, one can show that the homology of $\mathbb{R P}^{1} \times \mathbb{R}^{n-1}$ relative to $\mathbb{R} P^{1} \times \mathbb{R}^{n-1}-\mathbb{R} P^{1} \times\{0\}$ is \mathbb{Z} in degrees n and $n-1$, and zero everywhere else. Meanwhile, we also showed that the homology of U relative to $U-i\left(\mathbb{R} \mathrm{P}^{1}\right)$ is $\mathbb{Z} / 2 \mathbb{Z}$ in degree $n-1$, and zero everywhere else. An instructive exercise would be to repeat these computations working with $\mathbb{Z} / 2 \mathbb{Z}$ coefficients. In this case, both relative homologies will look identical, with copies of $\mathbb{Z} / 2 \mathbb{Z}$ in degrees n and $n-1$. One way in which one can phrase the outcome of this computation is that the inclusion i admits a relative orientation integrally if and only if n is odd, and it always admits a relative orientation with $\mathbb{Z} / 2 \mathbb{Z}$ coefficients.

Exercise 3. Let X, Y be path connected, locally path connected, and semilocally simply connected topological spaces. Denote by $\operatorname{Cov}(X)$ (resp. $\operatorname{Cov}(Y)$) the collection of isomorphism classes of (not necessarily path connected) covering spaces of X (resp. Y). Let $f: X \rightarrow Y$ be a continuous map, and consider the function $f^{*}: \operatorname{Cov}(Y) \rightarrow \operatorname{Cov}(X)$ which sends the isomorphism class of a covering space $p: E \rightarrow Y$ to the isomorphism class of its base change $p^{\prime}: E \times_{Y} X \rightarrow X$. Show that f^{*} is a bijection if and only if f induces an isomorphism between the fundamental groups of X and Y.

First solution. One way to solve this problem is to use the relation between covering spaces and group actions from page 68 in Hatcher.

Pick a basepoint x_{0} in X and let $y_{0}=f\left(x_{0}\right)$. We then have that $\operatorname{Cov}(X)($ resp. $\operatorname{Cov}(Y))$ can be equivalently described as the collection $\operatorname{Set}^{\pi_{1}\left(X, x_{0}\right)}$ (resp. Set ${ }^{\pi_{1}\left(Y, y_{0}\right)}$) of isomorphism classes of sets with a left action of $\pi_{1}\left(X, x_{0}\right)$ (resp. $\left.\pi_{1}\left(Y, y_{0}\right)\right)$. Given a covering space $p: E \rightarrow Y$, one attaches to it the set $p^{-1}\left(y_{0}\right)$. This is equipped with the $\pi_{1}\left(Y, y_{0}\right)$-action defined so that for each class $[\gamma]$ in $\pi_{1}\left(Y, y_{0}\right)$ and element e in $p^{-1}\left(y_{0}\right)$ we have

$$
[\gamma] \cdot e=\widetilde{\gamma}(0)
$$

where $\widetilde{\gamma}$ is the unique lift of γ to a path in E such that $\widetilde{\gamma}(1)=e$.
Consider now the covering space $p^{\prime}: E \times_{Y} X \rightarrow X$. We have a bijection of sets $p^{\prime-1}\left(x_{0}\right)=$ $p^{-1}\left(y_{0}\right)$ induced from the projection $E \times_{Y} X \rightarrow E$. Let e be an element of this set, and let [μ] be a class in $\pi_{1}\left(X, x_{0}\right)$. Let $\widetilde{\mu}$ be the lift of μ to $E \times_{Y} X$ such that $\widetilde{\mu}(1)=e$. Then the image of $\widetilde{\mu}$ under the projection $E \times_{Y} X \rightarrow E$ is a lift of $f \mu$ with endpoint e. It follows that

$$
[\mu] \cdot e=[f \mu] \cdot e
$$

where on the left we are using the action of $\pi_{1}\left(X, x_{0}\right)$, and on the left the action of $\pi_{1}\left(Y, y_{0}\right)$. We conclude that the map

$$
f^{*}: \operatorname{Cov}(Y) \rightarrow \operatorname{Cov}(X)
$$

is equivalent to the map

$$
\operatorname{Res}_{f_{*}}: \operatorname{Set}^{\pi_{1}\left(Y, y_{0}\right)} \rightarrow \operatorname{Set}^{\pi_{1}\left(X, x_{0}\right)}
$$

that sends the isomorphism class of a set with $\pi_{1}\left(Y, y_{0}\right)$-action S to the class of S with the action of $\pi_{1}\left(X, x_{0}\right)$ induced by restriction along $f_{*}: \pi_{1}\left(X, x_{0}\right) \rightarrow \pi_{1}\left(Y, y_{0}\right)$.

If f induces an isomorphism on fundamental groups then $\operatorname{Res}_{f_{*}}$ is also a bijection, and therefore f^{*} is also a bijection. Conversely, assume that $f^{*}\left(\right.$ and therefore $\left.\operatorname{Res}_{f_{*}}\right)$ is a bijection. Since the image of $\operatorname{Res}_{f_{*}}$ has to contain the class of a set with a free $\pi_{1}\left(X, x_{0}\right)$-action, we have that $f_{*}: \pi_{1}\left(X, x_{0}\right) \rightarrow \pi_{1}\left(Y, y_{0}\right)$ is necessarily injective.

It remains to show that f_{*} is surjective. Assume for the sake of contradiction that this is not the case, and consider the set $S=\pi_{1}\left(Y, y_{0}\right) / \operatorname{Im}\left(f_{*}\right)$ equipped with its natural $\pi_{1}\left(Y, y_{0}\right)$ action. Then $\operatorname{Res}_{f_{*}}(S)$ admits a fixed point, and in particular it can be written as the disjoint union of two nonempty sets with $\pi_{1}\left(X, x_{0}\right)$-action. Since $\operatorname{Res}_{f_{*}}$ is a bijection and preserves disjoint unions we conclude that S itself can be written as the union of two nonempty sets with $\pi_{1}\left(Y, y_{0}\right)$-action, which contradicts the fact that the action of $\pi_{1}\left(Y, y_{0}\right)$ on S is transitive. Hence f_{*} is surjective and an isomorphism, as desired.

Second solution. Another way to solve this problem is to use the classification of path connected covering spaces from theorem 1.38.

Pick a basepoint x_{0} in X and let $y_{0}=f\left(x_{0}\right)$. Assume first that $f_{*}: \pi_{1}\left(X, x_{0}\right) \rightarrow \pi_{1}\left(Y, y_{0}\right)$ is an isomorphism. Any covering space is a disjoint union of connected covering spaces, and
pullbacks of covering spaces map disjoint unions to disjoint unions. To show that f^{*} is a bijection, it suffices to show that f^{*} maps isomorphism classes of connected covering spaces to isomorphism classes of connected covering spaces, and that it in fact induces a bijection between those.

Let $p: E \rightarrow Y$ be a connected covering space. Since X is path connected, to show that $E \times_{Y} X$ is path connected it suffices to show that for every pair of elements e, e^{\prime} in $p^{\prime-1}\left(x_{0}\right)$ there is a path in $E \times_{Y} X$ from e to e^{\prime}. Let $\widetilde{\gamma}$ be a path in E from e to e^{\prime} (where we think about these now as elements in $\left.p^{-1}\left(y_{0}\right)\right)$. Then $p(\widetilde{\gamma})$ is a loop based at y_{0}. Let μ be a loop based at x_{0} such that $f_{*}[\mu]=[p \widetilde{\gamma}]$, and let $\widetilde{f \mu}$ be the lift of $f \mu$ to E such that $\widetilde{f \mu}(0)=e$. Since $f \mu$ is homotopic to $p(\widetilde{\gamma})$ as based loops, we have that $\widetilde{f \mu}(1)=\widetilde{\gamma}(1)=e^{\prime}$. The pair $(\mu, \widetilde{f \mu} \mu)$ defines then a path in $E \times_{Y} X$ from e to e^{\prime}.

We now show that f^{*} induces a bijection between isomorphism classes of connected covering spaces on X and Y. Let $p: E \rightarrow Y$ be a connected covering space and let e be an element in $p^{-1}\left(y_{0}\right)=p^{\prime-1}\left(x_{0}\right)$. Let μ be a loop in X based at x_{0}, and let $\widetilde{\mu}$ be its lift to $E \times_{Y} X$ such that $\widetilde{\mu}(0)=e$. Let $\widetilde{f \mu}$ be the lift of $f \mu$ to E such that $\widetilde{f \mu}(0)=e$. Then $\widetilde{f \mu}$ is the composition of $\widetilde{\mu}$ with the projection $E \times_{Y} X \rightarrow E$. We conclude that $\widetilde{f \mu}$ is a loop in $E \times_{Y} X$ if and only if $\widetilde{\mu}$ is a loop in Y. This means that $p_{*}^{\prime} \pi_{1}\left(E \times_{Y} X, e\right)$ is the preimage of $p_{*} \pi_{1}(E, e)$ under f_{*}. Our claim now follows from the fact that f_{*} is a group isomorphism, together with the classification theorem for path-connected covering spaces.

Conversely, assume that f^{*} is a bijection. We have to show that $f_{*}: \pi_{1}\left(X, x_{0}\right) \rightarrow \pi_{1}\left(Y, y_{0}\right)$ is an isomorphism. Since f^{*} maps disjoint unions to disjoint unions, we have that f^{*} restricts to a bijection on isomorphism classes of connected covering spaces. As discussed in the previous paragraph, for each connected covering space $p: E \rightarrow Y$ and element e in $p^{-1}\left(y_{0}\right)$ we have that $p_{*}^{\prime} \pi_{1}\left(E \times_{Y} X, e\right)$ is the preimage under f_{*} of $p_{*} \pi_{1}(E, e)$. Since the latter always contains the kernel of f_{*}, we conclude that f_{*} is necessarily injective, otherwise the class of the fundamental cover of X would not be in the image of f^{*}. Furthermore, since the preimages under f_{*} of $\operatorname{Im}\left(f_{*}\right)$ and $\pi_{1}\left(Y, y_{0}\right)$ agree, we have that the conjugacy classes of $\operatorname{Im}\left(f_{*}\right)$ and $\pi_{1}\left(Y, y_{0}\right)$ are the same. Since $\pi_{1}\left(Y, y_{0}\right)$ is normal inside itself, we conclude that $\operatorname{Im}\left(f_{*}\right)=\pi_{1}\left(Y, y_{0}\right)$, and therefore f_{*} is surjective.

