
MATH 215A FALL 2020 MIDTERM 2 SOLUTIONS

Exercise 1. Let T = S1 × S1 be the torus and let K be the Klein bottle. Consider
embeddings γ1 : S1 → T and γ2 : S1 → K whose images are the oriented circles depicted in
the following picture:

Let X = T
⋃
S1 K be the space obtained from the disjoint union of T and K by identifying

the points γ1(t) and γ2(t) for each t in S1. Compute the homology groups of X.

Solution. Note that T and K are subspaces of X, and their intersection inside X is home-
omorphic to S1. Choose open neighborhoods U of T and V of K such that the inclusions
T → U , K → V and S1 → U ∩ V are homotopy equivalences. Recall that we have

Hn(T ) =


0 if n > 2

Z if n = 2

Z⊕ Z if n = 1

Z if n = 0

Hn(K) =


0 if n > 1

Z⊕ Z/2Z if n = 1

Z if n = 0

Hn(S1) =


0 if n > 1

Z if n = 1

Z if n = 0

and therefore similar values also for the homology of U , V and U ∩ V .
We apply Van Kampen for the decomposition X = U ∪ V . For each n > 2 we obtain an

exact sequence
Hn(U)⊕Hn(V )→ Hn(X)→ Hn−1(U ∩ V )

which simplifies to 0→ Hn(X)→ 0. It follows that Hn(X) = 0 for n > 2.
We also have an exact sequence

H2(U∩V )→ H2(U)⊕H2(V )→ H2(X)→ H1(U∩V )→ H1(U)⊕H1(V )→ H1(X)→ H̃0(U∩V )

which simplifies to

0→ Z→ H2(X)→ Z (j1,j2)−−−→ (Z⊕ Z)⊕ (Z⊕ Z/2Z)→ H1(X)→ 0.

We note that the morphisms j1, j2 are the morphisms induced on H1 by γ1 and γ2. These
maps are in turn homotopic to embeddings γ′1, γ

′
2 whose images are the oriented circles

depicted in the following picture:
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It follows that we have

j1(1) = (0, 1) ∈ Z⊕ Z j2(1) = (0, 1) ∈ Z⊕ Z/2Z.
Therefore the map (j1, j2) is injective, and our previous exact sequence breaks up into two
exact sequences

0→ Z→ H2(X)→ 0

and

0→ Z (0,1,0,1)−−−−→ Z⊕ Z⊕ Z⊕ Z/2Z→ H1(X)→ 0.

We see from our first sequence that H2(X) = Z. The second sequence admits a splitting
given by the map Z ⊕ Z ⊕ Z ⊕ Z/2Z → Z of projection onto the second coordinate. We
conclude that H1(X) is isomorphic to the kernel of this projection, which is Z⊕ Z⊕ Z/2Z.

We finally observe that X is path connected and therefore H0(X) = Z. In conclusion, we
have

Hn(X) =


0 if n > 2

Z if n = 2

Z⊕ Z⊕ Z/2Z if n = 1

Z if n = 0.
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Exercise 2. Let n ≥ 2 and consider the standard embedding i : RP1 → RPn, induced by
passing to the quotient the map (R2−0)→ (Rn+1−0) which sends (x1, x2) to (x1, x2, 0, 0, . . . , 0).

(a) Show that if n is odd then there exists a neighborhood U of i(RP1) inside RPn and a
homeomorphism h : U → RP1×Rn−1 such that for every p in RP1 we have hi(p) = (p, 0).

(b) Show that if a pair (U, h) as in (a) exists, then n is odd.

Solution. (a) Consider the subspaceH inside Rn+1 consisting of those points (x1, x2, . . . , xn+1)
such that (x1, x2) has Euclidean norm 1, and x1 > 0. Note that H is homeomorphic to
[0, 1] × Rn−1. The projection H → RPn factors through the space H ′ obtained from H by
identifying (0, p) with (1,−p) for each p in Rn−1. The resulting map j : H ′ → RPn is an
open embedding whose image is an open neighborhood of i(RP1). Moreover, the inclusion
RP1 → H ′ induced by corestriction of i is the same as the map obtained by passage to the
quotient of the composite map

[0, 1]→ [0, 1]× Rn−1 = H → H ′

where the first map sends t to (t, 0), and the second map is the canonical projection.
Let γ : [0, 1]×Rn−1 → Rn−1 be a homotopy from the identity idRn−1 to − idRn−1 , such that

for each t in [0, 1] the induced map γt : Rn−1 → Rn−1 is an invertible linear transformation
(this exists since n− 1 is even). Then we have a homeomorphism

(id[0,1], γ) : [0, 1]× Rn−1 → [0, 1]× Rn−1.

This induces a homeomorphism between H ′ and the quotient of [0, 1]×Rn−1 by the equiva-
lence relation which identifies (0, p) with (1, p) for each p in Rn−1. The latter is in turn home-
omorphic to RP1×Rn−1. The resulting homeomorphism between U = j(H ′) and RP1×Rn−1

satisfies the desired condition.

(b) Assume that n is even. We will compare the homology of U relative to the complement
of i(RP1) with the the homology of RP1×Rn−1 relative to the complement of RP1×{0}, and
show that these are different.

We begin with H•(U,U − i(RP1)). By excision, this is the same as H•(RPn,RPn−i(RP1)).
Note that RPn−i(RP1) deformation retracts to the complement of a point inside RPn−1,
which in turn deformation retracts to a copy of RPn−2. Here the embedding g : RPn−2 →
RPn is obtained passing to the quotient the map (Rn−1 − 0) → (Rn+1 − 0) which sends
(x1, x2, . . . , xn−1) to (0, 0, x1, x2, . . . , xn−1).

Observe that after choosing an appropriate cell structure on RPn, we can think about
g as the inclusion of the (n − 2)-skeleton (the cell structure being obtained as the usual
one, by reversing the order of the coordinates on RPn). Hence g induces an isomorphism
in homology in all degrees except in degree n − 1, where g induces the zero map between
Hn−1(RPn−2) = 0 and Hn−1(RPn) = Z/2Z (here we are using the fact that n is even). It
now follows from the long exact sequence in homology for the pair (RPn, g(RPn−2) together
with the fact that the inclusion of g(RPn−2) inside RPn−i(RP1) is a homotopy equivalence,
that we have isomorphisms

Hn−1(RPn,RPn−i(RP1)) = Hn−1(RPn, g(RPn−2)) = Z/2Z

and that every other relative homology group is zero.
We now consider the homology of RP1×Rn−1 relative to RP1×Rn−1−RP1×{0}. Observe

that the space RP1×Rn−1 − RP1×{0} deformation retracts to a copy of RP1×Sn−2. The
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homology of this can be computed via Mayer-Vietoris in various ways. For instance, it can
be computed using example 2.48 in Hatcher, which leads to short exact sequences

0→ Hk(S
n−2)→ Hk(RP1×Sn−2)→ Hk−1(S

n−2)→ 0

for every k ≥ 1. This implies in particular that Hn−1(RP1×Sn−2) is isomorphic to Z if
n > 2, or Z⊕ Z if n = 2. Meanwhile, RP1×Rn−1 deformation retracts to a copy of RP1, so
it has the homology of a circle.

It now follows from the long exact sequence in homology for the pair (RP1×Rn−1,RP1×Sn−2)
together with the fact that the inclusion of RP1×Sn−2 inside RP1×Rn−1 − RP1×{0} is a
homotopy equivalence, that we have an exact sequence

Hn(RP1×Rn−1,RP1×Rn−1 − RP1×{0})→ Z→ 0

when n > 2, or

Hn(RP1×Rn−1,RP1×Rn−1 − RP1×{0})→ Z⊕ Z→ Z
when n = 2. It follows in particular that Hn(RP1×Rn−1,RP1×Rn−1−RP1×{0}) is nonzero.
However we have also shown that when n is even the relative homology group Hn(U,U −
i(RP1)) is zero. This is a contradiction, so we must have that n is odd.

Remark. With a little more care, one can show that the homology of RP1×Rn−1 relative
to RP1×Rn−1−RP1×{0} is Z in degrees n and n−1, and zero everywhere else. Meanwhile,
we also showed that the homology of U relative to U − i(RP1) is Z/2Z in degree n − 1,
and zero everywhere else. An instructive exercise would be to repeat these computations
working with Z/2Z coefficients. In this case, both relative homologies will look identical,
with copies of Z/2Z in degrees n and n− 1. One way in which one can phrase the outcome
of this computation is that the inclusion i admits a relative orientation integrally if and only
if n is odd, and it always admits a relative orientation with Z/2Z coefficients.
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Exercise 3. Let X, Y be path connected, locally path connected, and semilocally simply
connected topological spaces. Denote by Cov(X) (resp. Cov(Y )) the collection of isomor-
phism classes of (not necessarily path connected) covering spaces of X (resp. Y ). Let
f : X → Y be a continuous map, and consider the function f ∗ : Cov(Y ) → Cov(X) which
sends the isomorphism class of a covering space p : E → Y to the isomorphism class of its
base change p′ : E ×Y X → X. Show that f ∗ is a bijection if and only if f induces an
isomorphism between the fundamental groups of X and Y .

First solution. One way to solve this problem is to use the relation between covering spaces
and group actions from page 68 in Hatcher.

Pick a basepoint x0 in X and let y0 = f(x0). We then have that Cov(X) (resp. Cov(Y ))

can be equivalently described as the collection Setπ1(X,x0) (resp. Setπ1(Y,y0)) of isomorphism
classes of sets with a left action of π1(X, x0) (resp. π1(Y, y0)). Given a covering space
p : E → Y , one attaches to it the set p−1(y0). This is equipped with the π1(Y, y0)-action
defined so that for each class [γ] in π1(Y, y0) and element e in p−1(y0) we have

[γ] · e = γ̃(0)

where γ̃ is the unique lift of γ to a path in E such that γ̃(1) = e.
Consider now the covering space p′ : E×Y X → X. We have a bijection of sets p′−1(x0) =

p−1(y0) induced from the projection E ×Y X → E. Let e be an element of this set, and let
[µ] be a class in π1(X, x0). Let µ̃ be the lift of µ to E ×Y X such that µ̃(1) = e. Then the
image of µ̃ under the projection E×Y X → E is a lift of fµ with endpoint e. It follows that

[µ] · e = [fµ] · e
where on the left we are using the action of π1(X, x0), and on the left the action of π1(Y, y0).
We conclude that the map

f ∗ : Cov(Y )→ Cov(X)

is equivalent to the map

Resf∗ : Setπ1(Y,y0) → Setπ1(X,x0)

that sends the isomorphism class of a set with π1(Y, y0)-action S to the class of S with the
action of π1(X, x0) induced by restriction along f∗ : π1(X, x0)→ π1(Y, y0).

If f induces an isomorphism on fundamental groups then Resf∗ is also a bijection, and
therefore f ∗ is also a bijection. Conversely, assume that f ∗ (and therefore Resf∗) is a bijection.
Since the image of Resf∗ has to contain the class of a set with a free π1(X, x0)-action, we
have that f∗ : π1(X, x0)→ π1(Y, y0) is necessarily injective.

It remains to show that f∗ is surjective. Assume for the sake of contradiction that this is
not the case, and consider the set S = π1(Y, y0)/ Im(f∗) equipped with its natural π1(Y, y0)-
action. Then Resf∗(S) admits a fixed point, and in particular it can be written as the disjoint
union of two nonempty sets with π1(X, x0)-action. Since Resf∗ is a bijection and preserves
disjoint unions we conclude that S itself can be written as the union of two nonempty sets
with π1(Y, y0)-action, which contradicts the fact that the action of π1(Y, y0) on S is transitive.
Hence f∗ is surjective and an isomorphism, as desired.

Second solution. Another way to solve this problem is to use the classification of path
connected covering spaces from theorem 1.38.

Pick a basepoint x0 in X and let y0 = f(x0). Assume first that f∗ : π1(X, x0)→ π1(Y, y0)
is an isomorphism. Any covering space is a disjoint union of connected covering spaces, and
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pullbacks of covering spaces map disjoint unions to disjoint unions. To show that f ∗ is a
bijection, it suffices to show that f ∗ maps isomorphism classes of connected covering spaces
to isomorphism classes of connected covering spaces, and that it in fact induces a bijection
between those.

Let p : E → Y be a connected covering space. Since X is path connected, to show that
E ×Y X is path connected it suffices to show that for every pair of elements e, e′ in p′−1(x0)
there is a path in E ×Y X from e to e′. Let γ̃ be a path in E from e to e′ (where we think
about these now as elements in p−1(y0)). Then p(γ̃) is a loop based at y0. Let µ be a loop

based at x0 such that f∗[µ] = [pγ̃], and let f̃µ be the lift of fµ to E such that f̃µ(0) = e.

Since fµ is homotopic to p(γ̃) as based loops, we have that f̃µ(1) = γ̃(1) = e′. The pair

(µ, f̃µ) defines then a path in E ×Y X from e to e′.
We now show that f ∗ induces a bijection between isomorphism classes of connected cov-

ering spaces on X and Y . Let p : E → Y be a connected covering space and let e be an
element in p−1(y0) = p′−1(x0). Let µ be a loop in X based at x0, and let µ̃ be its lift to

E ×Y X such that µ̃(0) = e. Let f̃µ be the lift of fµ to E such that f̃µ(0) = e. Then f̃µ is

the composition of µ̃ with the projection E ×Y X → E. We conclude that f̃µ is a loop in
E ×Y X if and only if µ̃ is a loop in Y . This means that p′∗π1(E ×Y X, e) is the preimage
of p∗π1(E, e) under f∗. Our claim now follows from the fact that f∗ is a group isomorphism,
together with the classification theorem for path-connected covering spaces.

Conversely, assume that f ∗ is a bijection. We have to show that f∗ : π1(X, x0)→ π1(Y, y0)
is an isomorphism. Since f ∗ maps disjoint unions to disjoint unions, we have that f ∗ restricts
to a bijection on isomorphism classes of connected covering spaces. As discussed in the
previous paragraph, for each connected covering space p : E → Y and element e in p−1(y0)
we have that p′∗π1(E×Y X, e) is the preimage under f∗ of p∗π1(E, e). Since the latter always
contains the kernel of f∗, we conclude that f∗ is necessarily injective, otherwise the class
of the fundamental cover of X would not be in the image of f ∗. Furthermore, since the
preimages under f∗ of Im(f∗) and π1(Y, y0) agree, we have that the conjugacy classes of
Im(f∗) and π1(Y, y0) are the same. Since π1(Y, y0) is normal inside itself, we conclude that
Im(f∗) = π1(Y, y0), and therefore f∗ is surjective.


