Lecture 25 (M 11/30/20) Poincaré Duality

Let's start with a combinatorial form of Poincaré duality we've already discussed (informal discussion):

Setup: M compact nfdl (locally $\approx \mathbb{R}^n$, Hausdorff)

for example M is closed surface.

Suppose M has a triangulation

$$C^*(M, \mathbb{Z}/2) \leftarrow C^*_{n-k}(M, \mathbb{Z}/2)$$

(cochain complex)

chain complex

of dual cells

Consequence

$H^*(M, \mathbb{Z}/2) \rightarrow H_{n-k}(M, \mathbb{Z}/2)$

Poincaré duality!

Question: Can we make this work without reference to any combinatorial topology?
Guideline from analysis: \(H^*(M) = \) "loc. count. fns on \(M \)"
\(H_{\text{loc}}(M) = \) "loc. count. diff's on \(M \)"

Mumford: cup prod. = "prod of fns"

\(H^* \to \text{Hom}(H_*, \mathbb{R}) = \) "pairing of fns and diff's"

If we choose a vol. form \(vol \) on \(M \), then we have map
\[\text{Functions} \to \text{Distributions} \]
\[f \mapsto \int_M f(\cdot) \, vol \]

To construct \(H^*(M, \mathbb{R}) \to H_{\text{loc}}(M, \mathbb{R}) \), we need topol. version of "volume form"

Analogous of multiplicity
\[\text{Fns} \times \text{Diff's} \to \text{Diff's} \]

and we want that multplies cochains with this "volume form".

Remark: When \(\mathbb{R} = \mathbb{Z}/2\mathbb{Z} \), there is a canonical "volume form".
\[C_{\text{cap product}}: \text{X space, R comm ring, } k \geq l \]

\[C^k(X, R) \times C^l(X, R) \rightarrow C_{k-l}(X, R) \]

\[\varphi \times \sigma \rightarrow \sigma \cap \varphi \]

\[\sigma \cap \varphi = \varphi \left(\sigma \mid s_0, \ldots, s_l \right) \cdot \sigma \mid s_l, \ldots, s_k \]

\[\text{elt of } R \quad \text{and in } R \text{ chain} \]

\[2 \]

\[\begin{array}{c}
\sigma \\
\downarrow \\
1 \\
\bigtriangleup \\
\sigma \mid s_l, \ldots, s_k \\
\end{array} \]

Exer 1) \[\sigma (\sigma \cap \varphi) = (-1)^l (\varphi \sigma \cap \varphi - \sigma \cap \delta \varphi) \]

so cap prod induces

\[H^k(X, R) \times H^l(X, R) \rightarrow H^{k-l}(X, R) \]

2) **projection formula:** \(f: X \rightarrow Y \)

\[f^*(\sigma \cap \varphi) = f^*(\sigma \cap f^*\varphi) \]

3) **interaction with cap prod:** \(\varphi (\sigma \cap \varphi) = (\varphi \cup \varphi)(\sigma) \)
So comm diag
\[
\begin{array}{c}
H^p(X, \mathbb{R}) \rightarrow H_{\mathbb{R}}(H_\mathbb{R}^p(X, \mathbb{R}), \mathbb{R}) \\
\cup \Psi \downarrow \quad \downarrow (\cap \Psi)^* \\
H^{k+t}(X, \mathbb{R}) \rightarrow H_{\mathbb{R}}(H_{k+t}(X, \mathbb{R}), \mathbb{R})
\end{array}
\]

Top version of "rel form"

fundamental class
(or orientation class)

Observe \(M\) n-mfld \(\Rightarrow H_i(M, M \cdot x; \mathbb{R}) \cong \begin{cases} \mathbb{R} & i = n \\
0 & \text{else} \end{cases}\) (homology of sphere around \(x\))

Key question: How canonical is \((*)\)?

When \(R = \mathbb{Z}\): two possible choices since \(\mathbb{Z}\) has two generators \(\pm 1\).

When \(R = \mathbb{Z}/2\): unique choice since \(\mathbb{Z}/2\) has unique

Def 1) R-orientation of \(M\) at \(x \in M\) is choice of gen
\(\mu_x \in H_n(M, M \cdot x; \mathbb{R}) \cong \mathbb{R}\)

2) R-orientation of \(M\) is compatible choice of R-orientations at all \(x \in M\).
Meaning of compatible

\[H_n(M, M \smallsetminus x; \mathbb{R}) \cong H_n(M, M \smallsetminus y; \mathbb{R}) \]

\[M_x \quad \overleftarrow{\quad} \quad M_y \]

Bundle of orientations

Classical case: \(R = \mathbb{C} \)

\[\tilde{M} = \left\{ (x, \mu_x) \mid x \in M, \mu_x \text{ group of } H_n(M, M \smallsetminus x) \right\} \]

\[\pi : \tilde{M} \quad \text{bundle} \quad \mathbb{Z}/2 \quad \text{principal bundle} \]

Exercise: Topologize \(\tilde{M} \) so that \(\pi \) is indeed covering.

"Nearly \((x, \mu_x)\) are compatible"

Exercise: \(M = \mathbb{RP}^2 \implies \tilde{M} = S^2 \)

\[M = S^2 \implies \tilde{M} = S^1 \sqcup S^2 \]

Observe: \(\tilde{M} \) has a \underline{tautological orientation} \((x, \mu_x) \implies \mu_x\)

Prop Orientation of \(M \) \(\quad \text{section} \quad \Sigma_{M}^\mathcal{F} \)

pf. Exercise.
Cor: \(M \) simply-connected \(\implies \) \(M \) is orientable with exactly \(2^n \) orientations.

Remark: There's an analogous covering space for \(\mathbb{R} \)-orientation.

Def. Fund class \([M] \in H_n(M, \mathbb{R}) \) such that for all \(x \in M \)

\[
H_n(M, \mathbb{R}) \xrightarrow{\sim} H_n(M, M \cdot x, \mathbb{R})
\]

we have \([M] \) \(\mapsto \) generator (local orientation).

In other words \([M] \) defines an \(\mathbb{R} \)-orientation of \(M \).

Conversely...

Theorem: \(M \) compact conn \(n \)-mfd

1) \(M \) \(\mathbb{R} \)-orientable \(\implies \)

\[
H_n(M, \mathbb{R}) \xrightarrow{\sim} H_n(M, M \cdot x, \mathbb{R}) \quad \text{for all } x \in M
\]

2) \(M \) not \(\mathbb{R} \)-orientable \(\implies \)

\[
H_n(M, \mathbb{R}) \xrightarrow{\text{inj.}} H_n(M, M \cdot x, \mathbb{R}) \supseteq \mathbb{R}
\]

for all \(x \in M \)

with image \(\{ r \in \mathbb{R} \mid 2r = 0 \} \)

3) \(H_i(M, \mathbb{R}) = 0 \quad i > n \)
\(\text{Car } R=\mathbb{Z} \quad H_n(M, \mathbb{Z}) = \begin{cases} \mathbb{Z} & M \text{ nontellable } \\ 0 & M \text{ not nontellable} \end{cases} \)

\(R=\mathbb{Z}/2 \quad H_n(M, \mathbb{Z}/2) = \mathbb{Z}/2 \)

To prove Thur, we'll use:

Let \(M_R = \{ (x, r_x) \mid x \in M, r_x \in H_n(M, M-x, \mathbb{R}) \} \)

not nec gen.

Covering space with fibers \(R \) (in fact a comm ring space /\(M \))

sections = compatible choices of fields in local chart.

Lemma: \(M \) n-mfd, \(A \subset M \) compact

\[a) \quad \pi | M_R \quad \begin{cases} \alpha \in \text{secin} \quad \Rightarrow \exists! \quad \alpha_A \in H_n(M, M-A) \\ \text{restricting to } \alpha_x \text{ for all } x \in A \quad \text{ via } \quad H_n(M, M-A) \rightarrow H_n(M, M-x) \end{cases} \]

\[b) \quad H_i(M, M-A; \mathbb{R}) = 0 \quad i > n \]

Lemma \(\Rightarrow \) Thur: \(M \) compact, set \(A = M \)

So \(b) \Rightarrow 3) \)

For 1) and 2), consider natural map

\[H_n(M, R) \rightarrow \text{sections } (\pi | M_R) \quad a) \Rightarrow \text{ isom} \].
Since \(M \) compact, 1), 2) follow since sections determined by restriction to a point.

We'll leave proof of Lemma to Office Hours or other discussions...

Then (Poincaré duality)

- \(M \) compact, R-oriented \(n \)-mfd
- Let \(\psi_0 \in H_n(M; \mathbb{R}) \) be a fund class

Thus \(\quad H^k(M; \mathbb{R}) \xrightarrow{\sim} H_{n-k}(M; \mathbb{R}) \)

\[\psi \mapsto [M] \wedge \psi \]