Another picture of $\pi_1(\tilde{X}, \tilde{x}_0) = <1>$ where $(\tilde{X}, \tilde{x}_0) \xrightarrow{p} (X, x_0)$ is a universal cover.

When $s = 1$, $\tilde{g}(1) = \tilde{x}_0 = p(\gamma(1)) = p(\gamma(s))$.

Setup: X path-connected, locally path-connected, semi-locally simply-connected.

We've classified path-connected covers $(\tilde{X}, \tilde{x}_0) \rightarrow (X, x_0)$.

Today: Fix group G, classify (not nec path-connected)

G-covers $(\tilde{X}, \tilde{x}_0) \rightarrow (X, x_0)$

Def: A path-connected complex (X, x_0) is called a $K(G, 1)$ if $\pi_1(X, x_0) = G$ and universal cover (\tilde{X}, \tilde{x}_0) is contractible.

Rule: A space (X, x_0) is called a $K(G, n)$ if $\pi_n(X, x_0) = G$ and all other π_i trivial (Eilenberg-MacLane spaces).
Thus, any two $K(G, 1)$'s are homotopy equivalent.

Exs:
1) $S^1 = K(\mathbb{Z}, 1)$

2) $RP^{\infty} = K(\mathbb{Z}/2, 1)$

3) Closed Riemann surface Σ_g of genus $g \geq 1$

$$\cong K(\pi_g, 1) \quad \pi_g = \pi_1(\Sigma_g, x)$$

Recall simply-connected R. surf.: C, D, σ_r^1

$$\Sigma_g = \begin{cases} C & g=1 \\ D & g \geq 1. \end{cases}$$

4) Knot complements $K \subset S^3$

$$S^3 \setminus K = K(\pi_1, 1)$$

Thus, $K(G, 1)$ exists for any G.

Proof/Construction. First we'll construct contractible space EG with a free G-action. (this will play role of univ. cover.)

Build out of simplices:

- $G \xleftarrow{\sigma_0} G \xleftarrow{\sigma_1} G \times G \xleftarrow{\sigma_2} G \times G \times G \xleftarrow{\sigma_3} G \times G \times G \times G \ldots$
- $\Delta^0 \xleftarrow{x} \Delta^1 \xleftarrow{x} \Delta^2 \xleftarrow{x} \Delta^3 \ldots$
Each map σ_i tells how to glue ith-boundary face (opposite vertex) to prior simplices: $\sigma_i = \text{forgets ith elt in product.}$

$\mathbb{Z}/2 = \langle 0, 1 \rangle$

$\text{Ex: } G = \mathbb{Z}/2 = \langle 0, 1 \rangle$

![Diagram of a graph with vertices and edges labeled (0,0), (1,0), (0,1), (1,1), with arrows indicating σ_0 and σ_1 actions.]

$\sigma_0(0,1) = 1, \sigma_1(0,1) = 0$

give 1-end of σ_0 to pt 1

give 0-end of σ_1 to pt 0

1-skeleton:

![Graph diagram with vertices (0,0), (1,0), (0,1), (1,1), and edges connecting them.]

(Reyn Construction can be made for any space X.)

Lemma: E_6 is contractible.

Caution: "Filled in all possible prongs, spheres in space"
Pf of Lemma:

A simplex in EG indexed by (g_0, g_1, \ldots, g_n) contracting all points of simplex to vertex of simplex indexed by $(e, g_0, g_1, \ldots, g_n)$ identity.

Thus EG is contracted to 0-simplex indexed by e. \blacksquare

Ex: $G = \mathbb{Z}/2$

- $(0,0)$
- $(0,1)$
- $(1,0)$
- $(1,1)$
- $(0,0)$
- $(0,1)$
- $(0,1,0)$

Lemma: $G \& EG$ proper subset by left unit on all factors.

in part, action is free.

Pf, Exe. (Hint: G permutes all simplices...)

Definition: $BG = EG/\beta$ is a $K(G,1)$.

univ cone $= EG$.

Then X a pointed CW complex, Y $K(G,1)$

$\text{Hom} \left(\pi_1(X,x_0), G \right) \cong \left\{ (x,x_0), (Y,y_0) \right\}_{x_0} \cong \left\{ \text{G-coverings of } X \text{ with fiber over } x_0 \text{ identified with } G \right\}$

One says (Y,y_0) "classifies" G-coverings + identifications

Given $f : (X,x_0) \rightarrow (Y,y_0)$

$$f_+ : \pi_1(X,x_0) \rightarrow \pi_1(Y,y_0) = G$$

sp homo

$f^* \tilde{Y} = X \times \tilde{Y} \rightarrow X$ G-covering

Cor. Uniqueness (up to homotopy) of $K(G,1)$'s.

Pf. X,Y are $K(G,1)$'s. Then f gives maps (canoc to $id : G \rightarrow G$)

$f : (Y,y_0) \rightarrow (Y,y_0)$, $g : (Y,y_0) \rightarrow (X,x_0)$

Check these are inverse homotopy equivs. □

Let's consider $f : (Y,y_0) \rightarrow (Y,y_0)$

given $\Psi : \pi_1(X,x_0) \rightarrow G$

Under simplifying assumption that X has single 0-cell x_0.
\[X \xrightarrow{f} Y \xrightarrow{K(G,1)} Y\]

\[X^0 \xrightarrow{x_0} X^1 \xrightarrow{e_a} X^2 \xrightarrow{y_0} Y_0\]

\[\psi : \pi_1(Y,y_0) \rightarrow \pi_1(Y_0) \cong G\]

\[\text{clue rep. } \gamma_a\]

\[\text{for } \gamma \in \pi_1(X_0) \subset \pi_1(X) \text{ so } f(\gamma) \in \pi_1(Y) \cong G\]

\[f(e^n) \text{ is } \text{filling limit.}\]

\[n \geq 2 \quad \partial e^n = S^{n-1}\]

\[\text{since } S^{n-1} \text{ has triv } \pi_1, \quad f(e^n) \text{ is } \text{filling limit}\]

\[\text{Uniformly run similar arguments on } X \times I\]