Date  Lecture  Topics  References  Remarks 
8/29  1  Introduction (derivation of some common PDE)  
9/3  2  Background (calculus, topology)  Strauss A.1, A.3
Evans C.2, C.3 

9/5  3  Background (convolution, distributions)  Strauss 12.1  
9/8  4  Laplace/Poisson (fundamental solution)  Strauss 6.1, 7.2,
Evans 2.2.1 

9/10  5  Laplace/Poisson (Green's functions)  Strauss 7.3
Evans 2.2.4 
Homework 1 Due 
9/12  6  Laplace/Poisson (Green's functions, mean value property)  Strauss 7.4, 7.1
Evans 2.2.4, 2.2.2 

9/15  7  Laplace/Poisson (maximum principle, uniqueness)  Strauss 6.1, 7.1 Evans 2.2.3 (a) 

9/17  8  Heat Equation (fundamental solution)  Strauss 2.4 Evans 2.3.1 
Homework 2 Due 
9/19  9  Heat Equation (mean value property)  Evans 2.3.2  
9/22  10  Heat Equation (maximum principle, uniqueness)  Strauss 2.3 Evans 2.3.3 

9/24  11  Wave Equation (fundamental solution in 1d)  Strauss 2.1, 2.2 Evans 2.4.1 
Homework 3 Due 
9/26  12  Wave Equation (solution in 3d)  Strauss 9.1, 9.2 Evans 2.4.1 

9/29  13  Wave Equation (solution in 2d)  Strauss 9.1 Evans 2.4.1, 2.4.3 

10/1  14  Wave Equation (energy methods)  Evans 2.4.3  
10/3  Review  Homework 4 Due  
10/6  Midterm 1  Midterm 1  
10/8  15  Separation of variables, Fourier series  Strauss 1.4, 4.1, 4.2  
10/10  16  Separation of variables, Fourier series  Strauss 5.1, 5.2, 5.3, 5.4  
10/13  17  Separation of variables, Fourier series  Strauss 5.1, 5.2, 5.3, 5.4  
10/15  18  Fourier transform  Strauss 12.3 Evans 4.3.1 
Homework 5 Due 
10/17  19  Fourier transform  Strauss 12.3 Evans 4.3.1 

10/20  20  Fourier transform  Strauss 12.3, 12.4 Evans 4.3.1 

10/22  21  Tempered distributions  Strauss 12.1, 12.3  Homework 6 Due 
10/24  22  Duhamel's principle  Strauss 3.4  
10/27  23  Method of characteristics  Evans 3.2  
10/29  24  Method of characteristics Scalar conservation laws 
Evans 3.2, 3.4, Strauss 14.1 
Homework 7 Due 
10/31  25  Scalar conservation laws  Evans 3.4, Strauss 14.1 

11/3  26  Calculus of variations  Strauss 7.1, 11.1, 14.3 Evans 8.1 

11/5  27  Calculus of variations  Strauss 7.1, 11.1, 14.3 Evans 8.1 

11/7  Review  Homework 8 Due  
11/10  Midterm 2  Midterm 2  
11/12  28  Numerical methods  Strauss 8.1, 8.2  
11/14  29  Numerical methods  Strauss 8.3, 8.5  
11/17  30  Classical mechanics  
11/19  31  Quantum mechanics  Strauss 9.4, 9.5  Homework 9 Due 
11/21  32  Quantum mechanics  Strauss 9.4, 9.5  
11/24  33  Quantum mechanics  Strauss 10.3, 10.6  
11/26  34  Quantum mechanics  Strauss 10.3, 10.6  Homework 10 Due 
12/1  35  Electromagnetism  Strauss 13.1  
12/3  36  Elementary particles  Strauss 13.5  
12/5  Conclusion and review  
12/8  RRR Office hours  Moffitt 102, 1–3pm Homework 11 Due 

12/9  RRR Office hours  Moffitt 102, 1–3pm  
12/10  RRR Office hours  Moffitt 102, 1–3pm 