Bibliography (See also Bibserver.)

  1. Christoph Aistleitner, Verónica Becher, Adrian-Maria Scheerer and Theodore A. Slaman. On the construction of absolutely normal numbers, Acta Arithmetica, to appear. [ arXiv ]
  2. Jan Reimann and Theodore A. Slaman. Effective Randomness For Continuous Measures, preprint, 2016. [ pdf ]
  3. Verónica Becher, Jan Reimann and Theodore A. Slaman. Irrationality Exponent, Hausdorff Dimension and Effectivization, Monatshefte für Mathematik, to appear. [ arXiv ]
  4. Theodore A. Slaman and Mariya I. Soskova. The Δ02 Turing degrees: automorphisms and definability, Transactions of the American Mathematical Society, to appear. [ pdf ]
  5. Theodore A. Slaman and Mariya I. Soskova. The enumeration degrees: local and global structural interactions, Foundations of Mathematics, Contemp. Math., 690, Amer. Math. Soc. Providence, RI, 2017. [ pdf ]
  6. Leo A. Harrington, Richard A. Shore and Theodore A. Slaman. Σ11 in every real in a Σ11 class of reals is Σ11, in Computability and Complexity, A. Day, M. Fellows, N. Greenberg, B. Khoussainov and A. Melnikov eds., Springer-Verlag, 2017. [ pdf ]
  7. C. T. Chong, Theodore A. Slaman, and Yue Yang. The inductive strength of Ramsey's theorem for pairs, Advances in Mathematics, 308:121-141, 2017. [ pdf ]
  8. Andrew Marks, Theodore A. Slaman, and John R. Steel. Martin's conjecture, arithmetic equivalence, and countable Borel equivalence relations. In Alexander S. Kechris, Benedikt Löwe and John R. Steel editors, Ordinal Definability and Recursion Theory, pages 493-519.Cambridge Univ. Press, Cambridge, 2016. [ arXiv ]
  9. Verónica Becher, Yann Bugeaud and Theodore A. Slaman. The irrationality exponents of computable numbers. Proc. Amer. Math. Soc., 144:1509-1521, 2016. [ pdf ]
  10. Verónica Becher, Yann Bugeaud and Theodore A. Slaman. On simply normal numbers to different bases. Mathematische Annalen, 364:125-150, 2016. [ arXiv | DOI ]
  11. George Barmpalias, Mingzhong Cai, Steffen Lempp and Theodore A. Slaman. On the existence of a strong minimal pair. Journal of Mathematical Logic, 15, 2015. [ pdf ]
  12. Verónica Becher, Pablo Heiber and Theodore A. Slaman. A computable absolutely normal Liouville number. Mathematics of Computation, 84:2939-2952, 2015. [ pdf ]
  13. Jan Reimann and Theodore A. Slaman. Measures and their random reals. Transactions of the American Mathematical Society, 367(7):5081-5097, 2015. [ arXiv | DOI ]
  14. Kelty Allen, Laurent Bienvenu and Theodore A. Slaman. On zeros of Martin-Löf random Brownian motion. Journal of Logic and Analysis, 6(Paper 9):34pp, 2014. [ arXiv ]
  15. Verónica Becher and Theodore A. Slaman. On the normality of numbers in different bases. Journal of the London Mathematics Society, 90(2):472-494, 2014. [ pdf ]
  16. Verónica Becher, Pablo Heiber and Theodore A. Slaman. Normal numbers and the Borel hierarchy. Fundamenta Mathematicae, 22:63-77, 2014. [ pdf ]
  17. Theodore A. Slaman and Andrea Sorbi. A note on initial segments of the enumeration degrees. The Journal of Symbolic Logic, 79:633-643, 2014 [ pdf ]
  18. Peter A. Cholak, Damir D. Dzhafarov, Jeffry L. Hirst and Theodore A. Slaman. Generics for computable Mathias forcing. Annals of Pure and Applied Logic, 165:1418-1428, 2014. [ pdf ]
  19. C. T. Chong, Theodore A. Slaman, and Yue Yang. The metamathematics of stable Ramsey's theorem for pairs. J. Amer. Math. Soc., 27:863-892, 2014. [ pdf ]
  20. Verónica Becher, Pablo Heiber and Theodore A. Slaman. A polynomial-time algorithm for computing absolutely normal numbers. Information and Computation, 232:1-9, 2013. [ pdf ]
  21. Chris J. Conidis and Theodore A. Slaman. Random reals, the rainbow Ramsey theorem, and arithmetic conservation. J. Symbolic Logic, 78:195-206, 2013. [ pdf ]
  22. Noam Greenberg, Antonio Montalbán, and Theodore A. Slaman. Relative to any non-hyperarithmetic set. J. Math. Log.,13:1-26, 2013. [ arXiv ]
  23. C. T. Chong, Theodore A. Slaman, and Yue Yang. Π11-conservation of combinatorial principles weaker than Ramsey's theorem for pairs. Advances in Mathematics, 230:1060-1077, 2012. [ pdf ]
  24. Mingzhong Cai, Richard A. Shore, and Theodore A. Slaman. The n-r.e. degrees: undecidability and Σ1 substructures. J. Math. Log. 12:30p, 2012 [ pdf ]
  25. George Barmpalias, Noam Greenberg, Antonio Montalbán, and Theodore A. Slaman. K-trivials are never continuously random. In Toshiyasu Arai, Qi Feng`, Byunghan Kim, Guohua Wu, and Yue Yang, editors, Proceedings of the 11th Asian Logic Conference, In Honor of Professor Chong Chitat on His 60th Birthday, pages 51-58, Singapore, 2012. World Scientific Publishing Co. Pte. Ltd. [ arXiv ]
  26. Noam Greenberg, Antonio Montalbán, and Theodore A. Slaman. The Slaman-Wehner theorem in higher recursion theory. Proc. Amer. Math. Soc., 139:1865-1869, 2011. [ DOI | http ]
  27. C. T. Chong and T. A. Slaman. The theory of the α degrees is undecidable. Israel J. Math., 178:229-252, 2010. [ DOI | http ]
  28. Antonín Kučera and Theodore A. Slaman. Low upper bounds of ideals. J. Symbolic Logic, 74(2):517-534, 2009. [ http ]
  29. Denis R. Hirschfeldt, Richard A. Shore, and Theodore A. Slaman. The atomic model theorem and type omitting. Trans. Amer. Math. Soc., 361(11):5805-5837, 2009. [ DOI | http ]
  30. Peter A. Cholak, Carl G. Jockusch, Jr., and Theodore A. Slaman. Corrigendum to: “On the strength of Ramsey's theorem for pairs” [mr1825173]. J. Symbolic Logic, 74(4):1438-1439, 2009. [ http ]
  31. Chitat Chong, Qi Feng, Theodore A. Slaman, W. Hugh Woodin, and Yue Yang, editors. Computational prospects of infinity. Part II. Presented talks, volume 15 of Lecture Notes Series. Institute for Mathematical Sciences. National University of Singapore. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2008. Lectures from the workshop held at the National University of Singapore, Singapore, June 20-August 15, 2005.
  32. Chitat Chong, Qi Feng, Theodore A. Slaman, W. Hugh Woodin, and Yue Yang, editors. Computational prospects of infinity. Part I. Tutorials, volume 14 of Lecture Notes Series. Institute for Mathematical Sciences. National University of Singapore. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2008. Lectures from the workshop held at the National University of Singapore, Singapore, June 20-August 15, 2005.
  33. Klaus Ambos-Spies, Steffen Lempp, and Theodore A. Slaman. Generating sets for the recursively enumerable Turing degrees. In Computational prospects of infinity. Part II. Presented talks, volume 15 of Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap., pages 1-22. World Sci. Publ., Hackensack, NJ, 2008. [ DOI | http ]
  34. Denis R. Hirschfeldt, Carl G. Jockusch, Jr., Bjørn Kjos-Hanssen, Steffen Lempp, and Theodore A. Slaman. The strength of some combinatorial principles related to Ramsey's theorem for pairs. In Computational prospects of infinity. Part II. Presented talks, volume 15 of Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap., pages 143-161. World Sci. Publ., Hackensack, NJ, 2008. [ DOI | http ]
  35. Theodore A. Slaman. Global properties of the Turing degrees and the Turing jump. In Computational prospects of infinity. Part I. Tutorials, volume 14 of Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap., pages 83-101. World Sci. Publ., Hackensack, NJ, 2008. [ DOI | http ]
  36. Jan Reimann and Theodore A. Slaman. Probability measures and effective randomness. preprint, 2007. [ arXiv | http ]
  37. Steffen Lempp and Theodore A. Slaman. The complexity of the index sets of ℵ0-categorical theories and of Ehrenfeucht theories. In Advances in logic, volume 425 of Contemp. Math., pages 43-47. Amer. Math. Soc., Providence, RI, 2007. [ arXiv | pdf ]
  38. Antonín Kučera and Theodore A. Slaman. Turing incomparability in Scott sets. Proc. Amer. Math. Soc., 135(11):3723-3731 (electronic), 2007. [ DOI | http ]
  39. David Marker and Theodore A. Slaman. Decidability of the natural numbers with the almost-all quantifier. preprint, 2006. [ arXiv | pdf ]
  40. Richard A. Shore and Theodore A. Slaman. The for all-there exists theory of D(<=,V,') is undecidable. In Logic Colloquium '03, volume 24 of Lect. Notes Log., pages 326-344. Assoc. Symbol. Logic, La Jolla, CA, 2006. [ pdf ]
  41. Noam Greenberg, Richard A. Shore, and Theodore A. Slaman. The theory of the metarecursively enumerable degrees. J. Math. Log., 6(1):49-68, 2006. [ DOI | http ]
  42. Bakhadyr Khoussainov, Theodore Slaman, and Pavel Semukhin. Π01-presentations of algebras. Arch. Math. Logic, 45(6):769-781, 2006. [ DOI |  http ]
  43. Wolfgang Merkle, Nenad Mihailović, and Theodore A. Slaman. Some results on effective randomness. Theory Comput. Syst., 39(5):707-721, 2006. [ DOI | http ]
  44. Theodore A. Slaman. Aspects of the Turing jump. In Logic Colloquium 2000, volume 19 of Lect. Notes Log., pages 365-382. Assoc. Symbol. Logic, Urbana, IL, 2005. [ pdf ]
  45. Bakhadyr Khoussainov, Steffen Lempp, and Theodore A. Slaman. Computably enumerable algebras, their expansions, and isomorphisms. Internat. J. Algebra Comput., 15(3):437-454, 2005. [ DOI |  http ]
  46. Steffen Lempp, Theodore A. Slaman, and Andrea Sorbi. On extensions of embeddings into the enumeration degrees of the Σ02-sets. J. Math. Log., 5(2):247-298, 2005. [ DOI | http ]
  47. Theodore A. Slaman. Σn-bounding and Δn-induction. Proc. Amer. Math. Soc., 132(8):2449-2456 (electronic), 2004. [ DOI | http ]
  48. Klaus Ambos-Spies, Bjørn Kjos-Hanssen, Steffen Lempp, and Theodore A. Slaman. Comparing DNR and WWKL. J. Symbolic Logic, 69(4):1089-1104, 2004. [ http ]
  49. Wolfgang Merkle, Nenad Mihailović, and Theodore A. Slaman. Some results on effective randomness. In Automata, languages and programming, volume 3142 of Lecture Notes in Comput. Sci., pages 983-995. Springer, Berlin, 2004. [ DOI | http ]
  50. Michael E. Mytilinaios and Theodore A. Slaman. Differences between resource bounded degree structures. Notre Dame J. Formal Logic, 44(1):1-12 (2004), 2003. [ DOI | http ]
  51. C. T. Chong, Lei Qian, Theodore A. Slaman, and Yue Yang. Σ2 induction and infinite injury priority arguments. III. Prompt sets, minimal pairs and Shoenfield's conjecture. Israel J. Math., 121:1-28, 2001. [ DOI | http ]
  52. Peter A. Cholak, Carl G. Jockusch, and Theodore A. Slaman. On the strength of Ramsey's theorem for pairs. J. Symbolic Logic, 66(1):1-55, 2001. [ DOI | http ]
  53. Peter Cholak, Marcia Groszek, and Theodore Slaman. An almost deep degree. J. Symbolic Logic, 66(2):881-901, 2001. [ DOI | http ]
  54. Theodore A. Slaman and Robert I. Soare. Extension of embeddings in the computably enumerable degrees. Ann. of Math. (2), 154(1):1-43, 2001. [ DOI | http ]
  55. Antonín Kučera and Theodore A. Slaman. Randomness and recursive enumerability. SIAM J. Comput., 31(1):199-211 (electronic), 2001. [ DOI | http ]
  56. Richard A. Shore and Theodore A. Slaman. A splitting theorem for n-REA degrees. Proc. Amer. Math. Soc., 129(12):3721-3728 (electronic), 2001. [ DOI | http ]
  57. Theodore A. Slaman. Recursion theory in set theory. In Computability theory and its applications (Boulder, CO, 1999), volume 257 of Contemp. Math., pages 273-278. Amer. Math. Soc., Providence, RI, 2000. [ pdf ]
  58. Juichi Shinoda and Theodore A. Slaman. Recursive in a generic real. J. Symbolic Logic, 65(1):164-172, 2000. [ DOI | http ]
  59. Richard J. Coles, Rod G. Downey, and Theodore A. Slaman. Every set has a least jump enumeration. J. London Math. Soc. (2), 62(3):641-649, 2000. [ DOI | http ]
  60. Theodore A. Slaman. On a question of Sierpiński. Fund. Math., 159(2):153-159, 1999. [ pdf ]
  61. Theodore A. Slaman. The global structure of the Turing degrees. In Handbook of computability theory, volume 140 of Stud. Logic Found. Math., pages 155-168. North-Holland, Amsterdam, 1999. [ DOI | http ]
  62. Richard A. Shore and Theodore A. Slaman. Defining the Turing jump. Math. Res. Lett., 6(5-6):711-722, 1999. [ pdf ]
  63. Klaus Ambos-Spies, Theodore A. Slaman, and Robert I. Soare, editors. Conference on Computability Theory, Amsterdam, 1998. Elsevier Science B.V. Ann. Pure Appl. Logic 94 (1998), no. 1-3.
  64. Steffen Lempp, André Nies, and Theodore A. Slaman. The Π3-theory of the computably enumerable Turing degrees is undecidable. Trans. Amer. Math. Soc., 350(7):2719-2736, 1998. [ DOI | http ]
  65. Theodore A. Slaman. Relative to any nonrecursive set. Proc. Amer. Math. Soc., 126(7):2117-2122, 1998. [ DOI | http ]
  66. Marat M. Arslanov, Geoffrey L. LaForte, and Theodore A. Slaman. Relative enumerability in the difference hierarchy. J. Symbolic Logic, 63(2):411-420, 1998. [ DOI | http ]
  67. Marcia J. Groszek and Theodore A. Slaman. A basis theorem for perfect sets. Bull. Symbolic Logic, 4(2):204-209, 1998. [ DOI | http ]
  68. André Nies, Richard A. Shore, and Theodore A. Slaman. Interpretability and definability in the recursively enumerable degrees. Proc. London Math. Soc. (3), 77(2):241-291, 1998. [ DOI | http ]
  69. Theodore A. Slaman and W. Hugh Woodin. Extending partial orders to dense linear orders. Ann. Pure Appl. Logic, 94(1-3):253-261, 1998. Conference on Computability Theory (Oberwolfach, 1996). [ DOI | http ]
  70. Theodore A. Slaman. Mathematical definability. In Truth in mathematics (Mussomeli, 1995), pages 233-251. Oxford Univ. Press, New York, 1998.
  71. Theodore A. Slaman and A. Sorbi. Quasi-minimal enumeration degrees and minimal Turing degrees. Ann. Mat. Pura Appl. (4), 174:97-120, 1998. [ DOI | http ]
  72. Christine Ann Haught and Theodore A. Slaman. Automorphisms in the PTIME-Turing degrees of recursive sets. Ann. Pure Appl. Logic, 84(1):139-152, 1997. Fifth Asian Logic Conference (Singapore, 1993). [ DOI | http ]
  73. Theodore A. Slaman and W. Hugh Woodin. Definability in the enumeration degrees. Arch. Math. Logic, 36(4-5):255-267, 1997. Sacks Symposium (Cambridge, MA, 1993). [ DOI | http ]
  74. Marcia J. Groszek and Theodore A. Slaman. Π01 classes and minimal degrees. Ann. Pure Appl. Logic, 87(2):117-144, 1997. Logic Colloquium '95 Haifa. [ DOI | http ]
  75. S. B. Cooper, T. A. Slaman, and S. S. Wainer, editors. Computability, enumerability, unsolvability, volume 224 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 1996. Directions in recursion theory. [ DOI | http ]
  76. Marcia J. Groszek, Michael E. Mytilinaios, and Theodore A. Slaman. The Sacks density theorem and Σ2-bounding. J. Symbolic Logic, 61(2):450-467, 1996. [ DOI | http ]
  77. William C. Calhoun and Theodore A. Slaman. The Π02 enumeration degrees are not dense. J. Symbolic Logic, 61(4):1364-1379, 1996. [ DOI | http ]
  78. Michael E. Mytilinaios and Theodore A. Slaman. On a question of Brown and Simpson. In Computability, enumerability, unsolvability, volume 224 of London Math. Soc. Lecture Note Ser., pages 205-218. Cambridge Univ. Press, Cambridge, 1996. [ DOI | http ]
  79. André Nies, Richard A. Shore, and Theodore A. Slaman. Definability in the recursively enumerable degrees. Bull. Symbolic Logic, 2(4):392-404, 1996. [ DOI | http ]
  80. David Seetapun and Theodore A. Slaman. On the strength of Ramsey's theorem. Notre Dame J. Formal Logic, 36(4):570-582, 1995. Special Issue: Models of arithmetic. [ DOI | http ]
  81. Theodore A. Slaman and Robert I. Soare. Algebraic aspects of the computably enumerable degrees. Proc. Nat. Acad. Sci. U.S.A., 92(2):617-621, 1995.
  82. L. Fortnow, W. Gasarch, S. Jain, E. Kinber, M. Kummer, S. Kurtz, M. Pleszkoch, T. Slaman, R. Solovay, and F. Stephan. Extremes in the degrees of inferability. Ann. Pure Appl. Logic, 66(3):231-276, 1994. [ DOI | http ]
  83. Marcia J. Groszek and Theodore A. Slaman. On Turing reducibility. preprint, 1994.
  84. C. J. Ash, J. F. Knight, and T. A. Slaman. Relatively recursive expansions. II. Fund. Math., 142(2):147-161, 1993.
  85. Carl G. Jockusch, Jr. and Theodore A. Slaman. On the Σ2-theory of the upper semilattice of Turing degrees. J. Symbolic Logic, 58(1):193-204, 1993. [ DOI | http ]
  86. Richard A. Shore and Theodore A. Slaman. Working below a high recursively enumerable degree. J. Symbolic Logic, 58(3):824-859, 1993. [ DOI |  http ]
  87. Peter Cholak, Efim Kinber, Rod Downey, Martin Kummer, Lance Fortnow, Stuart Kurtz, William Gasarch, and Theodore A. Slaman. Degrees of inferability. In Proceedings of the fifth annual workshop on Computational learning theory, COLT '92, pages 180-192, New York, NY, USA, 1992. ACM. [ DOI | http ]
  88. Wolfgang Maass and Theodore A. Slaman. The complexity types of computable sets. J. Comput. System Sci., 44(2):168-192, 1992. [ DOI | http ]
  89. Richard A. Shore and Theodore A. Slaman. The p-T-degrees of the recursive sets: lattice embeddings, extensions of embeddings and the two-quantifier theory. Theoret. Comput. Sci., 97(2):263-284, 1992. [ DOI | http ]
  90. Rod Downey and Theodore A. Slaman. On co-simple isols and their intersection types. Ann. Pure Appl. Logic, 56(1-3):221-237, 1992. [ DOI | http ]
  91. Wolfgang Maass and Theodore A. Slaman. Splitting and density for the recursive sets of a fixed time complexity. In Logic from computer science (Berkeley, CA, 1989), volume 21 of Math. Sci. Res. Inst. Publ., pages 359-372. Springer, New York, 1992.
  92. Theodore A. Slaman and Robert Solovay. When oracles do not help. In Proceedings of the fourth annual workshop on Computational learning theory, pages 379-383, San Francisco, CA, USA, 1991. Morgan Kaufmann Publishers Inc. [ http ]
  93. Theodore A. Slaman. The density of infima in the recursively enumerable degrees. Ann. Pure Appl. Logic, 52(1-2):155-179, 1991. International Symposium on Mathematical Logic and its Applications (Nagoya, 1988). [ DOI | http ]
  94. Peter G. Hinman and Theodore A. Slaman. Jump embeddings in the Turing degrees. J. Symbolic Logic, 56(2):563-591, 1991. [ DOI | http ]
  95. Theodore A. Slaman. Degree structures. In Proceedings of the International Congress of Mathematicians, Vol. I, II (Kyoto, 1990), pages 303-316, Tokyo, 1991. Math. Soc. Japan.
  96. Richard A. Shore and Theodore A. Slaman. Working below a low2 recursively enumerably degree. Arch. Math. Logic, 29(3):201-211, 1990. [ DOI | http ]
  97. Gerald E. Sacks and Theodore A. Slaman. Generalized hyperarithmetic theory. Proc. London Math. Soc. (3), 60(3):417-443, 1990. [ DOI | http ]
  98. Wolfgang Maass and Theodore A. Slaman. On the relationship between the complexity, the degree, and the extension of a computable set. In Recursion theory week (Oberwolfach, 1989), volume 1432 of Lecture Notes in Math., pages 297-322. Springer, Berlin, 1990. [ DOI | http ]
  99. Juichi Shinoda and Theodore A. Slaman. On the theory of the PTIME degrees of the recursive sets. J. Comput. System Sci., 41(3):321-366, 1990. [ DOI | http ]
  100. Richard A. Shore and Theodore A. Slaman. The P-T-degrees of the recursive sets: Lattice embeddings, extensions of embeddings and the two quantifier theory (extended abstract). In Annual Conference on Structure in Complexity Theory, 1989.
  101. W. Maass and Theodore A. Slaman. The complexity types of computable sets. In Annual Conference on Structure in Complexity Theory, 1989.
  102. J. Shinoda, T. A. Slaman, and T. Tugué, editors. Mathematical logic and applications, volume 1388 of Lecture Notes in Mathematics, Berlin, 1989. Springer-Verlag. [ DOI | http ]
  103. R. G. Downey and T. A. Slaman. Completely mitotic r.e. degrees. Ann. Pure Appl. Logic, 41(2):119-152, 1989. [ DOI | http ]
  104. Theodore A. Slaman and John R. Steel. Complementation in the Turing degrees. J. Symbolic Logic, 54(1):160-176, 1989. [ DOI | http ]
  105. Steffen Lempp and Theodore A. Slaman. A limit on relative genericity in the recursively enumerable sets. J. Symbolic Logic, 54(2):376-395, 1989. [ DOI | http ]
  106. Chris Ash, Julia Knight, Mark Manasse, and Theodore Slaman. Generic copies of countable structures. Ann. Pure Appl. Logic, 42(3):195-205, 1989. [ DOI | http ]
  107. Wolfgang Maass and Theodore A. Slaman. Some problems and results in the theory of actually computable functions (preliminary abstract). In Logic Colloquium '88 (Padova, 1988), volume 127 of Stud. Logic Found. Math., pages 79-89. North-Holland, Amsterdam, 1989.
  108. Theodore A. Slaman. On bounded time Turing reducibility on the recursive sets. In Logic Colloquium '88 (Padova, 1988), volume 127 of Stud. Logic Found. Math., pages 111-112. North-Holland, Amsterdam, 1989.
  109. Juichi Shinoda and Theodore A. Slaman. The continuum hypothesis and the theory of the Kleene degrees. In Mathematical logic and applications (Kyoto, 1987), volume 1388 of Lecture Notes in Math., pages 153-177. Springer, Berlin, 1989. [ DOI | http ]
  110. Theodore A. Slaman and W. Hugh Woodin. Σ1-collection and the finite injury priority method. In Mathematical logic and applications (Kyoto, 1987), volume 1388 of Lecture Notes in Math., pages 178-188. Springer, Berlin, 1989. [ DOI | http ]
  111. Wolfgang Maass and Theodore A. Slaman. Extensional properties of sets of time bounded complexity (extended abstract). In Fundamentals of computation theory (Szeged, 1989), volume 380 of Lecture Notes in Comput. Sci., pages 318-326. Springer, New York, 1989.
  112. Juichi Shinoda and Theodore A. Slaman. On the theory of the PTIME degrees of the recursive sets. In Annual Conference on Structure in Complexity Theory, 1988.
  113. Michael E. Mytilinaios and Theodore A. Slaman. Σ2-collection and the infinite injury priority method. J. Symbolic Logic, 53(1):212-221, 1988. [ DOI | http ]
  114. Theodore A. Slaman and John R. Steel. Definable functions on degrees. In Cabal Seminar 81-85, volume 1333 of Lecture Notes in Math., pages 37-55. Springer, Berlin, 1988. [ DOI | http ]
  115. G. E. Sacks and T. A. Slaman. Inadmissible forcing. Adv. in Math., 66(1):1-30, 1987. [ DOI | http ]
  116. Theodore A. Slaman and W. Hugh Woodin. Definability in the Turing degrees. Illinois J. Math., 30(2):320-334, 1986. [ http ]
  117. Theodore A. Slaman. On the Kleene degrees of Π11 sets. J. Symbolic Logic, 51(2):352-359, 1986. [ DOI | http ]
  118. T. A. Slaman. Σ1-definitions with parameters. J. Symbolic Logic, 51(2):453-461, 1986. [ DOI | http ]
  119. Theodore A. Slaman. The E-recursively enumerable degrees are dense. In Recursion theory (Ithaca, N.Y., 1982), volume 42 of Proc. Sympos. Pure Math., pages 195-213. Amer. Math. Soc., Providence, RI, 1985.
  120. Theodore A. Slaman. Reflection and forcing in E-recursion theory. Ann. Pure Appl. Logic, 29(1):79-106, 1985. [ DOI | http ]
  121. Theodore A. Slaman. Reflection and the priority method in E-recursion theory. In Recursion theory week (Oberwolfach, 1984), volume 1141 of Lecture Notes in Math., pages 372-404. Springer, Berlin, 1985. [ DOI | http ]
  122. Marcia J. Groszek and Theodore A. Slaman. Independence results on the global structure of the Turing degrees. Trans. Amer. Math. Soc., 277(2):579-588, 1983. [ DOI | http ]
  123. Theodore A. Slaman. The extended plus-one hypothesis-a relative consistency result. Nagoya Math. J., 92:107-120, 1983. [ http ]
  124. Theodore A. Slaman. Aspects of E-Recursion Theory. PhD thesis, Harvard University, 1981.
  125. E. E. Gross, M. L. Halbert, D. C. Hensley, D. L. Hillis, C. R. Bingham, Alan Scott, F. Todd Baker, and T. Slaman. Elastic scattering of 70 MeV12C ions from even Nd isotopes. Bull. Am. Phys. Soc., 20:1192, 1975.
  126. D. L. Hillis, E. E. Gross, D. C. Hensley, C. R. Bingham, Alan Scott, F. Todd Baker, and T. A. Slaman. Shape effects in the inelastic scattering of 70 MeV12C ions from 142, 144, 146, 148, 150 Nd. Bull. Am. Phys. Soc., 20:1192, 1975.