ON THE EXISTENCE OF A STRONG MINIMAL PAIR

GEORGE BARMPIALIAS, MINGZHONG CAI, STEFFEN LEMPP, AND THEODORE A. SLAMAN

Abstract. We show that there is a strong minimal pair in the computably enumerable Turing degrees, i.e., a pair of nonzero c.e. degrees a and b such that $a \cap b = 0$ and for any nonzero c.e. degree $x \leq a$, $b \cup x \geq a$.

1. Introduction

Much of the work on the degree structure of the computably enumerable (c.e.) Turing degrees has focused on studying its finite substructures and how they can be extended to larger substructures. There are several reasons for this: The partial order of the c.e. degrees is a very complicated algebraic structure, with an undecidable first-order theory, by Harrington and Shelah [HS82]. So, on the one hand, as in classical algebra, a complicated structure is often best understood by studying its finite substructures. On the other hand, the existential fragment of the first-order theory of this degree structure (in the language of partial ordering $<$, least element 0 and greatest element 1) is known to be decidable by Sacks [Sa63], whereas by Lempp, Nies and Slaman [LNS98], the $\exists \forall \exists$-theory of this structure (in the language of partial ordering only) is undecidable. However, the decidability of the $\forall \exists$-theory of this structure has been an open question for a long time; and it is this question which can be rephrased in purely algebraic terms as a question about finite substructures:

Question 1.1 (Extendibility Question). Let P and Q_i (with $i < n$) be finite posets such that for all $i < n$, $P \subseteq Q_i$. Under what conditions on P and the Q_i can any embedding of P into the c.e. Turing degrees be extended to an embedding of Q_i into the c.e. Turing degrees for some i (which may depend on the embedding of P)?

Call a partially ordered set P bounded if it contains distinguished least and great elements 0 and 1, respectively. We can now formulate the following modified

Question 1.2 (Extendibility Question with 0 and 1). Let P and Q_i (with $i < n$) be finite bounded posets such that for all $i < n$, $P \subseteq Q_i$. Under what conditions on P and the Q_i can any embedding of P into the c.e. Turing degrees be extended to an embedding of Q_i into the c.e. Turing degrees (preserving 0 and 1) for some i?

The answer for $n = 1$ to Question 1.2 was given by the following

Theorem 1.3 (Slaman, Soare [SS99]). Uniformly in finite bounded posets P and Q, there is an effective procedure to decide whether any embedding of P into the c.e. Turing degrees (preserving 0 and 1) be extended to an embedding of Q into the c.e. Turing degrees (preserving 0 and 1).

This result of Slaman and Soare built on a long line of research into the algebraic structure of the c.e. degrees, starting with the Sacks Splitting and Density Theorems [Sa63b, Sa64] and the proof of the existence of a minimal pair of c.e. degrees by Lachlan [La66] and Yates [Ya66].

In their proof in [SS99], Slaman and Soare identify two basic obstacles to extending an embedding. The first of these is lattice-theoretic: The c.e. degrees form an upper semilattice in which the meet of some but not
all pairs of degrees exists. In fact, the major hurdle toward deciding the \(\forall \exists \)-theory of this structure has been the long-standing lattice embeddings problem, asking for an (effective) characterization of those finite lattices which can be embedded into the c.e. Turing degrees. (Note that the lattice embeddings problem can be phrased as a subproblem of the Extendibility Question by making all the \(Q \) one-point extensions of \(\mathcal{P} \), each testing the preservation of a particular meet or join in the lattice embedding. Lerman [Le00] gave a non-effective (indeed a \(\Pi^0_3 \)-condition for lattice embeddability; a more recent survey is Lempp, Lerman and Solomon [LLS06].)

The other basic obstacle to extending an embedding identified by Slaman and Soare is a phenomenon some-

Main Theorem. There is a combination. So this is an instance of two lattice-theoretic obstructions which cannot be overcome individually, but can in

After personal communication with Lerman, the proof published by Lerman [Le10] has a gap, which can in combination.

The main theorem of this paper provides an example where a lattice-theoretic obstruction and a “saturation” obstruction cannot each be overcome either individually or in combination:

Main Theorem. There is a strong minimal pair in the c.e. Turing degrees, i.e., there are nonzero c.e. degrees \(a \) and \(b \) such that \(a \cap b = 0 \) and for any nonzero c.e. degree \(x \leq a, b \cup x \geq a \).

Note that this is an instance of the Extendibility Question 1.2 by setting \(\mathcal{P} = \{0, a, b, 1\} \) (with incomparable \(a, b \)), \(Q_0 = \mathcal{P} \cup \{x\} \) (with \(0 < x < a, b \)) and \(Q_1 = \mathcal{P} \cup \{x, z\} \) (with \(0 < x < a, z \) and \(b < z < 1 \) but \(x \not< b \) and \(a \not< z \)).

We should mention here that our Main Theorem has a long and twisted history. It was discussed and claimed, in both directions, by a number of researchers over the past 25 years. The only published proof is in Lerman’s monograph [Le10], where he attributes the theorem to Slaman (also see the review by BARMPLIAS [Ba11]). However (per personal communication with Lerman), the proof published by Lerman [Le10] has a gap, which is filled by a feature which we introduce in our proof above.

We would like to state here the following related question, which we leave open:

Question 1.4. Is there a “two-sided” strong minimal pair; i.e., are there nonzero c.e. degrees \(a \) and \(b \) such that \(a \cap b = 0 \), for any nonzero c.e. degree \(x \leq a, b \cup x \geq a \), and for any nonzero c.e. degree \(y \leq b, a \cup y \geq b \)?

This is, of course, an instance of the Extendibility Question 1.2 (with \(n = 3 \), combining one lattice-theoretic and two “saturation” obstructions, namely, setting \(\mathcal{P} = \{0, a, b, 1\} \) (with incomparable \(a, b \)), \(Q_0 = \mathcal{P} \cup \{w\} \) (with \(0 < w < a, b \)), \(Q_1 = \mathcal{P} \cup \{x, z\} \) (with \(0 < x < a, z \) and \(b < z < 1 \) but \(x \not< b \) and \(a \not< z \)), and \(Q_2 = \mathcal{P} \cup \{y\} \) (with \(0 < y < c \) and \(b \not< y \) and \(a \not< c \)). We remark here that our Question 1.4 has a negative answer if we also require the join of (the images of) \(a \) and \(b \) to be “branching” (i.e., meet-reducible); i.e., any embedding of \(\mathcal{P} = \{0, a, b, c, d, e, 1\} \) (with incomparable \(a, b, \) incomparable \(d, e \), and \(a, b \not< c \)) extends to an embedding of \(Q_0 = \mathcal{P} \cup \{w\} \) (with \(0 < w < a, b \)), \(Q_1 = \mathcal{P} \cup \{x, z\} \) (with \(0 < x < a, z \) and \(b < z < 1 \) but \(x \not< b \) and \(a \not< z \)), \(Q_2 = \mathcal{P} \cup \{y\} \) (with \(0 < y < c \) and \(b \not< y \) and \(a \not< c \)), or \(Q_3 = \mathcal{P} \cup \{y'\} \) (with \(c \not< y' < d, e \)). This last result was observed by Slaman by combining Theorem 1.3 with the Non-Embeddability Condition (NEC) of Ambos-Spies and Lerman [AL86]. This last result also suggests that the full answer to our Extendibility Questions 1.1 and 1.2 is likely to be very hard.

2. Requirements and Priority Tree

2.1. List of Requirements. As usual, we construct two c.e. sets \(A \) and \(B \) such that in the end \(a = \deg(A) \) and \(b = \deg(B) \). We first have the requirements which satisfy that \(a \) and \(b \) form a strong minimal pair:

\[
\mathcal{R}_1 : \Phi(A) = W_1 \Rightarrow [\exists \Gamma(B \oplus W)] = A) \vee \exists \Delta (\Delta = W')
\]

Then we have the diagonalization requirements which guarantee that \(A \) is not below \(B \) (\(B \) not being below \(A \) will be guaranteed automatically):

\[
\mathcal{S}_1 : \Psi(B) \neq A
\]
Note that each \(S_i \) states that there exists an \(x \) such that \(\Psi_i(B; x) \neq A(x) \). In the construction, each \(S_i \)-node has subsidiary \(S_{i,j} \)-nodes, each using a possibly different killing point (to be defined and clarified later) for forcing \(\Psi_i(B; x) \) to diverge. We call a node associated with such \(S_i \), a parent node and a node associated with \(S_{i,j} \) a child node. At each stage, the collection of an \(S_i \)-parent node and its previously visited, uncanceled child nodes is called an \(S_i \)-family (of that stage).

2.2. Priority Tree. Our priority tree is defined top down, i.e., the top node has the highest priority. Each node has several possible outcomes, prioritized left to right.

Each \(R \)-node \(\alpha \) has two outcomes: \(i \) (infinite) and \(f \) (finite). Along the \(i \)-outcome, we are defining a functional \(\Gamma_\alpha \) for computing \(A \) from \(B \oplus W \). Such a node \(\alpha \) is active at some \(\beta \) below if there is no \(g_\alpha \)-outcome (see below) between \(\beta \) and \(\alpha \) and there are no \(\alpha' \) and \(\beta' \) with \(\alpha' \subset \alpha \subset \beta' \subset \beta \) such that \(\alpha' \) and \(\beta' \) form a pair (see definition below).

Each \(S_i \)-parent node \(\beta \) has three outcomes: \(d \) (diagonalization), \(g \) (gap, defined below), and \(w \) (wait). The \(g \)-outcome stands for an apparent computation \(\Psi_i(B; x) = 0 \) against which we cannot diagonalize (i.e., put \(x \) into \(A \) without risking to lose the computation \(\Psi_i(B; x) = 0 \)). We arrange the priority tree in such a way that immediately following the \(g \)-outcome of each \(S_i \)-parent node, we have its first \(S_{i,0} \)-child node.

Each \(S_{i,j} \)-child node \(\beta \) is below the \(g \)-outcome of its \(S_i \)-parent node and has outcomes \(g_{a_0}, \ldots, g_{a_k}, c \) (ordered from left to right). Each \(g_a \) (which, following convention, again stands for “gap”) corresponds to one active \(R \)-node \(\alpha \) above the \(S_i \)-parent node (not the \(S_{i,j} \)-child node), ordered such that if \(\alpha \subset \alpha' \), then \(g_a \) is to the left of \(g_{a'} \). For the nodes extending the \(g_a \)-outcome, we say that \(\alpha \) and this child node \(\beta \) form a pair. In addition, we also define a computable function \(\Delta \) along the \(g_a \)-outcome for computing the set \(W \) corresponding to the requirement at \(\alpha \). Extending a \(g_a \)-outcome, we stop adding new \(S_{i,j} \)-child nodes (and believe that this requirement has been satisfied forever). There is only one \(c \)-outcome (\(c \) stands for “claim”) to the right of all the \(g_a \)-outcomes. Extending such an outcome, we continue to add new \(S_{i,k} \)-child nodes. Of course, we arrange the priority tree in a reasonable way such that along every infinite path, each requirement is represented at most once by a strategy (or pair of strategies, in the case of the \(R \)-requirements) which is not enclosed by any other pair.

3. An Overview

3.1. Initial Thoughts. All \(R \)-requirements will be satisfied in the normal fashion: Along the infinite outcome, we build a \(\Gamma \)-functional which computes \(A \) from \(B \oplus W \). If this \(\Gamma \) is successful (i.e., correct), then we are done. If some node below “kills” this \(\Gamma \) (by putting the \(\Gamma \)-use of a fixed \(x \) into \(B \) infinitely often), then we build a function \(\Delta \) there to compute \(W \).

The satisfaction of the \(S_i \)-requirements is more complicated. At an \(S_i \)-node, we pick a diagonalization witness \(x \) and wait for \(\Psi_i(B; x) \) to converge to \(0 \). If this never happens, then we are done. Now if at some stage, the computation converges to \(0 \), then obviously we want to add \(x \) into \(A \) for diagonalization. The problem is that such \(x \) may cause some higher-priority \(\Gamma \)'s to change \(B \) to correct their axioms, and if such \(B \)-correction changes the \(B \)-use of \(\Psi_i(B; x) \) we want to protect, then our diagonalization is not successful. In addition, there might be some \(\Delta' \)-axioms defined above which need \(B \)-protection (i.e., protection on the \(B \)-uses of corresponding \(\Psi_i \)-computations) which may also be injured by such \(B \)-correction at \(\Gamma \), if it happens above the node building the \(\Delta' \)-function. In these cases, we have plans to handle such “conflicts of interest”, and this is the reason why we need \(S_{i,j} \)-child nodes on the priority tree.

Briefly, if such a conflict happens, we know that a \(\Psi_i \)-computation (or a \(\Psi_i \)-computation above) is threatened by \(B \)-correction at \(x \) for some \(\Gamma \), which means that, if we change our mind and add \(y(x) \) into \(B \), then the \(\Psi_i \) (or \(\Psi_i \)-) computation is injured. In particular, if this happens infinitely often, then the \(S_i \)-requirement is satisfied (by divergence of \(\Psi_i(B; x) \)). Of course, this will also injure \(\Gamma \) infinitely often, and so we need to build a \(\Delta \) to satisfy the corresponding \(R \)-requirement as well. The tricky part of the construction is that, below the outcome for building such \(\Delta \), every node needs to protect \(\Delta' \)’s correctness, and this is why our construction becomes extremely complicated.

3.2. A Minimal Example. Here, we illustrate the idea by a minimal example where such a conflict happens, and we will briefly explain how to handle the conflict. (See Figure[Π])
Let \mathcal{R}_0 and \mathcal{R}_1 be two consecutive \mathcal{R}-requirements, and let the \mathcal{R}_1-node be extending the \mathcal{R}_0-node’s i-outcome. Consider an S_0-node extending the \mathcal{R}_1-node’s i-outcome. Now, at the S_0-node, as in a usual construction of this type, we may have a diagonalization witness x_0, but the use $\psi_0(x_0)$ may always be too large (say, $\geq \gamma_1(x_0)$), and so we go to the g-outcome. At the first $S_{0,0}$-child node, we use $\gamma_1(x_0)$ to kill the computation $\Psi_0(B; x_0)$ infinitely often, say. At the same time, the $S_{0,0}$-child node will build a function Δ_1 to correctly compute W_1 (for the \mathcal{R}_1-node).

Now, to make sure that Δ_1 is always correct, the $S_{0,0}$-child node has to set up some mechanism to prevent injury. In the construction, we implement an alternating A-stage/B-stage approach, so that at each stage, at most one A or B can change. There are now two cases here. During a B-stage, A does not change, and so $W_1 = \Phi_1(A)$ (up to the length of agreement) will not change, either, since otherwise we will not visit the S_0-node again. During an A-stage, A can change but B does not. If now W_1 changes, then we can increase the Γ_1-use while preserving the $\Psi_0(B; x_0)$-computation. Then we observe that $\gamma_1(x_0) > \psi_0(x_0)$, and so we will switch to the left of the outcome associated with Δ_1. In this process, unless we move to the left of the outcome associated with Δ_1, we see that the $\Psi_0(B; x_0)$-computation is used to protect Δ_1 during A-stages, since only a W_1-change without a B-change guarantees that we can move to the left of the outcome associated with Δ_1; so, in the argument, it is crucial that we can preserve the use of $\Psi_0(B; x_0)$.

Now, say, extending the Δ_1-outcome, we have another S_1-node with a witness x_1. During an A-stage, it might want to enumerate x_1 into A for its own diagonalization (and so A would be changed). By the observation above, we have to protect the use of $\Psi_0(B; x_0)$ at the same time. However, the \mathcal{R}_0-node’s Γ_0-functional, after observing a change at x_1 in A, will inevitably add $\gamma_0(x_1)$ into B for Γ_0-correction (unless W_0 has changed). At the moment, however, there is no guarantee that $\gamma_0(x_1) > \psi_0(x_0)$.

Figure 1. A minimal example (left) and a complete example (right)
The solution is thus briefly as follows: In such a situation, we instead go to a different outcome to the right of the Δ_1-outcome, which we call the c-outcome. Extending this c-outcome, we can always assume that $\psi_0(x_0) \leq \psi_0(x_0)$ (since otherwise there is no problem). So now, instead of using $\psi_0(x_0)$ to kill the $\Psi_1(B; x_0)$-computation, we can use $\gamma_1(x_1)$. We say that x_1 is the claim point for this c-outcome at this stage. We count this as a small step toward success. At the next $S_{0,1}$-child node, we have a similar scenario for which we may go to the c-outcome with a larger claim point, etc. If this happens infinitely often along the true path (i.e., there are infinitely many $S_{0,j}$-nodes with a c-outcome along the true path), then we are using larger and larger numbers to push $\psi_0(x_0)$ to infinity, and so the Δ_0-requirement will be satisfied in a Π_1-way; on the other hand, Γ_1 is still active (since it is only injured finitely often at each argument), so we do not have to build Δ_1 for it.

From a global viewpoint, while other outcomes are standard in this type of gap/co-gap construction, each such c-outcome is a Σ_2 type of outcome, which states that in the construction, there is a stage with a claim point such that we will keep this claim point (stay in the c-outcome) forever in the following construction.

<table>
<thead>
<tr>
<th>Node</th>
<th>Symbol</th>
<th>Access</th>
<th>Action</th>
<th>Sub-action</th>
<th>Outcomes</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>\mathcal{R}</td>
<td>α</td>
<td>normal</td>
<td>defines Γ</td>
<td>B-enumerations</td>
<td>i, f</td>
<td>Γ^0_1/Σ^0_2</td>
</tr>
<tr>
<td>S-parent</td>
<td>β</td>
<td>normal or child-link</td>
<td>clearing/claim</td>
<td>A-enumeration</td>
<td>d, g, w</td>
<td>Σ^0_2/Π^0_1</td>
</tr>
<tr>
<td>S-child</td>
<td>β_j</td>
<td>n. or own-parent-link</td>
<td>defines Δ</td>
<td>B-enumerations</td>
<td>g_{α}, c</td>
<td>Γ^0_1/Σ^0_2</td>
</tr>
</tbody>
</table>

Table 1. Nodes on the priority tree, their main actions and their outcomes

3.3. A Complete Example: Clearing Point, Killing Point and Claim Point

Now we complete the minimal example above to add in all the features of the construction. In particular, we will explain various numbers used during the construction. (See again Figure 1) Table II can be helpful as a guide on the general structure of the argument and the complexity of the outcomes of the strategies.

Suppose we have two consecutive \mathcal{R}-requirements \mathcal{R}_0 and \mathcal{R}_1, and the \mathcal{R}_1-node is extending the \mathcal{R}_0-node’s i-outcome. Extending the \mathcal{R}_1-node’s i-outcome, we again have an $S_{0,1}$-node followed by its first $S_{0,0}$-child node. Now, extending the c-outcome of the $S_{0,0}$-node (with a claim point x'), we have an \mathcal{R}_2-node followed (along its i-outcome) by an S_1-node.

Let x_1 be the diagonalization witness for S_1. When we try to diagonalize against Ψ_1, we first need to make sure that $\psi_1(x_1) < \gamma_1(x_1)$ for $i = 0, 1, 2$; in addition, notice that the S_0-family currently has a c-outcome, which means that extending any outcome of the S_1-node (e.g., the d-outcome), there will be more $S_{0,j}$-child nodes, and they will enumerate $\gamma_0(x')$ or $\gamma_1(x')$ into B in order to push $\psi_0(B; x_0)$ to infinity. This means that, for successful diagonalization against Ψ_1, we also need to care about x' (which is $< x_1$). So here we call such a number x' the clearing point at S_1 and use it to clear the computation: For clearance, we require $\psi_1(x_1) < \gamma_1(x')$ for $i = 0, 1, 2$. If this is not true, then we use x' (instead of x_1) to push $\psi_1(B; x_1)$ at the first $S_{1,0}$-child node.

Say, at the $S_{1,0}$-node, we choose to go to the g_{α_2}-outcome building Δ_2 (since $\psi_1(x_1) \geq \gamma_2(x')$). Now extending this g_{α_2}-outcome, say, we first have an $S_{0,1}$-child node. As required by the $S_{0,j}$-node, the $S_{0,1}$-node uses x' to push $\psi_0(B; x_0)$ to infinity. We call such a number x' the killing point at $S_{0,1}$. Such a child node also has a c-outcome (whose claim point x_2 comes from some S_2-node extending one of its g-outcomes). Extending such a c-outcome, we have an S_1-parent node, say (with diagonalization witness x_3, say).

From the S_1-node’s point of view, \mathcal{R}_2 has been satisfied (by the $S_{1,0}$-node), and \mathcal{R}_0 and \mathcal{R}_1 are still active. The clearing point at the \mathcal{R}_2-node is x_2, because it believes that the new $S_{0,j}$-family members will use x_2 instead of x' as the killing point. So the S_1-node checks whether $\psi_j(x_3) < \gamma_j(x_2)$ for $i = 0, 1, 2$.

Now suppose this is true, i.e., we have a cleared computation. Then, according to the minimal example above, we next want to make sure that Δ_2 is preserved, and we try to clear the $\Psi_1(B; x_1)$-computation by going to the c-outcome of the $S_{1,0}$-node.

The tricky part is that, this time, for successful clearance, we actually want $\psi_1(x_1) < \gamma_j(x_2)$ (for $i = 0, 1, 2$) (instead of $\psi_1(x_1) < \gamma_1(x_1)$): The reason here is that, to the right of this Δ_2, it is possible that a new $S_{1,j}$-child node will use x_2 as the killing point and enumerate $\gamma_0(x_2)$ or $\gamma_1(x_2)$, and we do not want these numbers to
injure $\Psi_1(\mathcal{B}; x_1)$, which we use to protect Δ_2. We say that x_2 is the claim point of this c-outcome (which is used as the killing point for new S_{ij}-child nodes). When we go to the c-outcome, i.e., the $\Psi_1(\mathcal{B}; x_1)$-computation is not cleared, then the associated claim is that after this stage, it is always the case that we do not get a clearance, i.e., it is always the case that $\psi_1(x_1) \geq \gamma_1(x_2)$ for $i = 0$ or 1.

![Table 2](image)

<table>
<thead>
<tr>
<th>Point</th>
<th>\mathcal{S}-node</th>
<th>Outcome</th>
<th>Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Witness</td>
<td>Parent</td>
<td>All</td>
<td>Σ_1^0</td>
</tr>
<tr>
<td>Clearing</td>
<td>Parent</td>
<td>All</td>
<td>Σ_1^0</td>
</tr>
<tr>
<td>Claim</td>
<td>Child</td>
<td>c</td>
<td>Π_2^0</td>
</tr>
<tr>
<td>Killing</td>
<td>Child</td>
<td>c</td>
<td>Π_2^0</td>
</tr>
</tbody>
</table>

Table 2. Parameters of the \mathcal{S}-nodes (parents and children), associated outcomes and their complexity modulo initialization.

3.4. **Overview of the \mathcal{S}-Strategies.** Table 3 summarizes the parameters we have introduced for the \mathcal{S}-nodes (parents and children). In this section, we summarize their dynamics and basic features, in a top-down description (as opposed to the bottom-up motivational discussion of Section 3.3). The diagonalization is done at the parent node, with a witness which is fixed, as long as the parent node is not injured. The same is true of the clearing point, which is another parameter of the parent node. The clearing point is always less than or equal to the witness. In the simple case that we described in Section 3.2, we use the witness as a clearing point, but in the presence of more requirements, we need to differentiate between the two. The clearing point is the number on which we may force the associated Γ-functional to be partial.

Associated with the c-outcome of each S_{ij}-child node is the claim point of the node. Each time that the c-outcome is activated, it may have a different claim point. Each S_{ij}-child node also has a killing point, which is calculated from the claim points of the higher-priority child nodes. In this way, the killing points of child nodes are raised according to the claim points of the higher-priority child nodes with c-outcomes. The c-outcome of a child node β_j is initiated by a parent node below β_j (not its own parent).

![Table 3](image)

<table>
<thead>
<tr>
<th>Satisfaction of \mathcal{S}</th>
<th>Main outcome</th>
<th>Outcome</th>
<th>Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Psi(B; x) \uparrow$ co-finitely</td>
<td>wait outcome (parent)</td>
<td>Γ total</td>
<td>Σ_2^0</td>
</tr>
<tr>
<td>$\Psi(B; x) \downarrow # A(x)$ co-finitely</td>
<td>diagonalization (parent)</td>
<td>Γ total</td>
<td>Σ_2^0</td>
</tr>
<tr>
<td>$\Psi(B; x) \uparrow$ infinitely often</td>
<td>gap outcome (child)</td>
<td>Γ partial</td>
<td>Σ_3^0</td>
</tr>
<tr>
<td>$\Psi(B; x) \uparrow$ infinitely often</td>
<td>all children true c-outcomes</td>
<td>Γ total</td>
<td>Π_3^0</td>
</tr>
</tbody>
</table>

Table 3. Four different ways that requirement \mathcal{S} with witness x may be satisfied, and their complexity relative to the corresponding parent node.

Along with the c-outcome, an S_{ij}-child node implements a gap/co-gap strategy, sequentially with respect to the Δ-functionals of higher-priority child nodes. This gap module looks for appropriate changes in the approximation to the corresponding sets \mathcal{W}, starting from the closest and moving monotonically toward the root of the tree. The usual gap/co-gap operation of a child node may be interrupted by its c-outcome infinitely often. Infinitely many c-outcomes along the child nodes of a parent node (in the ‘true path’) means that the functional we try to diagonalize against is partial. Table 4 displays all the different ways that requirement \mathcal{S} can be satisfied. The first three ways displayed are typical to a gap/co-gap argument. However, the last case is special and corresponds to the case when all children fail to succeed with their gap/co-gap strategy. In that case, $\Psi(B; x)$ becomes partial due to the enumeration of Γ-uses on larger and larger arguments. Table 4 also displays the effect that the outcomes have on the functional Γ that we build for \mathcal{S}. Note that in the context of the global construction, where many requirements are present, the global outcomes are slightly more complex (e.g. a Γ-functional that is left intact by some child node may end up partial due to a child of another parent).
4. Construction

4.1. Accessible Path, Stage Dichotomy, Accessible Nodes and Visited Nodes. In the construction, each stage is either an \(A \)-stage or a \(B \)-stage. We can arrange that all even stages are \(A \)-stages and all odd stages are \(B \)-stages. During \(A \)-stages, we are allowed to change \(A \) but not \(B \); during \(B \)-stages, we are allowed to change \(B \) but not \(A \). Each node first ignores the stage setting and follows the construction. When the node wants to change \(A \) or \(B \), then it checks whether the current stage setting allows this action. If so, it changes \(A \) or \(B \) as planned; if not, it terminates the stage and waits.

In addition, each node must try to pass down alternating \(A \)-stages and \(B \)-stages along its (believed) true outcome. If the stage setting is not the one expected, the node needs to wait for another stage to go to the outcome we want. For instance, if a node needs to go to an outcome, and the last stage the outcome was accessible was an \(A \)-stage, then we are expecting a \(B \)-stage this time. If this is a \(B \)-stage, then there is no problem; if this is an \(A \)-stage, then we terminate the stage.

Now, in these two cases when we terminate the stage (since the stage is not the one we wanted), at the very next stage (notice that the stage has changed from \(A \) to \(B \) or from \(B \) to \(A \)), we first check whether any \(W \) has changed (from the previous stage) for those \(W \)'s along the accessible path, up to the previous length of agreement. If so, then for the highest one, we switch to the \(f \)-outcome if the length of agreement has decreased (and it is easy to see that then we have a permanent win unless the node is initialized), or to the \(i \)-outcome if the length of agreement increased (and so we switch to the left if we went to the \(f \)-outcome at the previous stage). Otherwise (if there is no \(W \)-change, or the length of agreement does not change, or the length of agreement has increased and we went to the \(i \)-outcome at the previous stage), then we directly go through the same accessible path and continue the construction at the node where we terminated the stage.\(^{1}\) So either we can change \(A \) or \(B \) as planned, or we can go to the outcome we wanted. In other words, at each node, if the last stage was a terminated stage and there is no \(W \)-change, then we continue to the same outcome without any extra action.

As in a usual priority tree construction, at each stage \(s \), we inductively construct an accessible path (up to length \(s \)) on the priority tree. At each node along the accessible path, we try to decide the outcome at stage \(s \) and whether we want to change \(A \) or \(B \). Whenever \(A \) or \(B \) is changed, we terminate the current stage and go to the next stage. We keep the nodes that are to the left of, or compatible with, the accessible path and initialize the nodes that are to the right. Note that we may build a link in the construction and skip some nodes along the accessible path (without going through the construction for them at that stage). So we shall distinguish between notions of a node being visited and being accessible. Being visited means that we allow this node to act according to the construction below; and being accessible only means that the node is on the accessible path, which does not necessarily mean that the node itself is visited but possibly only some extension of it is.

In the following subsections, we always assume that we are at a visited node at stage \(s \).

4.2. \(R \)-Node. Consider an \(R \)-node \(\alpha \) and note that if the last stage was a terminated stage and \(W \) has not changed, then we continue to the same outcome without any action. Otherwise, we check whether the length of agreement has increased since the last stage \(t \) when we visited this node and the \(i \)-outcome was accessible (or if such a stage \(t \) does not exist, then we check whether the length of agreement is positive). If not, then we go to the \(f \)-outcome. If so, then we go to the \(i \)-outcome (i.e., we believe that the length of agreement goes to infinity). The \(R \)-node \(\alpha \) also defines a functional \(\Gamma \) along the \(i \)-outcome. We make sure that \(\Gamma \) is well-defined, i.e., we will not enumerate axioms that use the same oracle but give different outputs. In particular, we may have some requests to add some numbers into \(B \) here which were assigned by nodes below. What we do is simply put these numbers into \(B \) as planned if the corresponding \(W \) has not yet changed (see Section 4.3.1).

For convenience, we allow the \(W \)-use and \(B \)-use for the same \(x \) to be different (so we formally write \(\gamma(W; x) \) and \(\gamma(B; x) \) to denote these uses, but later, when it is clear from the context that we are talking about the \(B \)-use, we will simply write \(\gamma(x) \)). We have two cases in which we increase the use. The first case is that some node below puts \(\gamma(B; x) \) into \(B \) but \(A(x) = 0 \); in this case, we increase the \(B \)-use to be large and fresh, and increase the \(W \)-use to be the length of agreement between \(\Phi(A) \) and \(W \) at this stage. The second case is when the \(W \)-use changes (which implies that there must have been some earlier \(A \)-change below); then we increase the \(B \)-use

\(^{1}\)The intuition is that, since no one has changed \(A \) or \(B \) from the last stage, and the \(W \)'s have not changed, either, unless we can diagonalize, all the uses of computations remain the same. (See Lemma 5.1 for the full proof later on.)
to be large and fresh and keep the W-use the same. In all other cases, we do not increase the uses but simply update the axiom with the current oracle.

Of course, we obey the usual monotonicity rules of axioms, that is, whenever we change the uses for some x, we automatically make $\Gamma(B \oplus W; y)$ undefined for all $y > x$. In any case, we will ensure that $\Gamma(B \oplus W; x) = A(x)$ for all $x \leq$ the current length of agreement between $\Phi(A)$ and W at this stage; if a use for $\Gamma(B \oplus W; x)$ had never been picked before, then we pick the B-use large and fresh, and the W-use to be the current length of agreement between W and $\Phi(A)$; otherwise, the use is specified as above.

4.3. **S-Parent Node.** At an S_i-node β, if this is the first time we visit this node, then we pick a fresh diagonalization witness x for it. Now if we already have a diagonalization witness x, then we check whether $\Psi_i(B; x)$ converges to 0 with a believable computation (i.e., one that will not be injured by higher-priority requirements). If not, then we go to the w-outcome and finish working on this node. If we find out that earlier we have already visited the d-outcome (i.e., we have already performed diagonalization at this node and $A(x) = 1$), and β has not been initialized since, then we continue to go to the d-outcome. The most complicated case is, of course, when there is such a computation $\Psi_i(B; x) \downarrow 0$ (where, when we see a believable such computation, we immediately initialize every node extending the w-outcome) but we have not yet performed diagonalization (i.e., enumerated x into A). In this case, we first check whether we can perform diagonalization (see below in Section 4.3.1 and if so, follow the instructions); if not, then we then go to the g-outcome (or some other outcomes according to Section 4.3.2 below) and continue to the next node.

4.3.1. **Diagonalization, setting clearing and claim points.** In the most general case, we will have two numbers of concern at this node β. One is the diagonalization witness x we picked here, and the other is the clearing point which may come from nodes above.

At β, we only care about those S_i-requirements which have g-outcome along β and none of whose child nodes has a g-outcome along β. We think of the S_i-family as a whole as announcing the current killing point for the requirement S_i, which is defined as the greatest number among all claim points of all S_i-child nodes above or to the left of β as well as the clearing point at S_i. Then we let the clearing point y at β be the least of these killing points announced by the S_i-families from above as well as x (if there is no such higher-priority S_i). Since x is a fresh number when it is picked, this y is always less than or equal to x.

Instead of only checking whether $\gamma_k(x) > \psi_i(x)$ as in a usual argument of this type, we check whether $\gamma_k(y) > \psi_i(x)$ (for the clearing point y defined above) for each active R_k above. If not, then we go down to the g-outcome here (see Section 4.3.2 and, at the first S_i-child node S_{i0}, we will go to the corresponding g_{ω_i}-outcome defining a function Δ and add $\gamma_k(y)$ into B there (for the greatest such k, see details below in Section 4.4). If so, note that $y \leq x$, so it is automatic that $\gamma_k(x) \geq \gamma_k(y) > \psi_i(x)$ and it seems that we are safe to put x into A.

However, here, for some other Δ' defined at an S_j-child node β' above β (along the same path), we use the corresponding $\Psi_i(B; x')$-computation to protect Δ', yet some $\gamma_k(x)$ entering B for Γ_k above this S_j-node may cause injury, i.e., $\gamma_k(x) \leq \psi_j(x')$. In this case (since x entering A will not cause injury to $\Psi_i(B; x)$ but some other $\Psi_i(B; x')$ above), we change outcome and go to the c-outcome to the right of Δ'. So, for each such β', in order to protect the computation $\Psi_i(B; x')$ when we go to the right of the c-outcome, here at β' (similar to what we did in picking y at β), we also need to pick a number called the claim point z at β' (possibly smaller than x).

For each such β', we consider all $S_{i'}$-nodes above β' which have a g-outcome along β' but such that no child node has a g-type outcome along β' (i.e., the $S_{i'}$-requirements that are still active at β'). For each such $S_{i'}$-node, we only look at its child nodes below β' (the $S_{i'}$-family below β'). These child nodes define a current killing point, i.e., the maximum claim point (if such $S_{i'}$-family below β' is empty, then let this current killing

\footnote{In order to perform diagonalization, obviously the first thing to consider is enumerating x into A. However, the problem is that, for each active ω_k (working for a requirement R_k) above β, this number x entering A will later cause $\gamma_k(x)$ to enter B (if the corresponding W_k does not change), and such a change in B will potentially injure the $\Psi_i(B; x)$-computation here which we definitely want to protect for diagonalization against $A(x)$. In addition, it may injure some other $\Psi_i(B; x')$-computation above β which we use for protecting some Δ above (see details in the following discussion).

\footnote{Roughly speaking, this y is going to be the least killing point when we go to the right of β, and so for successful diagonalization, we want to make sure that β''s computation is protected when we switch to the right of it. In the complete example in Section 5.3, our x here is x_3 there, and our y here is x_5 there.}
point be infinity). Then we let the claim point \(z \) of \(\beta \) be the minimum number among all these killing points of \(\mathcal{S}_v \)-families below \(\beta' \) (for all such \(\beta' \)), as well as \(x \), the diagonalization witness at \(\beta \). So automatically \(z \) is less than or equal to \(x \).4

This \(c \)-outcome at \(\beta' \) is now associated with the claim that “after this stage \(s \), it is always the case that \(\psi'(x') \) is greater than or equal to \(\gamma_k(z) \) for some active \(\Gamma_k \) above the \(\mathcal{S}_f \)-parent node”. (For convenience we denote this claim by \(\mathcal{C}(\beta', z, s_s) \).) In addition, this \(c \)-outcome announces that \(z \) is the new killing point for lower-priority \(\mathcal{S}_f \)-child nodes, overwriting the old announcements made by higher-priority child nodes for the same \(\mathcal{S}_f \). That is, \(\mathcal{S}_f \), as a whole requirement, now switches the killing point to \(z \) (since it sees \(\gamma_k(z) \leq \psi_{\ell}(x') \)). In this case, we say that \(\beta \) initiates the \(c \)-outcome at \(\beta' \).5

We process these \(\Delta' \) from the bottom up, i.e., the lowest one first tries to clear the computation and give permission (i.e., wait for \(\psi'(x') \) to become small enough), and if this happens, then we switch to the next higher node, and so on. In the end, if every \(\Delta' \) along \(\beta \) allows \(x \) to enter \(A \) by giving permission to smaller \(z \)'s (recall that these \(z \)'s are automatically less than or equal to \(x \)), then we can put \(x \) into \(A \) and go to the \(d \)-outcome of \(\beta \).

While doing that, we issue requests at each active \(\mathcal{R} \)-node above \(\beta \) to add \(\gamma(x) \) into \(B \). Later, if the corresponding \(W \)-use (for \(\Gamma(B \oplus W, x) \)) has changed, then we do not add \(\gamma(x) \) into \(B \), but otherwise we need to add \(\gamma(x) \) into \(B \) when we next visit the \(\mathcal{R} \)-node.

4.3.2. Possible link to child. Now, at this time, if we do not have a chance to diagonalize, there might be some \(\mathcal{S}_f \)-child nodes below, whose \(c \)-outcome has been initiated with a claim about the size of \(\psi_{\ell}(x') \) and some \(\Gamma \)-uses of possibly larger \(x'' \) (see above). We check if any of these claims turn out to be false. For those corresponding \(c \)-outcomes whose claims turn out to be false, we initialize everything below the \(c \)-outcome of these child nodes and everything to the right of them.

In addition, we check whether there is an \(\mathcal{S}_{j_f} \)-child node such that the last time it was visited we went to one of its \(g \)-outcomes, and now with the current conditions we see that we can switch to the left to that \(g \)-outcome. If there is such a child node, then we build a link directly from the \(\mathcal{S}_f \)-parent node \(\beta \) to that child node, skipping every node between them. Otherwise we stay at the \(\mathcal{S}_f \)-parent node \(\beta \) and proceed to the next node.

4.4. \(S \)-Child Node. When we reach an \(\mathcal{S}_{i_j} \)-child node \(\beta_j \) of an \(\mathcal{S}_f \)-node \(\beta \), the construction proceeds as follows. First, as we have mentioned above, \(\beta_j \) checks whether the \(c \)-outcome was accessible at the last stage \(t \) when we visited \(\beta_j \). If so, we check if the associated claim \(\mathcal{C}(\beta_j, z, t) \) is still true. In that case, we go down to that outcome without doing anything here. If the claim is false, then we have already initialized everything extending the \(c \)-outcome of \(\beta_j \) when we reach \(\beta \). In that case, there must be some \(\mathcal{S} \)-parent note \(\beta'' \) below some \(g_{a} \)-outcome of \(\beta_j \) which initiated the \(c \)-outcome of \(\beta_j \) here. If this node \(\beta'' \) has not been initialized since, then we directly link to this \(\beta'' \), allowing it to finish trying its diagonalization (without visiting the nodes between \(\beta_j \) and \(\beta'' \)). If this \(\beta'' \) has already been initialized, then we proceed as in the following paragraph.

Otherwise, i.e., if we didn’t visit the \(c \)-outcome the last time we visited \(\beta_j \), then we have a killing point \(y \) here decided by higher-priority \(\mathcal{S}_{i_f} \)-child nodes \(\beta_f \) above or to the left of \(\beta_j \) (or by \(\beta \) itself if there is no such \(\beta_f \)): \(y \) is the largest of all the claim points of these \(\beta_f \) as well as the clearing point at \(\beta \). We also know that \(\gamma(y) \leq \psi_{\ell}(x) \) for some functional \(\Gamma \) by some active \(\mathcal{R} \)-node above \(\beta \); let \(a \) be the lowest-priority such \(\mathcal{R} \)-node. Now we go to the \(g_{a} \)-outcome, adding \(\gamma(y) \) into \(B \) (if this is a \(B \)-stage), and extending \(\Delta \) up to the \(W \)-use \(\gamma(W, y) \).

5. Verification

We start with a few technical lemmas, then we can show that there is a leftmost path accessible infinitely often (the true path) and every node on the true path has a true outcome. We then show that all the functionals \(\Gamma \) (unless killed) and all functions \(A \) built along the true path are well-defined. This allows us to show that all requirements are satisfied.

4 Later we will see by induction that it is automatically greater than the killing point at \(\beta' \). In the complete example in Section 3.3, our \(z \) here happens to be \(x_j \) there as well, just like our \(y \) here is \(x_j \) there, but this need not be true in general.

5 Later, when we reach the parent node for \(\beta' \), we can check whether the condition \(\gamma_k(z) \leq \psi_{\ell}(x') \) is still true, i.e., whether this claim is still true; if not, then we will initialize everything extending the \(c \)-outcome at \(\beta' \) and declare that this node \(\beta' \) now gives permission for diagonalization at \(\beta \).
5.1. Technical Lemmas. First of all, in our construction, we separated the stages into A-stages and B-stages, and only allowed changes in A or B at A-stages or B-stages, respectively. Sometimes, we may encounter the situation that the algorithm wants to change A but the current stage is a B-stage, or vice versa, and so in the construction, we simply terminate the stage and immediately try the next stage. (See Section 4.1 for details.)

We start with a lemma proving that in this case, either we will change the accessible path due to a W-change (which will cause either initialization of the node that wanted to enumerate, or the permanent satisfaction of the requirement of a higher-priority node), or we can perform the desired B- or A-enumeration at the next stage.

Lemma 5.1 (Accessibility of A/B-stages). Suppose at stage s, we terminated the stage because the stage was not of the type we wanted. Then at the next stage $s + 1$, either some W changes and we switch to the left or right of the accessible path at stage s, or we can perform the enumeration we wanted to perform at stage s.

Proof. According to the construction, assume that some W along the accessible path (of stage s) changes at stage $s + 1$ by x entering W: If this change decreases the length of agreement between W and $\Phi(A)$ and switches the outcome of a strategy along this accessible path at stage s from an i-outcome to an f-outcome, then we have permanent satisfaction of an R-requirement (unless some higher-priority node acts), since $W(x) = 1$ and we have a computation $\Phi(A; x) = 0$. If this change increases the length of agreement or does not change it, then actually it will not affect any of the Δ's previously defined below the i-outcome (since we only define Δ up to the length of agreement). Now, if we do not switch the accessible path between stages s and $s + 1$, then obviously, since we have not changed A or B from stage s to stage $s + 1$, all criteria required for action remain the same, and we can perform the action (go to a certain outcome or change A or B) as at the previous stage s. □

Usually, in a priority tree argument, one can simply see by inspection that, for any computation (e.g., of Ψ, Φ) witnessed at a node, the use cannot be changed by any node to the right of it (by the choice of sufficiently large witnesses). However, in our construction, this is not true. The problem is that, along a c-outcome of an S-child node, the killing point z is determined by some node extending a g_α-outcome of the S-child node, i.e., to the left of its c-outcome. Therefore, potentially any B-change up to $\gamma(z)$ via at a node extending the c-outcome might injure some Ψ-computations to the left of it. So we need a lemma stating that, in certain cases, such injury cannot happen.

Lemma 5.2 (Link to a parent node). In the construction, if we see that a claim for a c-outcome at some $S_{i,j}$-node β becomes false and build a link to an S_γ-node β' along a g_α-outcome (which initiated the c-outcome), then at that time, the computation at β' is still the same as when β' initiated the c-outcome.

Proof. Say, at stage s_0, β' initiated the c-outcome and by the criterion in the construction, we know that the use $\psi(x)$ at β' (for the diagonalization witness x at β') is $\leq \gamma(y)$ for the least possible killing point y that can be used to the right of β'. If such y in the definition decreases (i.e., some node to the right uses a smaller number as the killing point), then we would have initialized β' and would not build a link from β. This means that when we build a link back to β', its computation is preserved. □

Lemma 5.3 (Diagonalization of parent preserved). If an S-node has performed diagonalization, then unless it is initialized, its computation $\Psi(B; x)$ is always preserved.

Proof. The argument is almost the same as the previous lemma. If a killing point y had decreased, then it would mean that the node had been initialized. If the killing point has not decreased, then by our criterion, the computation is preserved. □

5.2. True Path Lemmas. Since our tree is finitely branching, there clearly is a leftmost path accessible infinitely often (which we call the true path). The slightly tricky problem is that in the construction, there are two cases when we build a link between two nodes and skip nodes in between: The first case is when an S_i-node sees that an $S_{i,j}$-child node can now switch to the left; the second is from a c-outcome of an $S_{i,j}$-node to an S_γ-node below one of its g_α-outcomes. It is conceivable that some node on the true path is skipped infinitely often but not visited infinitely often, or its outcome is along the true path but is actually not the true outcome (the leftmost outcome we choose infinitely often when visiting the node). The following few lemmas show that this case cannot happen. The idea to prove this is as follows: Each time we skip over a node β, we always “blame” a node below it and make sure that such a node can only do this infinitely often before β is visited again.
Lemma 5.4 (First case skip). If a node β is skipped via the first case, then some node below it switches left. In addition, if β is never visited again and never skipped by the second case, then the skip for the first case can only happen finitely often, and each time we will go strictly to the left of the previous visit.

Proof. The first claim follows by inspection of the construction. For the second claim, note that for every such link which skips β, β must be between an S-node and one of its child nodes. A somewhat tricky situation may arise that during such a stage when β is skipped, we may add new nodes below it which may cause extra links. But observe that such a new link must be associated with an S'-parent node of higher priority than the S-node which causes the skip at the current stage, so by induction on the number of S-parent nodes above β, one can see that, if β is never visited again, such a skip (for the first case) can only happen finitely often. More precisely, we associate each skip to a combination of S- and R-nodes of higher priority than β, and assign a natural priority on these combinations. It is then easy to check that each time we go to the left, such a combination increases in priority, and so this cannot happen forever.

Lemma 5.5 (Second case skip). At any stage, for any given β, there can be at most one node β' below β which has initiated a c-outcome at a node above β such that the associated claim is still true. That is, during any fixed stage, there can be at most one node which makes us skip β for the second case.

Proof. Suppose s_0 is the first stage such that the c-outcome of β' is initiated. Then, of course, at stage s_0, there is only one such node (we jump to the c-outcome at s_0). After that, either β' is initialized; or the associated claim never becomes false, and so the claim of the lemma remains true; or later the claim becomes false at stage s_1 and we build a link directly to β' skipping β. At that stage, we note that the computation at β' is still the same as at stage s_0 (by Lemma 5.2). So at stage s_1, either β' again initiates another c-outcome even higher, or it follows diagonalization and now there are no nodes which make us skip β (for the second case). The same situation happens at every stage afterwards, and so the lemma follows.

Lemma 5.6 (True path). Along the true path, every node is visited infinitely often, therefore all outcomes along the true path are true outcomes.

Proof. This follows essentially by combining Lemmas 5.4 and 5.5. Suppose some β on the true path is never visited again. Whenever we skip β via the second case, then some node below performs diagonalization, which means that any nodes extending the d-outcome will be fresh at that stage. At that moment, the only reason we can skip β is the first case, and so the next time we skip over β, we must travel to the left of the current visit. It then follows that below any of these diagonalization outcomes d, we will not have new nodes added which request diagonalization, since each such new S-node is visited only once.

Therefore we eventually switch to the left of this diagonalization outcome, and by the same argument as in Lemma 5.4 above, such skips cannot happen infinitely often. So one can only skip over β finitely often, and the lemma follows.

In addition, we need to show that every node along the true path “passes down” infinitely many A-stages and B-stages (in fact, in alternating order), so every node has the chance to perform the action it wants to eventually.

Lemma 5.7 (Alternating stages on true path). In the construction, every node on the true path is visited infinitely often at A-stages and at B-stages, respectively.

Proof. This is because in the construction, we require that when we pass to an outcome, we require a different type of stage (A-stage or B-stage) than the one when we last time went to that outcome (otherwise we wait and do nothing). Along the true path, as we proved above, every node is actually visited infinitely often, and so by this criterion, every node is visited at alternating A-stages and B-stages.

Now in the following arguments, we always assume that we have a node ξ on the true path and we have passed the stage when all nodes to the left stop acting. Here, action include being visited or accessible, or c-outcome initiation. We denote this stage by $s(\xi)$, i.e., $s(\xi)$ is the last stage when ξ is initialized. Since there is finite injury along the true path, we also assume that ξ is the last node along the true path for its requirement, and we only consider stages when it is visited.
5.3. **Witnesses and Functionals.** First, we prove two lemmas about the witnesses and various other points we use in the construction.

Lemma 5.8 (Clearing point and witness of parent node). *Given an S-node with diagonalization witness x, the clearing point y (as in the construction) is always less than or equal to x, and such y is stable if no node to the left acts again.*

Proof. This is by inspection of our construction. □

Lemma 5.9 (Claim and killing point of child node under c-outcome). *Given an \(S_{i,j}\)-child node, when its c-outcome is initiated (by \(\beta\), say), the corresponding claim point \(z\) (as in the construction) is always strictly larger than its killing point, and is always less than or equal to the diagonalization witness at \(\beta\).*

Proof. The second claim is by inspection of the definition of such \(z\). The first claim follows from the fact (proved by induction) that such \(z\) is always a diagonalization witness below an \(S_{i,j}\)-child node’s \(g_\alpha\)-outcome (for some \(\alpha\)), and so larger than the killing point (whenever it changes, every node below is initialized automatically).

Next, we show that along the true path, every functional is correct on its domain (modulo finite incorrectness for the \(\Delta\)'s). It follows that the functional computes the set we want if it has total domain.

Lemma 5.10 (\(\Gamma\)-functionals). *Every functional \(\Gamma\) is is correct on its domain.*

Proof. This is basically by inspection of the construction that when we add any number \(x\) into \(A\), we always make sure to issue requests to add the corresponding \(\gamma(x)\)-uses into \(B\) at \(\Gamma\). It may be the case that later when we visit \(\Gamma\), the corresponding \(W\) has changed up to the use, and since \(W\) is c.e., such a change automatically makes the functional undefined and so there is no problem in not adding \(\gamma(x)\) into \(B\) in this case. If \(W\) has not changed, then, of course, by the construction, we will add \(\gamma(x)\) into \(B\) so that we can correct the axiom. □

The next lemma is going to be the most crucial and most complicated lemma in the proof. Let us first sketch the argument: To show that \(\Delta = W\), it suffices to show that whenever we define some \(\Delta\) as an initial segment of \(W\), then this initial segment of \(W\) is not going to change in the construction later. Now at \(B\)-stages, this is obvious since \(W = \Phi(A)\) where \(A\) does not change. At \(A\)-stages, the argument is much trickier, but is very similar to the standard argument used in the style of Lachlan’s gap/co-gap construction. Basically, we have a computation \(\Psi(B; x)\) to protect an initial segment of \(W\) in such a way that if it changed (after we changed \(A\)) then we would switch to the left of the \(\Delta\)-outcome. The difficult part is to show that after \(A\) changes, the \(B\)-use of \(\Psi(x)\) is always protected. This is usually true since we have only been to the right of such \(\Delta\), but remember that in our construction, actions to the right may injure computations to the left.

Lemma 5.11 (\(\Delta\)-functionals). *Every function \(\Delta\) is correct on its domain (modulo a fixed finite amount of injury). More precisely, for every such \(\Delta\), there is a stage after which \(\Delta\) is not going to be injured again.*

Proof. Say, such \(\Delta\) is defined along a \(g_\alpha\)-outcome (with killing point \(x'\)) of \(\beta_i\), which is a child node for \(\beta\) (where \(\beta\) has diagonalization witness \(x\)).

In addition, we know that, for each parent node \(\beta'\) above \(\beta\) and active at \(\beta\), every child node of this \(\beta'\) along the true path has true c-outcome. Now we have to wait for a stage \(s_0\) such that every such \(\beta'\) has a child node below \(\beta\) (on the true path) with a true c-outcome initiated (i.e., a c-outcome that will not be initialized later).

We claim that after stage \(s_0\), the \(\Delta\)-axioms are always correct, i.e., compute \(W = \Phi(A)\). If \(A\) does not change, then, of course, \(W\) cannot change. So we only need to consider the case when \(A\) changes, in particular, below \(\beta_i\)'s \(g_\alpha\)-outcomes, since otherwise such an \(A\)-change must be to the right and cannot change the initial segment of \(W\) witnessed at \(\beta'\).

Suppose that at some later stage \(s_1\), some node \(\bar{\beta}\) below \(\beta_i\)'s \(g_\alpha\)-outcome performs diagonalization (most likely via a link under the second case). According to the construction, such a node \(\bar{\beta}\) must receive permission from every child node with \(g_\alpha\)-outcome above it. In particular, \(\beta_i\) needs to give permission that \(\gamma(z) > \psi(x)\), where \(z\) is the associated claim point at \(\beta_i\), and the \(\Gamma\)-uses range over all \(\Gamma\)'s active above \(\beta\).

By the definition of stage \(s_0\), such \(\gamma(z)\)'s are going to be the least possible numbers entering \(B\) when we switch to the left of \(\beta\); and by Lemma 5.9, \(z\) is less than or equal to the diagonalization witness added into \(A\).
In addition, by inspection of the construction, we know that at stage s_1, the computation $Ψ(B; x)$ converges. (Otherwise the permission criterion $γ(z) > ψ(x)$ is always false.)

So we know that, after we add the diagonalization witness into A at stage s_1, and before we come back to $β$, the computation $Ψ(B; x)$ at $β$ is always preserved. Now it suffices to show that $W = Φ(A)$ up to $γ(x')$ is the killing point at $Δ$ and we always define W up to $γ(x')$.

Otherwise, when we reach the R-node and go to its i-outcome, we would see that the use $γ(W; x')$ has changed, and so according to the construction, we will increase its B-use here. In particular, we know that when we reach $β$ for the first time after s_1, $γ(x') > ψ(x)$, and according to the construction at S-nodes, we would immediately build a link to this $β_i$ and switch to the left of the outcome where $Δ$ is defined, and this, of course, contradicts the assumption.

5.4. Final Verification. We are now ready to prove the satisfaction of all requirements. The following two lemmas complete the verification of the construction of Section 5 and the proof of our main theorem.

Lemma 5.12 (S_i-requirements). Every S_i-requirement is satisfied.

Proof. Let $β$ be the last S_i-parent node along the true path. It is easy to check that, once we perform diagonalization, then the $Ψ_i(B; x)$-use is going to be preserved (as we choose the killing point y to be the least one such that some $γ(y)$ may enter B later in the construction). So we only need to consider the case when we infinitely often see a believable computation $Ψ_i(B; x)$ but we cannot perform diagonalization.

Our argument now splits into two cases. One is that there is an S_i-child node below $β$ on the true path which has true $g_α$-outcome (we call this case the $Σ_i$-outcome for $β$, i.e., the requirement is satisfied in a $Σ_i$-fashion). The other is that every S_i-child node below $β$ on the true path has true c-outcome (similarly, we say $β$ has true $Π_i$-outcome).

In the first case, obviously according to the criterion at $β$, $ψ_i(x) ≥ γ(x')$ for the killing point x' at $β$, and the latter goes to infinity by our construction. So $Ψ_i(B; x)$ diverges and our requirement is satisfied.

In the second case, by our criterion for going to c-outcomes, $ψ_i(x)$ is going to be greater than or equal to $γ(z)$ for arbitrary large z, and this also implies that $Ψ_i(B; x)$ diverges.

In addition, in the second case, it is easy to see that, for each claim point z, all S_i-child nodes eventually give up using z and start using the next x' as a killing point (later this will allow us to show that the “impact” of this action on each higher-priority $Γ$ is finite).

Lemma 5.13 (R_i-requirements). Every R_i-requirement is satisfied.

Proof. Let $α$ be the last R_i-node along the true path. Of course, we only need to consider the case that $W = Φ(A)$ is total, and so we go to the i-outcome of $α$ infinitely often, building $Γ$. Now if there is an S_i-child node along the true path with true g-outcome associated with $α$, then by Lemma 5.11 the function $Δ$ built there is going to correctly compute W, and so the R_i-requirement is satisfied.

If there is no such S-child node along the true path, then we need to argue that for each fixed x, $γ(x)$ only changes finitely often, and so by Lemma 5.10 $Γ$ is going to be a functional computing A from $B ⊕ W$, and our $Φ$-requirement is also satisfied.

So fix an x. We can assume that $A(x) = 0$ in the end, since otherwise, after x enters A, the $Γ$-use is going to change for the last time and then settle down forever. By our construction, if W changes, we only increase the B-use without changing the W-use, and so the only case in which we may increase the $Γ$-use forever is that it happens infinitely often that some S-child node below $α$ has outcomes associated with $α$ and puts $γ(y)$ for $γ ≤ x$ into B during B-stages (where y is the killing point). By induction hypothesis, we can assume that $Γ(B ⊕ W; x)$ has settled down for every $y < x$. Obviously, only finitely many S-requirements can use x as a killing point. Now by the last paragraph of the proof of the previous lemma and by our assumption, all such child nodes which use x as its killing point will eventually give up using x, and so eventually each $Γ(B ⊕ W; x)$-use settles down.

References

[Sa64] Sacks, Gerald E., The recursively enumerable degrees are dense, Ann. of Math. (2) 80 (1964), 300–12.

George Barmpalias: (1) State Key Lab of Computer Science, Institute of Software, Chinese Academy of Sciences, Beijing 100190, China and (2) School of Mathematics, Statistics and Operations Research, Victoria University, Wellington, New Zealand

E-mail address: barmpalias@gmail.com
URL: http://www.barmpalias.net

Mingzhong Cai: Department of Mathematics, University of Wisconsin, Madison, WI 53706, USA
E-mail address: mcai@math.wisc.edu

Steffen Lempp: Department of Mathematics, University of Wisconsin, Madison, WI 53706, USA
E-mail address: lempp@math.wisc.edu
URL: http://www.math.wisc.edu/~lempp

Theodore A. Slaman: Department of Mathematics, University of California, Berkeley, CA 94720, USA
E-mail address: slaman@math.berkeley.edu