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Abstract

Borel (1919) defined a subset A of R to have strong measure zero
if for every sequence of positive numbers (¢; : ¢ € w) there is an open
cover of A (U; : i € w) such that for each i, the diameter of U; is less
than ¢;. Besicovitch (1956) showed that A has strong measure zero if
and only if A has strong dimension zero, which means that for every
gauge function f, A is null for its associated measure Hf. We say that
A < RY has strong dimension f if and only if H/(A) > 0 and for
every gauge function g of higher order H9(A) = 0. Here, g has higher
order than f when lim;_,q+ g(¢)/f(t) = 0. Borel conjectured that a set
of strong measure zero must be countable. This conjecture naturally
extends to the assertion that a set has strong dimension f if and only if
it is o-finite for H7. Sierpinski (1928) used the continuum hypothesis
to give a counterexample to Borel’s conjecture and Besicovitch (1963)
did the same for its generalization. Laver (1976) showed that Borel’s
conjecture is relatively consistent with consistent with ZFC, the con-
ventional axioms of set theory including the axiom of choice. We show
that its generalization to strong dimension is also relatively consistent
with ZFC.
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Patrick Lutz, Andrew Marks, Joseph Miller, Jan Reimann, Daniel Turetsky, and W. Hugh
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1 Introduction

1.1 Hausdorff and Gauge Dimension

We work in RY, for some N > 1, in which a basic open set U is a ball of
positive diameter. We use |U| to denote the diameter of U.

Definition 1 (see Falconer (2003); Rogers (1998)). 1. A gauge function
is a continuous increasing function f : RT™ — RT such that limg_,o+ f(d)

2. For aset A < RY and a real number § > 0, a d-cover of A is a countable
set of basic open sets {U; : i € w} such that for all i, U; has diameter
less than ¢ and such that A <  J, U;.

3. Let A be a set and f a gauge function.
(a) For 6 >0, H] = inf{z F(UL]) : {U;} is a d-cover of A.}

(b) HY(A) = limg_+ H](A).
i. If f(d) = d*, then H/ is the usual s-dimensional Hausdorff
measure.
ii. Linear measure refers to HY when f is the identity function.

Notice, we could use covers consisting of closed balls of positive diameter
and achieve the same values for H g and H/. We use the term Hausdorff
system to refer to a collection of sets of basic open sets {O; : i € w} such that
for each ¢, if U € O; then |U| < 1/(i + 1). In addition, {O; : i € w} covers a
set A when for all i, A = | O;.

Definition 2. A set A is o-finite for H' if and only if there is a countable
collection {A4; : i € w} such that A = | J{A;} and for each i € w, H/(A;) < 0.

Definition 3. Suppose that g and f are gauge functions. Write f < g to
indicate that limy g+ g(d)/f(d) is equal to 0. In this case, say that g has
higher order than f.

Definition 4. Suppose that {O; : i € w} is a family of subsets of . We say
that {O; : i € w} is a Hausdorff system for H7 -size k whenever {O; : i € w}
is a Hausdorff system and for all 4, 3, f(|U]) < k.

Remark 5. If f < g and A is o-finite for H then H9(A) = 0. Remark 5
is a consequence of the following observation: If {O; : i € w} is a Hausdorff
system for H/-size k, then for all € > 0 there is an n such that {O; : i > n}
is a Hausdorff system for H9-size e.



Definition 6. 1. For A < RY and f a gauge function, A has strong
dimension f if and only if the following conditions hold.

(a) For all gauge functions h, if h < f then H"(A) = co. In this case,
A is not o-finite for all such H".

(b) For all gauge functions g, if f < g then H9(A) = 0.
2. A has strong dimension zero when for all gauge functions g, H9(A) = 0.

There are three fundamental sizes of a set A with respect to a gauge
function f: Hf(A) = 0, Hf(A) > 0 and A is o-finite for Hf, or A is not
o-finite for Hf. We study the prospects for A to have strong dimension f
for each of these cases.

Case 1: H/(A) =0. This case was settled by Besicovitch.

Theorem 7 (Besicovitch (1956)). If f is a gauge function, A < RN and
H/(A) = 0 then there is a gauge function h such that h < f and H"(A) = 0.

Consequently, if Hf(A) = 0, then A does not have strong dimension f.

Case 2: H/(A) > 0 and A is o-finite for H/. This case is settled by
Remark 5: If f is a gauge function, A € RN, H/(A) > 0 and A is o-finite
for H/ then A has strong dimension f.

Case 3: A is not o-finite for H9. Meta-mathematical considerations
appear in the final case.
Besicovitch settled the matter for analytic sets:

Theorem 8 (Besicovitch (1956), Theorem 7). Suppose that A is an analytic
set, f is a gauge function, and A is not o-finite for H. Then there is a
gauge function g such that f < g and A is not o-finite for HI(A).

Besicovitch also showed that the restriction to analytic sets A in Theo-
rem 8 cannot be unconditionally removed.

Theorem 9 (Besicovitch (1963)). Assume the Continuum Hypothesis (CH ).*
Then, there is a set A < R? such that A is not o-finite for linear measure
and A has strong linear dimension.

*Besicovitch (1963) does not explicitly reference the CH, but uses an uncountable set
concentrated on the rationals, the existence of which is a consequence of the CH.



In Theorem 24 of Section 3, we show that it is relatively consistent with
ZFC, the conventional axioms of set theory including the axiom of choice,
that for all gauge functions f and all sets A, if A is not o-finite for H/ then
A does not have strong dimension f. Consequently, ZF'C does not settle
the question of whether there are a gauge function f and a set A such that
A is non-o-finite for Hf and of strong dimension f.

1.2 Besicovitch’s Example and Sets of Strong Measure Zero

Definition 10 (Borel (1919)). A set A < R has strong measure zero if and
only if for every sequence (¢; : i € w) of positive real numbers, there exists
a sequence of intervals (I; : i € w) such that, first, for each ¢, the length of I;
is less than or equal to ¢; and, second, A < | J{I; : i € w}.

Besicovitch noted that the sets of strong measure zero have a distin-
guished place in the context of gauge dimension.

Theorem 11 (Besicovitch (1956)). For any set A < R, A has strong measure

zero if and only if A has strong dimension zero, that is for every gauge
function f, H(A) = 0.

Further, strong measure zero sets are implicit in Besicovitch’s Theorem 9,
which we make explicit in the following.

Theorem 12 (in the style of Besicovitch (1963)). If there is an uncountable
set of strong measure zero, then there is a set A < R? such that A is not
o-finite for linear measure and A has strong linear dimension.

Proof. Suppose that Ag < R has strong measure zero. Let A be the set of
(x,y) such that y € Ap and = € [0,1]. Since A is an uncountable disjoint
union of sets of positive linear measure, the horizontal line segments associ-
ated with the elements of Ay, A not o-finite for linear measure (see Rogers,
1998, page 123, Theorem 58).

Next, let g be a super-linear gauge function, that is limg_,o g(d)/d = 0,
and let § be greater than 0. Since we may use covers by closed sets to
calculate gauge measures and a closed square with sides of length ¢ can be
circumscribed by a closed circle of radius ¢4/2, it is enough to show that
A can be covered by a collection of closed squares with side lengths ¢; and
hence diameter lengths £;4/2 so that Y., g(£;iv/2) < 4.

Let (n; : i € w) be a sequence of positive integers such that for each i,
g(v/2/n;) < (6/27%1) /n;. Let (I; : i € w) be sequence of intervals such that
Ap € ({1 : i € w} and for all ¢, |I;] = 1/n;. Let ¢; be the center of I; and



let {B;; : 1 < j < n;} be the pairwise adjacent closed squares with sides of
length 1/n;, sides parallel to the axes and centers on the line y = ¢; so that
Ui<j<n, Bi,j covers all of the horizon line segments in A with y-components
covered by I;. Then, {B;; :i€w and 1 < j < n;} covers A. Further,

Y, 9(Bisl) < D a(V2/nin; < Y (6/ni2)ni = 6,

1ew, 1< <n, 1EW €W
as required. O

Erdss, Kunen, and Mauldin (1981) showed that in Godel’s universe of
constructible sets there is a co-analytic set that has strong measure zero.
It follows that if every set is constructible then there is a co-analytic set A
which is not o-finite for linear measure and has strong dimension linear.

1.3 The Borel Conjecture

Borel (1919) conjectured that all strong measure zero sets are countable,
which if true would void the construction in the proof of Theorem 12. This
conjecture naturally extends to the assertion that a set has strong dimension
f if and only if it is o-finite for H/. By Theorem 12, this assertion for strong
dimension implies Borel’s conjecture so it is indeed an extension.

Sierpiriski (1928) used the CH to construct an uncountable set of strong
measure zero, hence a counter example to Borel’s conjecture. Again by
Theorem 12, if the CH holds, then there is a set A < R? such that A is
not o-finite for linear measure and A has strong linear dimension, which is
Theorem 9.

Laver (1976) established the relative consistency of Borel’s conjecture:

Theorem 13 (Laver (1976)). If ZFC is consistent, then so is ZFC together
with Borel’s conjecture.

Since a counter example to the Borel Conjecture yields a set of strong
linear dimension which is not o-finite for linear measure, Laver’s model is
the natural context in which to analyze the case of strong dimension f for a
set which is not o-finite for a gauge measure H7.

2 Laver’s Model

In this section and the next one, we conform to the notation of Laver (1976)
to the extent that it is possible. Similarly, our summary closely follows the
original development.



2.1 Laver Forcing

We summarize the properties of Laver forcing. Most importantly, we review
how Laver forcing admits fusion arguments. We do make one systematic
change in notation: for forcing conditions p and ¢, p > ¢ indicates that ¢ is
a stronger condition than p.

We let M denote a countable transitive model of ZFC'+ CH. CH is not
necessary for the basic definitions and properties, but it will be essential for
our application. We view the following as taking place in M.

The Laver partial ordering [J consists of a collection of subtrees T' of
w=¥ for which there is a member T0) of T, the stem of T, such that every
element of T' is compatible with 7(0) and for all ¢ € T, if o is equal to
T<0) or extends 7¢0) then there are infinitely many ¢ such that o =4, the
extension of ¢ obtained by appending i, belongs to T'. When T € J and
7{0) < o € T, Ty, is the subtree of T consisting of those sequences in T
which are compatible with o. Note that o is the stem of T,.. For T7 and 15 in
J, 11 =T when To < T7. In this case, say that T5 is stronger than 77. We
will identify a J-generic filter with the unique element G € w® which is an
infinite path through all of the trees in that filter. We refer to G as a Laver
generic real.

We fix an enumeration of w=%, o1, 09,... so that, first, if o; & o; then
t < j and, second, if n < m, 0; = 0 *n and 0; = o * m then ¢ < j. For any
T € J, this provides an enumeration of {0 : 0 € T and T{0) < o} under the
natural isomorphism between this set and w=<%. The strings {70), ...,T{n)}
determine a maximal antichain {7} : i < n} below T by letting T; be the
union of all of the T},’s such that o is an immediate successor of T'(i) in T
and o is not T{j) for any j less than or equal to n. For S and T in J,
S =" T means that S > T and, for all ¢ less than or equal to n, S(i) = T().

P, is the a-length iteration of forcing with J using countable support,
defined along with its order >, greatest element o, and forcing relation [.
by induction on a:

1. Py is the set of all functions from 1 = {0} into J ordered by p =1 q if
and only if p(0) > ¢(0) in J.

_— ~dom p=a+1,plaeP,, and
S ke p(«) is a canonical term for a member of 7 in M[G,]

For p and ¢ in Pyt1, p =Za+1 ¢ if and only if pla =, ¢la and
qlalkap(e) = q(a).



3. When « is a limit ordinal, P, is the set of all p with domain « such
that, first, if 1 < 8 < «, then p/B € P and, second, for all but
countably many § with 1 < 8 < a, gp(8) = 0. Here, we use 0 to
denote the greatest element of J, namely w<%.

When 1 < o < 8 < wa, P is the set of functions f with domain [a, 3)
such that o, U f is an element of Pg. For p in P, or in P8 the support of
p is the set of v in the domain of p such that £, p(y) = 0. G, refers to a
set which is generic over the understood model M for the forcing P,. P, is
naturally embedded in Pg, and we can write G, = {pla : p € Gg}. Similarly,
M[Gg] = M[G,][GY], with G*P generic over M[G,] for PP,

Theorem 14 (Laver (1976)). Let M be a countable model of ZFC + CH
and G, be P,,-generic over M.

1. P, has the wa-chain condition.
2. For all « < wy, all cardinals in M are preserved in M[G,].

3. For all a < wa, M[Gy,] = M[G,][GE,], where G, is (P, ) MIGal
generic over M[Gq]. Here, (Po,)M %] is P, as defined in M[G,].

Going forward, we will omit the subscripts when the forcing partial order
is clear from context.

2.2 Fusion Sequences

Suppose that 1 < a < wq, F' is a finite subset of @ and n < w. For p and ¢
in Py, p =% ¢ if and only if p > ¢ and for all g € F, q1SIFp(B) =" q(5).

Remark 15. Consider p, n and F as above. Just as the strings 70, ..., T{(n)
determine a finite maximal antichain below 7" in the partial order for adding
a single Laver real, n and F' determine a finite maximal antichain below p
in P, all the elements of which have the same support as p.

Lemma 16 provides the infrastructure for fusion arguments.

Lemma 16 (Laver (1976)). Suppose that 1 < a < wa, pp, N € w, are
members of P, and F,, n € w, is an increasing chain of finite sets such that
U e, Fr is equal to the union of the supports of the pr, and for each n € w,
Pn Z2F, DPn+1. Then there is a p, € Po such that for alln € w, pp 2% pu.
Further, p, has support the union of the supports of the p,’s and is unique
up to forced equivalence in P,,.



Lemma 17 provides the means to decide formulas by thinning trees rather
than extending their stems.

Lemma 17 (Laver (1976)). Suppose that 1 < a < wa, p is a condition in
Po, F={a1 < -+ <} is a finite subset of a, and n € w.

1. For ¢ a sentence in the forcing language, there is a q such that p =% q
such that q decides @, that is either qlqp or qlFq—p.

2. If k <w and pl- W j<i, @j, then there is an I < {0, ..., k} such that I
has cardinality less than or equal to (n + )" and there is a q such that
p =% q such that ql- w jer ;.

3 Strong Dimension in Laver’s Model

3.1 Reflecting Non-o-finiteness

Lemma 18. Suppose that 1 < a < we and « has cofinality wy in M.
For every p € P,, every finite F' contained in o and every term t such
that pl-ot € 2%, there are q in P, with p 2% q and B < « such that
q kot € M[Gg].

Proof. Let «, p and t be fixed as above. We proceed to find ¢ by application of
Lemma 16 in a fusion argument. We define a sequence p = pg 2%0 D1 2},1 p2...
with associated finite sets F' = Fy € F} < .... We arrange by standard book-
keeping, which we leave unspecified here, that ( J{F}, : n € w} is equal to the
union of the supports of the p,,’s. We determine p,, 1 from p,, as follows. Let
{pn.i : i < ky} be the finite maximal antichain below p,, determined by p,,, n
and F;, as in Remark 15, where k,, is the size of this antichain. By Lemma 17,
for each i < k;,, let ¢, ; be a condition in P, such that p, ; >0Fn qn,i and qp
decides the value of t at argument n. Let p,y1 be the condition obtained by
taking the disjunction of the g, ;’s. Then, p, =% pn+1 and for each n, the
value of ¢t at n is determined by the values of G, on the ordinals in F;,. By
Lemma 17, take p, to be the fusion of the p,’s. Thus, p, forces that the
element of 2¢ denoted by t in M[G,] is an element of M[G341], where 3 is
the supremum of the support of of p,. Since p, has countable support and
a has uncountable cofinality, 8 < «, as required. O

By Lemma 18, if a has cofinality wy, € 2¥ and x € M[G,], where
Go is Pa-generic over M, then there is a f < « such that x € M[Gg].
This observation applies not only to elements of 2* but also to elements of



RY | Hausdorff systems and every other type of set that is determined by a
conjunction of countably many Boolean properties.

Lemma 19. Suppose that M[Gy,] = “A € RY is non-o-finite for f.” There
is an a < wy such that A n M[G,] is an element of M[Gy] and such that
M[G.] E “A n M[G,] is non-o-finite for f.”

Proof. Since P, has the wy-chain condition, there is a Sy < wy and a count-
able collection of maximal antichains which decide the values of f on all
rational arguments, and by continuity decide the values of f everywhere.
Fix [y so that every condition from any of these antichains has support
contained in fy. Fix a canonical term ¢y for f.

Let t4 be a term in the forcing language such that A is the set in M[G,,, ]
denoted by t4. Fix an initial condition pg which forces “t 4 is not o-finite for
Htf ”

We define a function f* : we — woy as follows. Let 8 € [Bp,w2). By
(Laver, 1976, Lemma 10), M[Gg] |= 2 = R;. Fix a term for a map ¢ in
M([G5] from wy onto (RV)MIE5]. Since P, has the wa-chain condition and
each condition has countable support, there is a *(8) € [f,w2) such that,
for each v < wq, there are two maximal antichains of conditions stronger
than po in P, all of whose elements have support contained in *(3) such
that each element ¢ of the first antichain decides whether () belongs to
A and each element r of the second antichain decides whether () codes
a countable collection of Hausdorff systems, all of which assign finite H7-
measure, and if r does force that () codes such a system then there is a
term ¢ for a real in M[3*(B)] such that r forces that ¢ is an element of A and
t is not covered by any of the Hausdorff systems coded by (). Antichains
of the second type exist by the initial assumption that A is forced to be
non-o-finite for H/ in M[G,,,].

Choose a € [y, w2) be of cofinality wy so that for all § € [5y, ), 8*(B)
is less than a. By Lemma 18, for every element of 2¢ n M[G,] belongs
to some M[Gg], where § < . Thus, for every element of 2 n M[G,],
the maximal antichains that decide whether that real is an element of A
belong to M[G,]. Since the forcing relation is definable in M. A n M[G,]
is definable in M[G,]. Further, for every countable collection of Hausdorff
systems in M[G,], all of which assign finite H/ measure, there is an element
of RN n M[G,] which is not covered by any of them. Hence, A n M[G,] is
not o-finite for HY in M[G,]. O



3.2 Exhibiting a o-finite challenge

By the above, we have reduced to the situation of forcing over a model
M = ZFC + CH using the partial order P,,, f and A are elements of M,
and M = “A is not o-finite for f.” Since R is a countable union of totally
bounded sets, there is a totally bounded set such that its intersection with A
is not o-finite for f. By replacing A with such an intersection, we may also
assume that A is totally bounded. We let b denote an integer such that A is
contained in the ball around the origin of radius b.

Next, since we are concerned only with the distinctions between null,
o-finite and non-o-finite, we may replace Hf with a more tractable net
measure using a restricted collection of basic open sets. Here, we follow
(Rogers, 1998, Theorem 49, page 102). For integers i1,...,i, and a posi-
tive integer r, let N, (i1,...,4,) be the set of points (z1,...,x,) such that
for all j between 1 and n, ij/2" < z; < (ij + 1)/2". Let N be the set of
such N, (iy,...,iy). Define the pre-measure 77 on N by 7(&) = 0 and
(N, (i1,. .. in) = f(x/n/2") = f(diameter(N, (i1, ... in)). Define H™' as
in Definition 1 using the family of basic sets N with the pre-measure 7.

Theorem 20 ((Rogers, 1998, Theorem 49, page 102)). Suppose that f is a
gauge function and n is a positive integer. For any set E < RV,

of(B) < H” (E) < 372"V (B).

Thus, A is o-finite for H7 if and only if it is o-finite for H ad

Convention 21. For the remainder of this section, we will identify HY with
H.

Remark 22. For any positive real numbers a; < ag, there are only finitely
many elements U of N such that |U| € [a1,a2] and U has nonempty inter-
section with the ball about the origin of radius b. Since A is taken to be a
subset of this ball, all other elements of A in this diameter-range have empty
intersection with A.

Definition 23. Suppose that f is a gauge function and G is an increas-
ing function from w to w. For r € w, let k(r) be the maximal k such
that 1/G(k) > +/n/2" if this number is defined and greater than 0 and
let k(r) equal 1 otherwise. Let g¢ ¢ be a gauge function such that for all r,

g(/n/r") = fF(n/r")/k(r).

In other words, for all elements U of N, g;q(|U]) is either equal to
f(JU]) or is equal to f(|U])/k, where k is the greatest integer such that
1/G(k) > |U].

10



3.3 Consistency

For the duration of this section, fix M to be a countable model of ZFC'+ CH.
We force over M with the partial order P,, as defined in M. Let G, be
generic over M for this partial order.

Theorem 24. If ZFC is consistent, then so is ZFC together with “For every
N, every A € RY and every gauge function f, if A is not o-finite for HY then
there is a gauge function g such that f < g and HI9(A) > 0. Consequently,
A does not have strong dimension f.

Proof. Suppose that f is a gauge function in M[Gy,], A is a subset of RY
in M[G,,], and M[G,,] = “A < RY is non-o-finite for H/.” By Lemma 19,
there is an a such that f and A n M[G,] are elements of M[G,] and such
that M[G4] = “A n M[G,] is non-o-finite for f.” By Theorem 14, M[G., |
is P,,,-generic over M[G,]. By replacing M with M[G,], we may assume
that both f and A = A n M[G,] belong to our ground model M and that
b is given so that A is contained in the ball about the origin of radius b.
We may also assume that the initial condition in P; is such that all of its
infinite paths are increasing functions from w to w. For g = gy (o) (as in
Definition 23), we show that M|G,,| = H9(A) > 0.

For the sake of a contradiction, suppose that O is a term, p € P, is
stronger than pg, and p |- “O is a Hausdorff system for H9-size 1 covering A.”
Let O; denote a term for the ith component of the term O. We many assume
that p forces that every element of every O; has nonempty intersection with
the ball about the origin of radius b. Note,

o [ O ls acover of 4; U'€ O implies U] <1/(i +1); and
p
Yeo, 9(IU]) < 1.

By the definition of g from f and G, for each k € w, p forces that the sum
of {f(|U]) : U € O; and diameter(U)e [1/G(k + 1),1/G(k))}, is less than or
equal to k.

We define a stronger condition ¢ such that p(0) =° ¢(0) and p > ¢q. We
also define a function C' which maps the elements of ¢(0) to finite subsets of
N so that the following conditions hold.

1. For each o € ¢(0), if o is contained or equal to the stem of ¢(0) or o is
an immediate extension of the stem of ¢(0) then C(o) = .

2. For every o #i* j € ¢(0), the elements of C(o i j) have diameters in
the interval [1/j,1/7).

11



3. For every n € w, there is a ¢ such that for all o € ¢(0), if o has length
n then > ec() f(|U]) is less than c.

4. For C*(G(0)) = e, C(G(0) In), ¢IF“C*(G(0)) is a cover of A.”

5. For every o € q(0) and for every U € N, either there are finitely many
i such that o i€ qg and U € C(o %) or there are finitely many i such
that o *i € ¢(0) and U ¢ C(o *1).

We construct ¢ by a fusion argument similar to the one that appears in
(Laver, 1976, Lemma 14). The elements of ¢(0) are simultaneously specified
by recursion on their length. The elements of the other coordinates are
specified by fusion according to the pattern of Lemma 16. Let pg = p1 = p
and let a be the length of p;(0){(0), the stem of the first coordinate of p;.
Define C(0) = & for all o € p1(0) such that the length of o is less than or
equal to a + 1.

We define po, p1,p2,... and Fy, Fy, Fs, ... so that Ujeij is equal to
Ujjew, support p; \ {0} and so that all the nodes in p;(0) of length less than
or equal a + j belong to p;;1(0). The F-sequence is defined by standard
bookkeeping, with the proviso that 0 € Fy. Let |F;| denote the cardinality of
F;.

Suppose that p; has been defined and that C' has been defined on all
nodes in p;(0) of length less than or equal to a + j. Consider, 7 in p;(0)
of length a + j + 1. Let p; ; be the extension of p; obtained by restricting
p;(0) to pj(0)-, the tree of elements of p;(0) which are compatible with 7,
and leaving the other coordinates of p; fixed. Let i = 7(a + 1), the number
that appears in 7 immediately after the stem of py(0). Let J be the finite
collection of subsets S of N such that, first, every U in S has nonempty
intersection with the ball about the origin of radius b, second, every U in S
has diameter in (1/7(a + j),1/7(a + j — 1)] and, third, >}, g f(|U]) is less
than or equal to a + j — 1. By the remarks above, p; » forces that the set of
elements of O; with diameter in (1/7(a+7),1/7(a+j—1)] is a set in J. By
Lemma 17, take let ™ and I™ be such that p; - 2%21 r7, I™ is a collection
of less than or equal to (j + 1 + |Fj11|)/Fi+1 many sets, such that 77 forces
that the set of elements of O; with diameter in (1/7(a + j),1/7(a + j — 1)]
belongs to I7. Define C(7) to be the union of I™. Note that >;;cc( f(IU])
is less than or equal to (j + 1 + |Fj1|)/F+1l(a + j — 1), which is a con-
stant that depends only on the length of 7. Let p;i1 be the disjunction of
{r7: 7ep;(0)and |7| =a+j+1}.

Define py, so that p,(0) = ﬂjeij(O) and po [[1,w2) is equal to the
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fusion of {p; [[1,ws : j < w}, which is forced to exist as a condition by p(0),
according to Lemma 16. By construction, clauses (1-4) are satisfied by po.

Finally, we extend ps, to ¢ to also satisfy clause (5) by thinning pe(0).
Define 7 € T' € p(0) by recursion on the length of 7. For step 0, ps(0)<0),
the stem of T, and all of its initial segments belong to T'. For the recursion
step, fix an enumeration Uy, Uy,... of A in ordertype w. Suppose that
7 €T at the end of step s and has maximal length among such. We decide
which immediate extensions of 7 will be in T" by an nested recursion. In this
recursion, we also define an auxiliary sequence of sets Xg, X1, . ...

For step 0 of the nested recursion, let ig be least such that 7 iy € py(0).
If the set of n > i such that 7*n € py(0) and Uy € C(7+n) is infinite, let X
be this set. Otherwise, let X be the set of n such that ig < n, 7%n € py(0)
and Uy ¢ C(1 = n). For the recursion step, suppose that iy < i3 < -+ < i;
and Xg > X; D --- D Xj are defined. Let ¢j41 be the least element of X;.
If the set of n > 4;41 such that n € X; and Uj;q € C(7 * j) is infinite, then
let X1 be this set. Otherwise, let X;,1 be the set of n € X; such that
n > 141 and Ujq ¢ C(7%n). Let ¢ be the condition for which ¢(0) = 7" and
qM1,w2) = po[1,w2). Since it extends py, ¢ satisfies clauses (1-4). By the
construction of 7', ¢ also satisfies clause (5). This completes the definition of
q and C, with the required properties.

For o € ¢(0), we define

C* (o) = _For all but finitely many ¢, if o % i € q(0) then
7= " then U € C(o * 1) :

For o € ¢(0) and x € M, say that o 2-covers x if C(o) U C* (o) covers {x}.

In preparation for the construction to follow, consider o € ¢(0) and n € w.
Define E(o,n) to be the set of z such that o does not 2-cover x and for all
i >n,if o %i € q(0) then o * i 2-covers . We now show that E(o,n) has
finite measure with respect to H/.

First, note that since E(o,n) excludes elements that are 2-covered by
o, E(o,n) has no element which is covered by C*(c). For ¢ > n such that
o 1€ q(0), let E;(o,n) be the set covered by C(o #i)\C*(c) |J CT (o *1).
E;(o,n) is the set of x such that x is 2-covered by o * i, when sets in C* (o)
are excluded, so E(o,n) € E;(o,n).

By application of property (3) of C, let ¢ be such that for all 7 € ¢(0)
such that the length of 7 is two more than the length of o

SN < 3o = 7 and U € Cm)) } <.
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The contribution to E;(o,n) from C(o *i)\C* (o) is covered by C(o *14) and
S0

2{f(|U|) UeC(o i)\C+(J)} <ec

The contribution to E;(c,n) from CT (o *1) is also bounded by ¢, since every
finite partial f-sum of diameters taken from C* (o *1) is contained in the f-
sum of diameters taken from some C'(o*i*j) and these f-sums are uniformly
bounded by ¢. Thus,

AT U e Ol +i\CF(o) |J CF(ow i)} <2

Next, note that for every U € N, there are only finitely many ¢ such that
U e C(o#i)\C" (o). This is because every U € N is either in finitely many
C(o 1) or in cofinitely many of them, and removing C* (o) excludes every U
which is in the cofinite case. Further, any element U of C* (o i) is an element
of C(o*i#7) for cofinitely in j many of the C'(o*i*j) such that oxixj € ¢(0).
In particular, any U in C* (o *i) has |U| < 1/i. Consequently, for every § > 0
there is an ¢ such that for all j > 4, if U € C(o*j)\C* (o) |J C*(0*j) then
d>|U|.

Thus, the collection

{C(U*i)\c+(a) U CHowi):i>nandoxie q(O)}

contains a Hausdorff system for H7-size 2¢ which covers E(o,n), and there-
fore E(o,n) has finite measure with respect to HY.

Let E be the union of the sets E(o,n), for ¢ in ¢(0) and n € w. E is an
element of M. In M, E is o-finite for H/.

We work in M. Since A is not o-finite for Hf, let a be an element of A
which is not in E. We build an extension T, of ¢(0) such that for all 7 € Ty,
a ¢ C(7). We begin by setting the stem of T}, to be ¢(0){0), the stem of ¢(0).
By definition of C| for all i with ¢(0)<0)*i € q(0), C(q(0){0)*14) = &, so the
set of z such that ¢(0){0) 2-covers z is empty. Now, assume that we have
reached step n of our recursion and no 7 in T, from an earlier step 2 covers
a. Since a is not an element of E, for every 7 of maximal length which was
added to T, there are infinitely many 4 such that 7 %4 is in ¢(0) and does
not 2-cover a. We conclude step n + 1 of the construction by adding each
such 7 * ¢ to T,. Finally, T, is the tree obtained in the limit. Let r be the
condition with r(0) = T}, and for 8 € [1,w2), 7(5) = q(B). Then, ¢ = r and r
forces that C(G(0)) is not a cover of A, which is a contradiction to property
(4) of C. O
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