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Abstract

Borel (1919) defined a subset A of R to have strong measure zero
if for every sequence of positive numbers pϵi : i P ωq there is an open
cover of A pUi : i P ωq such that for each i, the diameter of Ui is less
than ϵi. Besicovitch (1956) showed that A has strong measure zero if
and only if A has strong dimension zero, which means that for every
gauge function f , A is null for its associated measure Hf . We say that
A Ă RN has strong dimension f if and only if Hf pAq ą 0 and for
every gauge function g of higher order HgpAq “ 0. Here, g has higher
order than f when limtÑ0` gptq{fptq “ 0. Borel conjectured that a set
of strong measure zero must be countable. This conjecture naturally
extends to the assertion that a set has strong dimension f if and only if
it is σ-finite for Hf . Sierpiński (1928) used the continuum hypothesis
to give a counterexample to Borel’s conjecture and Besicovitch (1963)
did the same for its generalization. Laver (1976) showed that Borel’s
conjecture is relatively consistent with consistent with ZFC, the con-
ventional axioms of set theory including the axiom of choice. We show
that its generalization to strong dimension is also relatively consistent
with ZFC.

∗The author is grateful for conversations with several colleagues on the topics of this
paper: Márton Elekes, Johanna Franklin, Leo Harrington, Denis Hirschfeldt, Jack Lutz,
Patrick Lutz, Andrew Marks, Joseph Miller, Jan Reimann, Daniel Turetsky, and W. Hugh
Woodin. The author is also grateful for the support of the American Institute of Mathe-
matics during the workshop “Effective Methods in Measure and Dimension.”
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1 Introduction

1.1 Hausdorff and Gauge Dimension

We work in RN , for some N ě 1, in which a basic open set U is a ball of
positive diameter. We use |U | to denote the diameter of U .

Definition 1 (see Falconer (2003); Rogers (1998)). 1. A gauge function
is a continuous increasing function f : R` Ñ R` such that limdÑ0` fpdq “ 0.

2. For a set A Ď RN and a real number δ ą 0, a δ-cover of A is a countable
set of basic open sets tUi : i P ωu such that for all i, Ui has diameter
less than δ and such that A Ď

Ť

i Ui.

3. Let A be a set and f a gauge function.

(a) For δ ą 0, Hf
δ “ inf

!

ř

fp|Ui|q : tUiu is a δ-cover of A.
)

(b) Hf pAq “ limδÑ0` Hf
δ pAq.

i. If fpdq “ ds, then Hf is the usual s-dimensional Hausdorff
measure.

ii. Linear measure refers to Hf when f is the identity function.

Notice, we could use covers consisting of closed balls of positive diameter
and achieve the same values for Hf

δ and Hf . We use the term Hausdorff
system to refer to a collection of sets of basic open sets tOi : i P ωu such that
for each i, if U P Oi then |U | ă 1{pi ` 1q. In addition, tOi : i P ωu covers a
set A when for all i, A Ď

Ť

Oi.

Definition 2. A set A is σ-finite for Hf if and only if there is a countable
collection tAi : i P ωu such that A “

Ť

tAiu and for each i P ω, Hf pAiq ă 8.

Definition 3. Suppose that g and f are gauge functions. Write f ă g to
indicate that limdÑ0` gpdq{fpdq is equal to 0. In this case, say that g has
higher order than f .

Definition 4. Suppose that tOi : i P ωu is a family of subsets of N . We say
that tOi : i P ωu is a Hausdorff system for Hf -size k whenever tOi : i P ωu
is a Hausdorff system and for all i,

ř

UPOi
fp|U |q ă k.

Remark 5. If f ă g and A is σ-finite for Hf then HgpAq “ 0. Remark 5
is a consequence of the following observation: If tOi : i P ωu is a Hausdorff
system for Hf -size k, then for all ϵ ą 0 there is an n such that tOi : i ą nu
is a Hausdorff system for Hg-size ϵ.
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Definition 6. 1. For A Ď RN and f a gauge function, A has strong
dimension f if and only if the following conditions hold.

(a) For all gauge functions h, if h ă f then HhpAq “ 8. In this case,
A is not σ-finite for all such Hh.

(b) For all gauge functions g, if f ă g then HgpAq “ 0.

2. A has strong dimension zero when for all gauge functions g, HgpAq “ 0.

There are three fundamental sizes of a set A with respect to a gauge
function f : Hf pAq “ 0, Hf pAq ą 0 and A is σ-finite for Hf , or A is not
σ-finite for Hf . We study the prospects for A to have strong dimension f
for each of these cases.

Case 1: Hf pAq “ 0. This case was settled by Besicovitch.

Theorem 7 (Besicovitch (1956)). If f is a gauge function, A Ď RN and
Hf pAq “ 0 then there is a gauge function h such that h ă f and HhpAq “ 0.

Consequently, if Hf pAq “ 0, then A does not have strong dimension f .

Case 2: Hf pAq ą 0 and A is σ-finite for Hf . This case is settled by
Remark 5: If f is a gauge function, A Ď RN , Hf pAq ą 0 and A is σ-finite
for Hf then A has strong dimension f .

Case 3: A is not σ-finite for Hg. Meta-mathematical considerations
appear in the final case.

Besicovitch settled the matter for analytic sets:

Theorem 8 (Besicovitch (1956), Theorem 7). Suppose that A is an analytic
set, f is a gauge function, and A is not σ-finite for Hf . Then there is a
gauge function g such that f ă g and A is not σ-finite for HgpAq.

Besicovitch also showed that the restriction to analytic sets A in Theo-
rem 8 cannot be unconditionally removed.

Theorem 9 (Besicovitch (1963)). Assume the Continuum Hypothesis (CH ).∗

Then, there is a set A Ă R2 such that A is not σ-finite for linear measure
and A has strong linear dimension.

∗Besicovitch (1963) does not explicitly reference the CH , but uses an uncountable set
concentrated on the rationals, the existence of which is a consequence of the CH .
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In Theorem 24 of Section 3, we show that it is relatively consistent with
ZFC, the conventional axioms of set theory including the axiom of choice,
that for all gauge functions f and all sets A, if A is not σ-finite for Hf then
A does not have strong dimension f . Consequently, ZFC does not settle
the question of whether there are a gauge function f and a set A such that
A is non-σ-finite for Hf and of strong dimension f .

1.2 Besicovitch’s Example and Sets of Strong Measure Zero

Definition 10 (Borel (1919)). A set A Ď R has strong measure zero if and
only if for every sequence pϵi : i P ωq of positive real numbers, there exists
a sequence of intervals pIi : i P ωq such that, first, for each i, the length of Ii
is less than or equal to ϵi and, second, A Ď

Ť

tIi : i P ωu.

Besicovitch noted that the sets of strong measure zero have a distin-
guished place in the context of gauge dimension.

Theorem 11 (Besicovitch (1956)). For any set A Ă R, A has strong measure
zero if and only if A has strong dimension zero, that is for every gauge
function f , Hf pAq “ 0.

Further, strong measure zero sets are implicit in Besicovitch’s Theorem 9,
which we make explicit in the following.

Theorem 12 (in the style of Besicovitch (1963)). If there is an uncountable
set of strong measure zero, then there is a set A Ă R2 such that A is not
σ-finite for linear measure and A has strong linear dimension.

Proof. Suppose that A0 Ă R has strong measure zero. Let A be the set of
px, yq such that y P A0 and x P r0, 1s. Since A is an uncountable disjoint
union of sets of positive linear measure, the horizontal line segments associ-
ated with the elements of A0, A not σ-finite for linear measure (see Rogers,
1998, page 123, Theorem 58).

Next, let g be a super-linear gauge function, that is limdÑ0 gpdq{d “ 0,
and let δ be greater than 0. Since we may use covers by closed sets to
calculate gauge measures and a closed square with sides of length ℓ can be
circumscribed by a closed circle of radius ℓ

?
2, it is enough to show that

A can be covered by a collection of closed squares with side lengths ℓi and
hence diameter lengths ℓi

?
2 so that

ř

iPω gpℓi
?
2q ă δ.

Let pni : i P ωq be a sequence of positive integers such that for each i,
gp
?
2{niq ă pδ{2

i`1q{ni. Let pIi : i P ωq be sequence of intervals such that
A0 Ď

Ť

tIi : i P ωu and for all i, |Ii| “ 1{ni. Let ci be the center of Ii and
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let tBi,j : 1 ď j ď niu be the pairwise adjacent closed squares with sides of
length 1{ni, sides parallel to the axes and centers on the line y “ ci so that
Ť

1ďjďni
Bi,j covers all of the horizon line segments in A with y-components

covered by Ii. Then, tBi,j : i P ω and 1 ď j ď niu covers A. Further,
ÿ

iPω,1ďjďni

gp|Bi,j |q ď
ÿ

iPω

gp
?
2{niqni ď

ÿ

iPω

pδ{ni2
i`1qni “ δ,

as required.

Erdős, Kunen, and Mauldin (1981) showed that in Gödel’s universe of
constructible sets there is a co-analytic set that has strong measure zero.
It follows that if every set is constructible then there is a co-analytic set A
which is not σ-finite for linear measure and has strong dimension linear.

1.3 The Borel Conjecture

Borel (1919) conjectured that all strong measure zero sets are countable,
which if true would void the construction in the proof of Theorem 12. This
conjecture naturally extends to the assertion that a set has strong dimension
f if and only if it is σ-finite for Hf . By Theorem 12, this assertion for strong
dimension implies Borel’s conjecture so it is indeed an extension.

Sierpiński (1928) used the CH to construct an uncountable set of strong
measure zero, hence a counter example to Borel’s conjecture. Again by
Theorem 12, if the CH holds, then there is a set A Ă R2 such that A is
not σ-finite for linear measure and A has strong linear dimension, which is
Theorem 9.

Laver (1976) established the relative consistency of Borel’s conjecture:

Theorem 13 (Laver (1976)). If ZFC is consistent, then so is ZFC together
with Borel’s conjecture.

Since a counter example to the Borel Conjecture yields a set of strong
linear dimension which is not σ-finite for linear measure, Laver’s model is
the natural context in which to analyze the case of strong dimension f for a
set which is not σ-finite for a gauge measure Hf .

2 Laver’s Model

In this section and the next one, we conform to the notation of Laver (1976)
to the extent that it is possible. Similarly, our summary closely follows the
original development.
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2.1 Laver Forcing

We summarize the properties of Laver forcing. Most importantly, we review
how Laver forcing admits fusion arguments. We do make one systematic
change in notation: for forcing conditions p and q, p ě q indicates that q is
a stronger condition than p.

We let M denote a countable transitive model of ZFC`CH. CH is not
necessary for the basic definitions and properties, but it will be essential for
our application. We view the following as taking place in M.

The Laver partial ordering J consists of a collection of subtrees T of
ωăω for which there is a member T x0y of T, the stem of T, such that every
element of T is compatible with T x0y and for all σ P T, if σ is equal to
T x0y or extends T x0y then there are infinitely many i such that σ ˚ i, the
extension of σ obtained by appending i, belongs to T . When T P J and
T x0y Ď σ P T , Tσ is the subtree of T consisting of those sequences in T
which are compatible with σ. Note that σ is the stem of Tσ. For T1 and T2 in
J , T1 ě T2 when T2 Ď T1. In this case, say that T2 is stronger than T1. We
will identify a J -generic filter with the unique element G P ωω which is an
infinite path through all of the trees in that filter. We refer to G as a Laver
generic real.

We fix an enumeration of ωăω, σ1, σ2, . . . so that, first, if σi Ĺ σj then
i ă j and, second, if n ă m, σi “ σ ˚ n and σj “ σ ˚m then i ă j. For any
T P J , this provides an enumeration of tσ : σ P T and T x0y Ď σu under the
natural isomorphism between this set and ωăω. The strings tT x0y, . . . , T xnyu
determine a maximal antichain tTi : i ď nu below T by letting Ti be the
union of all of the Tσ’s such that σ is an immediate successor of T xiy in T
and σ is not T xjy for any j less than or equal to n. For S and T in J ,
S ěn T means that S ě T and, for all i less than or equal to n, Sxiy “ T xiy.

Pα is the α-length iteration of forcing with J using countable support,
defined along with its order ěα, greatest element oα and forcing relation ,α.
by induction on α:

1. P1 is the set of all functions from 1 “ t0u into J ordered by p ě1 q if
and only if pp0q ě qp0q in J .

2.

Pα`1 “

#

p :
dom p “ α` 1, pæα P Pα, and
ppαq is a canonical term for a member of J in MrGαs

+

.

For p and q in Pα`1, p ěα`1 q if and only if pæα ěα qæα and
qæα,α ppαq ě qpαq.
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3. When α is a limit ordinal, Pα is the set of all p with domain α such
that, first, if 1 ď β ă α, then pæβ P Pβ and, second, for all but
countably many β with 1 ď β ă α, ,β ppβq “ 0. Here, we use 0 to
denote the greatest element of J , namely ωăω.

When 1 ď α ă β ď ω2, Pαβ is the set of functions f with domain rα, βq
such that oα Y f is an element of Pβ . For p in Pα or in Pαβ , the support of
p is the set of γ in the domain of p such that .γ ppγq “ 0. Gα refers to a
set which is generic over the understood model M for the forcing Pα. Pα is
naturally embedded in Pβ, and we can write Gα “ tpæα : p P Gβu. Similarly,
MrGβs “MrGαsrG

αβs, with Gαβ generic over MrGαs for Pαβ.

Theorem 14 (Laver (1976)). Let M be a countable model of ZFC ` CH
and Gω2 be Pω2-generic over M.

1. Pω2 has the ω2-chain condition.

2. For all α ď ω2, all cardinals in M are preserved in MrGαs.

3. For all α ă ω2, MrGω2s “ MrGαsrG
˚
ω2
s, where G˚

ω2
is pPω2q

MrGαs-
generic over MrGαs. Here, pPω2q

MrGαs is Pω2 as defined in MrGαs.

Going forward, we will omit the subscripts when the forcing partial order
is clear from context.

2.2 Fusion Sequences

Suppose that 1 ď α ď ω2, F is a finite subset of α and n ă ω. For p and q
in Pα, p ěn

F q if and only if p ě q and for all β P F, qæβ,ppβq ěn qpβq.

Remark 15. Consider p, n and F as above. Just as the strings T x0y, . . . , T xny
determine a finite maximal antichain below T in the partial order for adding
a single Laver real, n and F determine a finite maximal antichain below p
in Pα, all the elements of which have the same support as p.

Lemma 16 provides the infrastructure for fusion arguments.

Lemma 16 (Laver (1976)). Suppose that 1 ď α ď ω2, pn, n P ω, are
members of Pα and Fn, n P ω, is an increasing chain of finite sets such that
Ť

nPω Fn is equal to the union of the supports of the pn, and for each n P ω,
pn ě

n
Fn

pn`1. Then there is a pω P Pα such that for all n P ω, pn ěn
Fn

pω.
Further, pω has support the union of the supports of the pn’s and is unique
up to forced equivalence in Pα.
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Lemma 17 provides the means to decide formulas by thinning trees rather
than extending their stems.

Lemma 17 (Laver (1976)). Suppose that 1 ď α ď ω2, p is a condition in
Pα, F “ tα1 ă ¨ ¨ ¨ ă αiu is a finite subset of α, and n P ω.

1. For φ a sentence in the forcing language, there is a q such that p ě0
F q

such that q decides φ, that is either q,αφ or q,α␣φ.

2. If k ă ω and p,__jăk φj , then there is an I Ď t0, . . . , ku such that I
has cardinality less than or equal to pn` iqi and there is a q such that
p ěn

F q such that q,__jPI φj .

3 Strong Dimension in Laver’s Model

3.1 Reflecting Non-σ-finiteness

Lemma 18. Suppose that 1 ď α ď ω2 and α has cofinality ω1 in M.
For every p P Pα, every finite F contained in α and every term t such
that p,α t P 2ω, there are q in Pα with p ě0

F q and β ă α such that
q,α t PMrGβs.

Proof. Let α, p and t be fixed as above. We proceed to find q by application of
Lemma 16 in a fusion argument. We define a sequence p “ p0 ě

0
F0
p1 ě

1
F1
p2 . . .

with associated finite sets F “ F0 Ď F1 Ď . . . .We arrange by standard book-
keeping, which we leave unspecified here, that

Ť

tFn : n P ωu is equal to the
union of the supports of the pn’s. We determine pn`1 from pn as follows. Let
tpn,i : i ă knu be the finite maximal antichain below pn determined by pn, n
and Fn as in Remark 15, where kn is the size of this antichain. By Lemma 17,
for each i ă kn, let qn,i be a condition in Pα such that pn,i ě0

Fn
qn,i and qn,i

decides the value of t at argument n. Let pn`1 be the condition obtained by
taking the disjunction of the qn,i’s. Then, pn ěn

Fn
pn`1 and for each n, the

value of t at n is determined by the values of Gα on the ordinals in Fn. By
Lemma 17, take pω to be the fusion of the pn’s. Thus, pω forces that the
element of 2ω denoted by t in MrGαs is an element of MrGβ`1s, where β is
the supremum of the support of of pω. Since pω has countable support and
α has uncountable cofinality, β ă α, as required.

By Lemma 18, if α has cofinality ω1, x P 2ω and x P MrGαs, where
Gα is Pα-generic over M, then there is a β ă α such that x P MrGβs.
This observation applies not only to elements of 2ω but also to elements of
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RN , Hausdorff systems and every other type of set that is determined by a
conjunction of countably many Boolean properties.

Lemma 19. Suppose that MrGω2s |ù “A Ď RN is non-σ-finite for f.” There
is an α ă ω2 such that A XMrGαs is an element of MrGαs and such that
MrGαs |ù “AXMrGαs is non-σ-finite for f.”

Proof. Since Pω2 has the ω2-chain condition, there is a β0 ă ω2 and a count-
able collection of maximal antichains which decide the values of f on all
rational arguments, and by continuity decide the values of f everywhere.
Fix β0 so that every condition from any of these antichains has support
contained in β0. Fix a canonical term tf for f.

Let tA be a term in the forcing language such that A is the set in MrGω2s

denoted by tA. Fix an initial condition p0 which forces “tA is not σ-finite for
Htf .”

We define a function β˚ : ω2 Ñ ω2 as follows. Let β P rβ0, ω2q. By
(Laver, 1976, Lemma 10), MrGβs |ù 2ω “ ℵ1. Fix a term for a map ψ in
MrGβs from ω1 onto pRN qMrGβs. Since Pω2 has the ω2-chain condition and
each condition has countable support, there is a β˚pβq P rβ, ω2q such that,
for each γ ă ω1, there are two maximal antichains of conditions stronger
than p0 in Pω2 all of whose elements have support contained in β˚pβq such
that each element q of the first antichain decides whether ψpγq belongs to
A and each element r of the second antichain decides whether ψpγq codes
a countable collection of Hausdorff systems, all of which assign finite Hf -
measure, and if r does force that ψpγq codes such a system then there is a
term t for a real in Mrβ˚pβqs such that r forces that t is an element of A and
t is not covered by any of the Hausdorff systems coded by ψpγq. Antichains
of the second type exist by the initial assumption that A is forced to be
non-σ-finite for Hf in MrGω2s.

Choose α P rβ0, ω2q be of cofinality ω1 so that for all β P rβ0, αq, β˚pβq
is less than α. By Lemma 18, for every element of 2ω XMrGαs belongs
to some MrGβs, where β ă α. Thus, for every element of 2ω XMrGαs,
the maximal antichains that decide whether that real is an element of A
belong to MrGαs. Since the forcing relation is definable in M. AXMrGαs

is definable in M rGαs. Further, for every countable collection of Hausdorff
systems in MrGαs, all of which assign finite Hf measure, there is an element
of RN XMrGαs which is not covered by any of them. Hence, AXMrGαs is
not σ-finite for Hf in MrGαs.
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3.2 Exhibiting a σ-finite challenge

By the above, we have reduced to the situation of forcing over a model
M |ù ZFC ` CH using the partial order Pω2 , f and A are elements of M,
and M |ù “A is not σ-finite for f.” Since RN is a countable union of totally
bounded sets, there is a totally bounded set such that its intersection with A
is not σ-finite for f. By replacing A with such an intersection, we may also
assume that A is totally bounded. We let b denote an integer such that A is
contained in the ball around the origin of radius b.

Next, since we are concerned only with the distinctions between null,
σ-finite and non-σ-finite, we may replace Hf with a more tractable net
measure using a restricted collection of basic open sets. Here, we follow
(Rogers, 1998, Theorem 49, page 102). For integers i1, . . . , in and a posi-
tive integer r, let Nrpi1, . . . , inq be the set of points px1, . . . , xnq such that
for all j between 1 and n, ij{2r ď xj ď pij ` 1q{2r. Let N be the set of
such Nrpi1, . . . , inq. Define the pre-measure τ f on N by τpHq “ 0 and
τ f pNrpi1, . . . , inq “ fp

?
n{2rq “ fpdiameterpNrpi1, . . . , inqq. Define Hτf as

in Definition 1 using the family of basic sets N with the pre-measure τ f .

Theorem 20 ((Rogers, 1998, Theorem 49, page 102)). Suppose that f is a
gauge function and n is a positive integer. For any set E Ď RN ,

Hf pEq ď Hτf pEq ď 3n2npn`1qHf pEq.

Thus, A is σ-finite for Hf if and only if it is σ-finite for Hτf .
Convention 21. For the remainder of this section, we will identify Hf with
Hτf .
Remark 22. For any positive real numbers a1 ă a2, there are only finitely
many elements U of N such that |U | P ra1, a2s and U has nonempty inter-
section with the ball about the origin of radius b. Since A is taken to be a
subset of this ball, all other elements of N in this diameter-range have empty
intersection with A.

Definition 23. Suppose that f is a gauge function and G is an increas-
ing function from ω to ω. For r P ω, let kprq be the maximal k such
that 1{Gpkq ą

?
n{2r if this number is defined and greater than 0 and

let kprq equal 1 otherwise. Let gf,G be a gauge function such that for all r,
gp
?
n{rrq “ fp

?
n{rrq{kprq.

In other words, for all elements U of N , gf,Gp|U |q is either equal to
fp|U |q or is equal to fp|U |q{k, where k is the greatest integer such that
1{Gpkq ą |U |.

10



3.3 Consistency

For the duration of this section, fix M to be a countable model of ZFC`CH .
We force over M with the partial order Pω2 as defined in M. Let Gω2 be
generic over M for this partial order.

Theorem 24. If ZFC is consistent, then so is ZFC together with “For every
N, every A Ď RN and every gauge function f , if A is not σ-finite for Hf then
there is a gauge function g such that f ă g and HgpAq ą 0. Consequently,
A does not have strong dimension f .

Proof. Suppose that f is a gauge function in MrGω2s, A is a subset of RN

in M rGω2s, and MrGω2s |ù “A Ď RN is non-σ-finite for Hf .” By Lemma 19,
there is an α such that f and AXMrGαs are elements of MrGαs and such
that MrGαs |ù “AXMrGαs is non-σ-finite for f.” By Theorem 14, MrGω2s

is Pω2-generic over MrGαs. By replacing M with MrGαs, we may assume
that both f and A “ AXMrGαs belong to our ground model M and that
b is given so that A is contained in the ball about the origin of radius b.
We may also assume that the initial condition in P1 is such that all of its
infinite paths are increasing functions from ω to ω. For g “ gf,Gp0q (as in
Definition 23), we show that MrGω2s |ù HgpAq ą 0.

For the sake of a contradiction, suppose that O is a term, p P Pω2 is
stronger than p0, and p, “O is a Hausdorff system for Hg-size 1 covering A.”
Let Oi denote a term for the ith component of the term O. We many assume
that p forces that every element of every Oi has nonempty intersection with
the ball about the origin of radius b. Note,

p,

˜

Oi is a cover of A; U P Oi implies |U | ă 1{pi` 1q; and
ř

UPOi
gp|U |q ď 1.

¸

By the definition of g from f and G, for each k P ω, p forces that the sum
of tfp|U |q : U P Oi and diameter(U)P r1{Gpk ` 1q, 1{Gpkqqu, is less than or
equal to k.

We define a stronger condition q such that pp0q ě0 qp0q and p ě q. We
also define a function C which maps the elements of qp0q to finite subsets of
N so that the following conditions hold.

1. For each σ P qp0q, if σ is contained or equal to the stem of qp0q or σ is
an immediate extension of the stem of qp0q then Cpσq “ H.

2. For every σ ˚ i ˚ j P qp0q, the elements of Cpσ ˚ i ˚ jq have diameters in
the interval r1{j, 1{iq.
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3. For every n P ω, there is a c such that for all σ P qp0q, if σ has length
n then

ř

UPCpσq fp|U |q is less than c.

4. For C8pGp0qq “
Ť

nPω CpGp0qænq, q,“C8pGp0qq is a cover of A.”

5. For every σ P qp0q and for every U P N , either there are finitely many
i such that σ ˚ i P q and U P Cpσ ˚ iq or there are finitely many i such
that σ ˚ i P qp0q and U R Cpσ ˚ iq.

We construct q by a fusion argument similar to the one that appears in
(Laver, 1976, Lemma 14). The elements of qp0q are simultaneously specified
by recursion on their length. The elements of the other coordinates are
specified by fusion according to the pattern of Lemma 16. Let p0 “ p1 “ p
and let a be the length of p1p0qx0y, the stem of the first coordinate of p1.
Define Cpσq “ H for all σ P p1p0q such that the length of σ is less than or
equal to a` 1.

We define p0, p1, p2, . . . and F0, F1, F2, . . . so that
Ť

jPω Fj is equal to
Ť

jPω support pj z t0u and so that all the nodes in pjp0q of length less than
or equal a ` j belong to pj`1p0q. The F -sequence is defined by standard
bookkeeping, with the proviso that 0 P F0. Let |Fi| denote the cardinality of
Fi.

Suppose that pj has been defined and that C has been defined on all
nodes in pjp0q of length less than or equal to a ` j. Consider, τ in pjp0q
of length a ` j ` 1. Let pj,τ be the extension of pj obtained by restricting
pjp0q to pjp0qτ , the tree of elements of pjp0q which are compatible with τ,
and leaving the other coordinates of pj fixed. Let i “ τpa` 1q, the number
that appears in τ immediately after the stem of p0p0q. Let J be the finite
collection of subsets S of N such that, first, every U in S has nonempty
intersection with the ball about the origin of radius b, second, every U in S
has diameter in p1{τpa ` jq, 1{τpa ` j ´ 1qs and, third,

ř

UPS fp|U |q is less
than or equal to a` j ´ 1. By the remarks above, pj,τ forces that the set of
elements of Oi with diameter in p1{τpa` jq, 1{τpa` j´ 1qs is a set in J . By
Lemma 17, take let rτ and Iτ be such that pj,τ ě

j`1
Fj`1

rτ , Iτ is a collection
of less than or equal to pj ` 1` |Fj`1|q

|Fj`1| many sets, such that rτ forces
that the set of elements of Oi with diameter in p1{τpa ` jq, 1{τpa ` j ´ 1qs
belongs to Iτ . Define Cpτq to be the union of Iτ . Note that

ř

UPCpτq fp|U |q

is less than or equal to pj ` 1 ` |Fj`1|q
|Fj`1|pa ` j ´ 1q, which is a con-

stant that depends only on the length of τ . Let pj`1 be the disjunction of
trτ : τ P pjp0q and |τ | “ a` j ` 1u.

Define p8 so that p8p0q “
Ş

jPω pjp0q and p8ær1, ω2q is equal to the
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fusion of tpjær1, ω2 : j ă ωu, which is forced to exist as a condition by p8p0q,
according to Lemma 16. By construction, clauses (1-4) are satisfied by p8.

Finally, we extend p8 to q to also satisfy clause (5) by thinning p8p0q.
Define τ P T Ď p8p0q by recursion on the length of τ . For step 0, p8p0qx0y,
the stem of T, and all of its initial segments belong to T . For the recursion
step, fix an enumeration U0, U1, . . . of N in ordertype ω. Suppose that
τ P T at the end of step s and has maximal length among such. We decide
which immediate extensions of τ will be in T by an nested recursion. In this
recursion, we also define an auxiliary sequence of sets X0, X1, . . . .

For step 0 of the nested recursion, let i0 be least such that τ ˚ i0 P p8p0q.
If the set of n ą i0 such that τ ˚n P p8p0q and U0 P Cpτ ˚nq is infinite, let X0

be this set. Otherwise, let X0 be the set of n such that i0 ă n, τ ˚n P p8p0q
and U0 R Cpτ ˚ nq. For the recursion step, suppose that i0 ă i1 ă ¨ ¨ ¨ ă ij
and X0 Ą X1 Ą ¨ ¨ ¨ Ą Xj are defined. Let ij`1 be the least element of Xj .
If the set of n ą ij`1 such that n P Xj and Uj`1 P Cpτ ˚ jq is infinite, then
let Xj`1 be this set. Otherwise, let Xj`1 be the set of n P Xj such that
n ą ij`1 and Uj`1 R Cpτ ˚nq. Let q be the condition for which qp0q “ T and
qær1, ω2q “ p8ær1, ω2q. Since it extends p8, q satisfies clauses (1-4). By the
construction of T, q also satisfies clause (5). This completes the definition of
q and C, with the required properties.

For σ P qp0q, we define

C`pσq “

#

U :
For all but finitely many i, if σ ˚ i P qp0q then
then U P Cpσ ˚ iq

+

.

For σ P qp0q and x PM, say that σ 2-covers x if Cpσq Y C`pσq covers txu.
In preparation for the construction to follow, consider σ P qp0q and n P ω.

Define Epσ, nq to be the set of x such that σ does not 2-cover x and for all
i ą n, if σ ˚ i P qp0q then σ ˚ i 2-covers x. We now show that Epσ, nq has
finite measure with respect to Hf .

First, note that since Epσ, nq excludes elements that are 2-covered by
σ, Epσ, nq has no element which is covered by C`pσq. For i ą n such that
σ ˚ i P qp0q, let Eipσ, nq be the set covered by Cpσ ˚ iqzC`pσq

Ť

C`pσ ˚ iq.
Eipσ, nq is the set of x such that x is 2-covered by σ ˚ i, when sets in C`pσq
are excluded, so Epσ, nq Ď Eipσ, nq.

By application of property (3) of C, let c be such that for all τ P qp0q
such that the length of τ is two more than the length of σ

ÿ

!

fp|U |q : Dτ0pτ0 Ď τ and U P Cpτ0qq
)

ď c.
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The contribution to Eipσ, nq from Cpσ ˚ iqzC`pσq is covered by Cpσ ˚ iq and
so

ÿ

!

fp|U |q : U P Cpσ ˚ iqzC`pσq
)

ď c.

The contribution to Eipσ, nq from C`pσ ˚ iq is also bounded by c, since every
finite partial f -sum of diameters taken from C`pσ ˚ iq is contained in the f -
sum of diameters taken from some Cpσ˚i˚jq and these f -sums are uniformly
bounded by c. Thus,

ÿ

!

f |U | : U P Cpσ ˚ iqzC`pσq
ď

C`pσ ˚ iq
)

ă 2c

Next, note that for every U P N , there are only finitely many i such that
U P Cpσ ˚ iqzC`pσq. This is because every U P N is either in finitely many
Cpσ˚iq or in cofinitely many of them, and removing C`pσq excludes every U
which is in the cofinite case. Further, any element U of C`pσ˚iq is an element
of Cpσ˚i˚jq for cofinitely in j many of the Cpσ˚i˚jq such that σ˚i˚j P qp0q.
In particular, any U in C`pσ˚iq has |U | ă 1{i. Consequently, for every δ ą 0
there is an i such that for all j ą i, if U P Cpσ ˚ jqzC`pσq

Ť

C`pσ ˚ jq then
δ ą |U |.

Thus, the collection
!

Cpσ ˚ iqzC`pσq Y C`pσ ˚ iq : i ą n and σ ˚ i P qp0q
)

contains a Hausdorff system for Hf -size 2c which covers Epσ, nq, and there-
fore Epσ, nq has finite measure with respect to Hf .

Let E be the union of the sets Epσ, nq, for σ in qp0q and n P ω. E is an
element of M. In M, E is σ-finite for Hf .

We work in M. Since A is not σ-finite for Hf , let a be an element of A
which is not in E. We build an extension Ta of qp0q such that for all τ P Ta,
a R Cpτq. We begin by setting the stem of Ta to be qp0qx0y, the stem of qp0q.
By definition of C, for all i with qp0qx0y ˚ i P qp0q, Cpqp0qx0y ˚ iq “ H, so the
set of x such that qp0qx0y 2-covers x is empty. Now, assume that we have
reached step n of our recursion and no τ in Ta from an earlier step 2 covers
a. Since a is not an element of E, for every τ of maximal length which was
added to Ta there are infinitely many i such that τ ˚ i is in qp0q and does
not 2-cover a. We conclude step n ` 1 of the construction by adding each
such τ ˚ i to Ta. Finally, Ta is the tree obtained in the limit. Let r be the
condition with rp0q “ Ta and for β P r1, ω2q, rpβq “ qpβq. Then, q ě r and r
forces that CpGp0qq is not a cover of A, which is a contradiction to property
(4) of C.
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