Pierre Germain (NYU)

The APDE seminar on Monday, 2/14, will be given by Pierre Germain (NYU) both in-person (891 Evans) and online via Zoom from 4:10pm to 5:00pm PST. To participate, email Sung-Jin Oh (sjoh@math.berkeley.edu).

Title: Boundedness of spectral projectors on Riemannian manifolds

Abstract: Given the Laplace(-Beltrami) operator on a Riemannian manifold, consider the spectral projector on (generalized) eigenfunctions whose eigenvalue lies in an interval of size $\delta$ around a central value $L$. We ask the question of optimal $L^2$ to $L^p$ bounds for this operator. Some cases are classical: for the Euclidean space, this is equivalent to the Stein-Tomas theorem; and for general manifolds, bounds due to Sogge are optimal for $\delta > 1$. The case $\delta < 1$ is particularly interesting since it is connected with the global geometry of the manifold. I will present new results for the hyperbolic space (joint with Tristan Leger), and the Euclidean torus (joint with Simon Myerson).