Monthly Archives: December 2018

Benjamin Harrop-Griffiths (UCLA)

The next APDE seminar will be given on Monday, 12/11 by Benjamin Harrop-Griffiths in Evans 740 from 4:10 to 5pm.

Title: Vortex filament solutions of the Navier-Stokes equations
Abstract: From Helmholtz to vaping hipsters, the dynamics of vortex filaments, i.e. fluids with vorticity concentrated along a smooth curve, has been a topic of significant interest in fluid dynamics. The global well-posedness of vortex filaments with small circulation follows from the theory of mild solutions of the 3d Navier-Stokes equations at critical regularity. However, for filaments with large circulation these results no longer apply. In this talk we discuss a proof of well-posedness (in a suitable sense) for vortex filaments of arbitrary circulation. Besides their physical interest, these results are the first to give well-posedness in a neighborhood of large self-similar solutions of the 3d Navier-Stokes without additional symmetry assumptions. This is joint work with Jacob Bedrossian and Pierre Germain.

Suncica Canic (Berkeley)

The next APDE seminar will be given by Suncica Canic in Evans 740 from 4:10 to 5pm.

Title: A mathematical framework for proving existence of weak solutions to a class of nonlinear parabolic-hyperbolic moving boundary problems

Abstract: The focus of this talk will be on nonlinear moving-boundary problems involving incompressible, viscous fluids and elastic structures. The fluid and structure are coupled via two sets of coupling conditions, which are imposed on a deformed fluid-structure interface. The main difficulty in studying this class of problems stems from the strong geometric nonlinearity due to the nonlinear fluid-structure coupling. We have recently developed a robust framework for proving existence of weak solutions to this class of problems, allowing the treatment of various structures (Koiter shell, multi-layered composite structures, mesh-supported structures), and various coupling conditions (no-slip and Navier slip). The existence proofs are constructive: they are based on Rothe’s method (semi- discretization in time), and on our generalization of the Lions-Aubin-Simon’s compactness lemma to moving boundary problems. Applications of this strategy to the simulations of real-life problems will be shown. A new problem involving a design of bioartificial pancreas (together with Dr. Roy of UCSD Bioengineering) will be discussed.