Laura Cladek (UCLA)

The Analysis and PDE seminar will take place Monday Sept 10 in 740 Evans from 4-5pm.

Title: Quantitative additive energy estimates for regular sets and connections to discretized sum-product theorems

Abstract: We prove new quantitative additive energy estimates for a large class of porous measures which include, for example, all Hausdorff measures of Ahlfors-David subsets of the real line of dimension strictly between 0 and 1. We are able to obtain improved quantitative results over existing additive energy bounds for Ahlfors-David sets by avoiding the use of inverse theorems in additive combinatorics and instead opting for a more direct approach which involves the use of concentration of measure inequalities. We discuss some connections with Bourgain’s sum-product theorem.