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0 Preliminaries

Remark 0.1 (Notation). |G| denotes the order of a finite group G. [E : F ]
denotes the degree of a field extension E/F . We write H ≤ G to mean that
H is a subgroup of G, and N E G to mean that N is a normal subgroup of
G. If E/F and K/F are two field extensions, then when we say that K/F is
contained in E/F , we mean via a homomorphism that fixes F .

We assume the following basic facts in this set of notes, in addition to ele-
mentary number theory, group and ring theory, and linear algebra:

Fact 0.2. If F is a field, then F [x] is a PID, so all nonzero prime ideals are
maximal and are generated by a single irreducible polynomial. This irreducible
polynomial is the polynomial of lowest positive degree in the ideal and is unique
modulo units.

Fact 0.3. If α is an algebraic element in an extension E/F , then the set of poly-
nomials in F [x] which vanish at α is a prime ideal generated by an irreducible
polynomial f(x) (we can make this canonical by requiring f(x) to be monic),
and F (α) ∼= F [x]/(f(x)). This polynomial is called the minimal polynomial of
α, as it has minimal positive degree in the ideal of polynomials vanishing at α.

Fact 0.4. If F and F ′ are isomorphic, and α and α′ are algebraic elements in
an extension which have the same minimal polynomial under the isomorphism,
then we can extend the isomorphism of F and F ′ to an isomorphism from F (α)
to F ′(α′).

Fact 0.5 (Tower Law). If E/K and K/F are two field extensions, then [E :
K][K : F ] = [E : F ].

Fact 0.6. A set of k linear homogenous equations over a field in n unknowns
for n > k always has a nontrivial solution.

1 Splitting Fields

Definition 1.1. Let F be a field and suppose f(x) ∈ F [x]. A field extension
E/F is said to be a splitting field for f(x) over F if: (a) We can write f(x) =

1



(x− a1)...(x− an) in E[x]. That is to say, f(x) splits over E. (b) The elements
a1, ..., an generate the extension E/F . Equivalently, f(x) splits in no subfield
of E.

Theorem 1.2 (Uniqueness of Splitting Fields). Let F and F ′ be fields isomor-
phic by σ. Then if E and E′ are splitting fields for p(x) and p′(x) respectively,
where p(x) is sent to p′(x) under σ, then there exists an isomorphism φ : E → E′

which equals σ when restricted to F .

Proof. We use induction on the number n of roots n of p(x) not in F . We can
factor p(x) as f1(x) · · · fr(x) and similarly p′(x) = f ′1(x) · · · f ′r(x) where the fi
and f ′i are irreducible, and fi is sent to f ′i under the isomorphism of F and F ′.
If n = 0, then E = F , E′ = F ′, so σ gives our desired automorphism.

Assume the theorem for n ≤ k where k ≥ 0. Suppose now that p(x) has
k + 1 roots outside of f .

Since k ≥ 0, there exists α ∈ E − F which is a root of p(x), say WLOG
it is a root of f1(x). Then p(x) ∈ F (α)[x], so since p(x) splits in E, and its
roots generate E over F and therefore F (α), it follows that E is a splitting field
for p(x) over F (α). Similarly, if α′ is a root of f ′1(x), then E′ is a splitting
field for p′(x) over F ′(α′). We can extend σ to an isomorphism of F (α) and
F ′(α′). Then since α lies in F (α) but not in F , the polynomial p(x) has at most
k roots outside of F (α), and similarly for p′(x), so we get an extension of the
isomorphism of F (α) and F ′(α′) to an isomorphism of E and E′, concluding
the proof.

Remark 1.3. If E/F is an extension in which p(x) ∈ F [x] splits, then the
subfield of E/F generated by all the roots of p(x) is a splitting field for p(x)
over F , and is hence isomorphic to any other splitting field for p(x).

2 Group Characters

Definition 2.1. If G is a group and F a field, then a homomorphism from G
into F× is called a character of G in F .

Definition 2.2. A finite set of characters {σi : G → F}1≤i≤n is said to be
dependent if there exist {xi}1≤i≤n not all zero such that

n∑
i=1

xiσi(g) = 0

for all g ∈ G. A set of characters is said to be independent if they are not
dependent.

Theorem 2.3. Any finite set of characters {σi : G → F}1≤i≤n from a group
G into a field F is independent.
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Proof. Suppose they are dependent. We choose {xi} so that a minimal num-
ber of the xi are nonzero, say WLOG the first k of them, so that we have∑k
i=1 xkσk = 0 where k ≤ n. Note that k ≥ 2, or else σ1(g) = 0 for all g.
Since σ1 and σk are distinct, we can find a ∈ G such that σ1(a) 6= σk(a).

Note that for any g ∈ G, we have

n∑
i=1

xiσi(ag) =
n∑
i=1

xiσi(a)σi(g) = 0.

We also have
k∑
i=1

xiσk(a)σi(g) = 0.

Subtracting these equations, we get

k∑
i=1

xi(σi(a)− σk(a))σi(g) = 0.

This gives us a dependence relation on our characters since σ1(a)− σk(a) 6= 0,
but the coefficients of σk becomes 0, meaning this dependence relation has
fewer nonzero coefficients, a contradiction. It follows that our characters are
independent.

Note that an automorphism of of a field E is a character from E× into E.
It follows from this theorem that a finite set of automorphisms of a field is
independent.

This theorem will be very useful in establishing further facts.

3 Automorphisms and Degrees of Extensions

Definition 3.1. If σ1, · · · , σn is a set of automorphisms of a field E, then the
fixed field of these automorphisms is the set of x ∈ E such that σi(x) = σj(x)
for all 1 ≤ i, j ≤ n. Note that if one of the automorphisms is the identity, then
F is the set of x ∈ E such that σi(x) = x for all 1 ≤ i ≤ n. It’s not too hard to
show that F is a subfield of E.

Proposition 3.2. If E is a field, σ1, · · · , σn is a finite set of automorphisms of
E, and F is the fixed field of the automorphisms σ1, · · · , σn, then [E : F ] ≥ n.

Proof. Assume that there exists a spanning set ω1, · · · , ωr ∈ E for E over F
with r < n. The r linear equations in n unknowns

x1σ1(ω1) + · · ·+ xnσn(ω1) = 0
· · ·

x1σ1(ωr) + · · ·+ xnσn(ωr) = 0
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has a nontrivial solution in E. If α =
r∑
i=1

aiωi with ai ∈ F is an arbitrary

element of E, then

n∑
j=1

xjσj(α) =
n∑
j=1

xjσj

(
r∑
i=1

aiωi

)

=
n∑
j=1

r∑
i=1

xjσ1(ai)σj(ωi)

=
r∑
i=1

σ1(ai)
n∑
j=1

xjσj(ωi)

=
r∑
i=1

σ1(ai)× 0

= 0

But this means that these automorphisms are dependent over E, which is a
contradiction.

The theorem also holds for an infinite set of automorphisms, since we can
then show that [E : F ] is larger than any positive integer.

Corollary 3.3. If F is fixed by a set of n automorphisms, then [E : F ] ≥ n.

Proof. If F ′ is the fixed field of those automorphisms, then [E : F ] = [E :
F ′][F ′ : F ] ≥ n.

Corollary 3.4. If Aut(E/F ) is the group of all automorphisms of E which fix
F , then |Aut(E/F )| ≤ [E : F ].

.
From the theorem above, the best lower bound we can get is the order of

the group of all automorphisms of E which fix F . It turns out that this bound
becomes an equality. We prove the following:

Proposition 3.5. If G is a finite group of automorphisms of E, and F is the
fixed field of G, then |G| = [E : F ].

Proof. Suppose G = {σ1, · · · , σn}. We know that [E : F ] ≥ n. Now suppose
that [E : F ] > n, so there is set ω1, · · · , ωr ∈ E independent over F with r > n.
Then the set of n linear equations in r variables

x1σ1(ω1) + · · ·+ xrσ1(ωr) = 0
· · ·

x1σn(ω1) + · · ·+ xrσn(ωr) = 0
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has a nontrivial solution. We can assume WLOG that x1 6= 0, and fur-
thermore we choose x1 to be any a ∈ E, since otherwise we could multiply
everything by

a

x1
.

If 1 ≤ i, j ≤ n, we have

r∑
k=1

xkσi(ωk) = 0.

If we fix j, then applying σj to both sides of this equations gives

r∑
k=1

σj(xk)σj(σi(ωk)) = 0.

As σi runs over all elements of G, the expression σj◦σi also runs over all elements
of G. It follows that {σj(xk)}1≤k≤r gives another solution to our system of linear
equations. We can then set

yk =
∑
σ∈G

σ(xk),

which will also be a solution to our equations. Furthermore, for 1 ≤ k ≤ r, if
σ ∈ G, then σ(yk) = yk, so yk ∈ F . SinceG is a group, one of its automorphisms,
say WLOG σ1 is the identity on E. Therefore,

r∑
k=1

ykσ1(ωk) =
r∑

k=1

ykωk = 0.

But there exists a ∈ E such that
∑
σ∈G

σ(a) 6= 0 by the independence of auto-

morphisms, so we could have chosen x1 to be this a. Then y1 6= 0, and we
have a dependence among the ωk, contradicting the assumption that they were
independent.

Corollary 3.6. If E/F is finite, and F is the fixed field of a group G of auto-
morphisms of E, then G is the set of all automorphisms of E which fix F .

Proof. We have |G| = [E : F ], and by Corollary 3.3, there are no more auto-
morphisms of E fixing F .

4 Applications to Symmetric Polynomials

Let K be a field, and let k(x1, · · · , xn) be the field of rational functions in n
variables overK. For each permutation σ of {1, · · · , n}, we get an automorphism
of K(x1, · · · , xn) which sends xi to xσ(i) for i ∈ {1, · · · , n}. The fixed field S of
this group of automorphisms (isomorphic to Sn) is called the field of symmetric
rational functions in n variables over k.
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Define tk to be the sum of all products of k-tuples of the n variables for
1 ≤ k ≤ n. These are known as the elementary symmetric polynomials. Then
k(t1, · · · , tn) ⊆ S ⊆ K(x1, · · · , xn), so [K(x1, · · · , xn) : K(t1, · · · , tn)] ≥ |Sn| =
n!.

But K(x1, · · · , xn) is the splitting field of the polynomial xn − t1x
n−1 +

· · · + (−1)ntn over K(t1, · · · , tn), which means that [K(x1, · · · , xn) : S] ≤
[K(x1, · · · , xn) : K(t1, · · · , tn)] ≤ n!, so S = K(t1, · · · , tn), and [K(x1, · · · , xn) :
S] = n!.

Now let Sn = S, and define Si = Si+1(xi+1) for 1 ≤ i ≤ n. It follows that
S1 = K(x1, · · · , xn). We have the sequence of fields S = Sn ⊆ Sn−1 ⊆ · · · ⊆
S1 = K(x1, · · · , xn).

Let tk,i denote the sum of all products of k-tuples of the first i variables,
x1, · · · , xi (so tk = tk,n).

Now suppose that a field F contains xi+1 and tk,i+1 for all k ≤ i+ 1. Then
t1,i = t1,i+1−xi+1, and in general, tk+1,i = tk+1,i+1−xi+1tk,i for 1 ≤ k ≤ i−1,
so F contains tk,i for all 1 ≤ k ≤ i. More strongly, tk,i can be expressed as a
polynomial over K in xi+1 and all the tk,i+1.

If we then induct downward on i, starting with i = n, we see that tk,i can
be expressed as a polynomial over K in xi+1, · · · , xn and t1, · · · , tn.

Since xii− t1,ix
i−1
i + · · ·+ ti,i = 0, and Si is fixed by the i! automorphisms of

K(x1, · · · , xn) which permute the first i variables, the degree [K(x1, · · · , xn) :
Si] = i!, and [Si : Si+1] = i+ 1.

As well, since xii − t1,ix
i−1
i + · · · + ti,i = 0, we can express any power of

xi with exponent at least i as a polynomial in xi, t1, · · · , tn, and xi+1, · · · , xn
where the exponents of xi are at most i − 1. If we have a general polynomial
f ∈ K[x1, · · · , xn], we can first get rid of all powers of x1 with exponent at least
1, then all powers of x2 with exponent at least 2, etc, until we get rid of all
powers of xn with exponent at least n. If {νi}1≤i≤n satisfy 0 ≤ νi ≤ i − 1 for

1 ≤ i ≤ n, define x{νi} =
n∏
i=1

xνi
i . Then we can write

p(x) =
∑
{νi}

s{νi}x{νi}

where s{νi} ∈ K[t1, · · · , tn].

If
p(x)
q(x)

∈ K(x1, · · · , xn), then

p(x)
q(x)

=
p(x)

∏
σ∈Sn,σ 6=1 σ(q(x))∏
σ∈Sn

σ(q(x))
,

where 1 denotes the identity of Sn. The bottom is in S. If we write

p(x)
∏

σ∈Sn,σ 6=e

σ(q(x)) =
∑
{νi}

s{νi}x{νi}
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as above, we can then write

p(x)
q(x)

=
p(x)

∏
σ∈Sn,σ 6=1 σ(q(x))∏
σ∈Sn

σ(q(x))

=

∑
{νi} s{νi}x{νi}∏
σ∈Sn

σ(q(x))

=
∑
{νi}

s{νi}∏
σ∈Sn

σ(q(x))
x{νi}.

This means that the x{νi} span K(x1, · · · , xn) as a vector space over S, and
since there are n! such x{νi} and the degree is n!, the x{νi} must form a basis.
If f(x) ∈ K[x1, · · · , xn] ∩ S, then we can express f(x) both as f(x)x{0,··· ,0}
and as

∑
{νi} s{νi}x{νi}. But the expression in terms of a basis is unique, so

f(x) = s{0,··· ,0} ∈ K[t1, · · · , tn]. Therefore, we have proved the celebrated
theorem every symmetric polynomial in n variables over K can be expressed as
a polynomial in the elementary symmetry polynomials.

5 Galois and Normal Extensions

Definition 5.1. An extension E/F is said to be Galois extension if it is finite
and if F is the fixed field of some group of automorphisms of E.

It follows that F is the fixed field of the group of all automorphisms of E.
By a corollary to an earlier theorem, there are at most [E : F ] of them. For an
arbitrary extension E/F , we denote this group by Gal(E/F ), and it is called
the Galois group of E over F . We also sometimes refer to the Galois group over
a polynomial over a field F , which is the Galois group of its splitting field over
F .

Proposition 5.2. An extension E/F is Galois iff |Gal(E/F )| = [E : F ].

Proof. If E/F is Galois, then F is the fixed field of Gal(E/F ), so by an earlier
theorem, |Gal(E/F )| = [E : F ].

Conversely, if |Gal(E/F )| = [E : F ], and F ′ is the fixed field of Gal(E/F ),
then |Gal(E/F )| = [E : F ′], so [F ′ : F ] = 1, and F = F ′.

We have so far talked mainly about linear algebra and automorphisms and
little about polynomials and algebraic elements. We now establish a relation
between polynomials and automorphisms.

Proposition 5.3. If α is an algebraic element of an extension E/F , and σ ∈
Gal(E/F ), then σ(α) has the same minimal polynomial over F as α.

Proof. Let f(x) = xn + bn−1x
n−1 + · · · + b0 be the minimal polynomial of α

over F . Then
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f(σ(α)) = (σ(α))n + · · ·+ b1σ(α) + b0

= σ(σ−1αn + · · ·+ σ−1(b1)a+ σ−1(b0))
= σ(αn + · · ·+ b1α+ b0)
= σ(0)
= 0

Since f(σ(α)) = 0, and f(x) is irreducible, it follows that σ(α) has f(x) as
its minimal polynomial.

Consider the extension E = Q( 3
√

2) of Q. Then 3
√

2 has minimal polynomial
x3 − 2 over Q, but this polynomial has no other roots in E. Therefore, any
element of Gal(E/Q) fixes 3

√
2 and therefore fixes all of E. But this means that

the only element of Gal(E/Q) is the identity, so its fixed field is all of E, and
the extension E/Q is not Galois. The reason for this is that there aren’t enough
roots of x3 − 2, and therefore there aren’t enough automorphisms for Q to be
all of the fixed field. The other roots of x3 − 2 lie in other extensions. It turns
out that if we take E to be the splitting field of x3 − 2, then E/Q is Galois.

Consider the field F2(x) of rational functions, and let E = F2(x)(α) where α
is a root of the polynomial t2 − x ∈ F2(x)[t]. Then in E, the polynomial t2 − x
splits as (x−α)2, and therefore it only has one root. It follows that Gal(E/F2(x))
has only the identity element, and again, our extension is not Galois. In this
case, our extension has all of the roots of t2 − x, but this polynomial has a
repeated root, and so there still aren’t enough automorphisms in this extension
for it to be Galois.

We have motivated some of the material to come.

Definition 5.4. A polynomial is said to be separable if its irreducible factors
have no repeated roots. An algebraic element in an extension is said to be
separable if its minimal polynomial is separable. An algebraic field extension is
said to be separable if all its elements are separable.

We now prove the following theorem:

Theorem 5.5. A finite extension E/F is Galois iff it is the splitting field of a
separable polynomial p(x) over F .

Proof. Suppose E/F is Galois. Let ω1, · · · , ωn be a basis for E over F . For
1 ≤ i ≤ n, let {σ1(ωi), · · · , σr(ωi)} be the orbit of ωi under Gal(E/F ), where
r < |Gal(E/F )|. If σ ∈ Gal(E/F ), then {σ(σ1(ωi)), · · · , σ(σr(ωi))} is a set of r
distinct elements in the orbit of ωi and is therefore equal to the orbit of ωi.

Now define fi(x) =
∏r
j=1(x − σj(ωi)). The coefficients are symmetric in

the elements of the orbit of ωi and are therefore invariant under Gal(E/F ). It
follows that they lie in F because E/F is Galois. Thus fi(x) is a separable
polynomial with fi(ωi) = 0. It is even irreducible since every element of the
orbit of ωi has the same irreducible polynomial.
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Now let p(x) =
∏n
i=1 fi(x). Since each fi splits in E, p(x) splits in E. As

well, ωi is a root of p(x) for 1 ≤ i ≤ n, so E is a splitting field for p(x) over
F . Finally, the irreducible factors fi of p(x) have no multiple roots, so p(x) is
separable.

To prove the converse, we use induction on the number of roots n of p(x)
which lie outside F . If n = 0, then E = F , and E/F is trivially Galois since F
is fixed under the identity automorphism. Now suppose the theorem is true for
n ≤ k ≥ 0, and suppose that p(x) has k + 1 roots outside of F . Let α be one
of these roots, and suppose its minimal polynomial f(x) has degree r. Then E
is a splitting field for p(x) over F (α), and p(x) has at most k roots outside of
F (α), and E/F (α) is Galois by hypothesis. Therefore, if θ is fixed under every
element of Gal(E/F ), then it is fixed under every element of Gal(E/F (α)), so
θ ∈ F (α).

If β is another root of f(x), then there is an isomorphism from F (α) to F (β)
sending α to β. Since E is a splitting field for p(x), this can be extended to an
automorphism of E sending α to β.

We can therefore write θ = c0 + c1α + · · · + cr−1α
r−1 for c0, · · · , cr−1 ∈ F .

If β is any other root of f(x), we can apply the automorphism of E sending
α to β to both sides to find that θ = c0 + c1β + · · · + cr−1β

r−1. If we let
g(x) = c0 − θ + c1x + · · · cr−1x

r−1 ∈ E[x], then g(x) has a root at every root
of f(x). But f(x) has r distinct roots since p(x) is separable, and the degree
of f(x) at most r − 1, so it follows that f(x) is identically 0, and θ = c0 ∈ F .
Hence the fixed field of Gal(E/F ) is F , and E/F is Galois.

We can even sharpen our characterization of Galois extensions further:

Definition 5.6. An extension E/F is normal if whenever an irreducible poly-
nomial f(x) ∈ F [x] has a root in E, then it splits in E.

Proposition 5.7. A finite extension E/F is Galois iff it is normal and sepa-
rable.

Proof. If ω1, · · · , ωn is a basis for E over F , let fi(x) be the minimal polynomial
of ωi. Then E/F is a splitting field for the product of the fi, and each fi is
separable because E/F is.

Conversely, if E/F is Galois, and f(x) ∈ F [x] is irreducible and has a root
α in E, then let σ1(α), · · · , σr(α) be the orbit of α under Gal(E/F ). The
polynomial

∏r
i=1(x − σi(α)) is separable and irreducible in F [x], and it splits

over E, so E/F is normal and separable.

Remark 5.8. The proof of Proposition 5.7 is intentionally brief because most
of its ideas were convered in earlier proofs.

6 The Fundamental Theorem of Galois Theory

Definition 6.1. An intermediate field of an extension E/F is a subfield of E
containing F .
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Definition 6.2. If E/F is Galois, then two intermediate fields B and B′ are
said to be conjugate in E/F if there is σ ∈ Gal(E/F ) such that σ(B) = B′.

Note that if two intermediate fields B and B′ are isomorphic, then they are
automatically conjugate, since if E is a splitting field for p(x) over F , then E is
also a splitting field for p(x) over each of B and B′, so the isomorphism from
B to B′ can be extended to an automorphism of E. It is clear that if two
intermediate fields are conjugate, then they are isomorphic.

Proposition 6.3. An intermediate field B of a Galois extension E/F has a
conjugate (other than itself) iff B/F is normal.

Proof. If B/F is normal, then it is also separable because E/F is separable, so
B/F is Galois. Hence it is the splitting field of a polynomial p(x) over F , and
it is the field generated by the roots of p(x) in E. Any conjugate B′ of B in E
is also a splitting field for p(x) over F and hence is the field generated by the
roots of p(x) in E. But that means B = B′.

Suppose thatB/F is not normal. We use induction on [B : F ]. If [B : F ] = 1,
then B = F , and B trivially has no other conjugates. Now suppose the theorem
is true for [B : F ] ≤ k ≥ 1, and suppose [B : F ] = k + 1. Then there is
α ∈ B such that the minimal polynomial f(x) of α over F does not split in
B. Therefore, it has an irreducible factor g(x) in B[x] of degree greater than
1. But f(x) splits in E because E/F is Galois, so g(x) has a root β in E but
not in F (α). We have an isomorphism from F (α) to F (β) which fixes F since
α and β are both roots of f(x), and we can extend this to an automorphism of
E since E is a splitting field of the same polynomial over both F (α) and F (β).
This automorphism sends B to a field B′ which is not equal to B because B′

contains β, so B has a distinct conjugate in E.

We can now prove:

Theorem 6.4 (Fundamental Theorem of Galois Theory). Let E/F be a Galois
extension, and let G = Gal(E/F ). If B is an intermediate field, then Gal(E/B)
is a subgroup of Gal(E/F ). If H ≤ Gal(E/F ), let EH denote the fixed field of
H. Then:

1. If H ≤ G, then Gal(E/EH) = H.

2. If B is an intermediate field, then EGal(E/B) = B.

3. If B is an intermediate field, then |Gal(E/B)| = [E : B] and [G : Gal(E/B)] =
[B : F ] where [G : Gal(E/B)] is the index of Gal(E/B) in G.

4. B and C are intermediate fields with B ⊆ C iff Gal(E/C) ≤ Gal(E/B).

5. Gal(E/B) is normal in G iff B/F is normal. If these hold, then B is
Galois.

6. If B/F is normal, then Gal(B/F ) ∼= G/Gal(E/B).
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Proof. 1. This follows immediately from Corollary 3.6.

2. Since E is the splitting field of a separable polynomial p(x) over F , it is
also such over B and therefore Galois, so B is the fixed field of Gal(E/B).

3. By the above EGal(E/B) = B, so by Proposition 3.5, |Gal(E/B)| = [E : B].

Then [G : Gal(E/B)] =
|G|

|Gal(E/B)|
=

[E : F ]
[E : B]

= [B : F ].

4. If B ⊆ C, then any automorphism which fixes all of C also fixes all of B, so
Gal(E/C) ≤ Gal(E/B). If Gal(E/C) ≤ Gal(E/B), then anything fixed
under all of Gal(E/B) is also fixed under all of Gal(E/C), so EGal(E/B) ⊆
EGal(E/C) or B ⊆ C.

5. SupposeB is an intermediate field. If σ is an automorphism, then σGal(E/B)σ−1

fixes all of σ(B), so it is contained in Gal(E/σ(B)). But [B : F ] = [σB :
F ], so

|Gal(E/σB)| = |Gal(E/B)| = |σGal(E/B)σ−1|,

so
Gal(E/σ(B)) = σGal(E/B)σ−1.

It follows that σGal(E/B)σ−1 and Gal(E/B) are distinct are distinct iff
σ(B) and B are distinct since the transformation sending B to Gal(E/B)
from intermediate fields to subgroups of G has an inverse and is therefore
injective. It follows that Gal(E/B) has no conjugates in G other than
itself iff B has no conjugates in E other than itself. But the former is the
definition of a normal subgroup, and the latter is equivalent to B/F being
normal by Proposition 6.3, so B is normal iff Gal(E/B) is normal in G.
Since B is contained in E, and every element of E is separable over F , we
have that B is separable over F , so if B is normal, then B is Galois by
Proposition 5.7.

6. If B/F is normal, then the image of B under any element of Gal(E/F ) is
B since B has no conjugates other than itself, so the restriction of elements
of Gal(E/F ) to B defines a homomorphism of Gal(E/F ) to Gal(B/F ).
The kernel is precisely those elements of Gal(E/F ) which fix B, and this

homomorphism is onto since its image has order
|Gal(E/F )|
|Gal(E/B)|

=
[E : F ]
[E : B]

=

[B : F ] = |Gal(B/F )|.

7 Additional Facts

We continue with some useful facts that were not necessary for the proof of the
Fundamental Theorem.

Definition 7.1. A field F is perfect if all of its finite extensions are separable.
Equivalently, all the irreducible polynomials in F [x] are separable.

11



Over a perfect field, the splitting field of any polynomial is a Galois extension.

Example 7.2. The field F2(x) is not perfect, as was shown earlier.

Proposition 7.3. Any field F of characteristic 0 is perfect.

Proof. Suppose f(x) ∈ F [x] is irreducible and inseparable. Then it has a mul-
tiple root, call it α. Therefore, f ′(α) = 0. But f(x) is the minimal polynomial
for α, so f ′(x) must be identically 0. But in a field of characteristic zero, this
means that f(x) is constant, so it certainly does not have multiple roots.

Proposition 7.4. If E/F and K/E are Galois, then so is K/F .

Proof. We show that the fixed field of Gal(K/F ) is F . Suppose θ is fixed by
all of Gal(K/F ). Then it is fixed by all of Gal(K/E), so θ ∈ E. Then each
element of Gal(E/F ) can be extended to an element of Gal(K/F ), since K is a
splitting field over E, so θ is fixed under each element of Gal(E/F ). It follows
that θ ∈ F because E/F is Galois.

Definition 7.5. The compositum B ∪C of two intermediate fields B and C of
an extension E/F is the intersection of all intermediate fields containing both
of them. If H and K are two subgroups of a group G, the subgroup H ∪K is
defined to be the intersection of all subgroups of G containing both of them.

Proposition 7.6. If E/F is Galois, and B1, · · · , Bk are intermediate fields,
then:

1. Gal(E/B1) ∩ · · · ∩Gal(E/Bk) = Gal(E/B1 ∪ · · · ∪Bk).

2. Gal(E/B1) ∪ · · · ∪Gal(E/Bk) ⊆ Gal(E/B1 ∩ · · · ∩Bk).

Proof. 1. If σ ∈ Gal(E/F ) fixes B1∪· · ·∪Bk, then it fixes Bi for 1 ≤ i ≤ k, so
it is contained in Gal(E/Bi) for 1 ≤ i ≤ k, hence Gal(E/B1 ∪ · · · ∪Bk) ⊆
Gal(E/B1) ∩ · · · ∩Gal(E/Bk).

If σ ∈ Gal(E/F ) fixes Bi for 1 ≤ i ≤ k, then it fixes B1 ∪ · · · ∪ Bk,
so Gal(E/B1) ∩ · · · ∩ Gal(E/Bk) ⊆ Gal(E/B1 ∪ · · · ∪ Bk), showing their
equality.

2. If σ ∈ Gal(E/F ) is in Gal(E/B1)∪· · ·∪Gal(E/Bk), then it is in Gal(E/Bi)
for some 1 ≤ i ≤ k, so it fixes B1 ∩ · · · ∩ Bk and hence is in Gal(E/B1 ∪
· · · ∪Bk).

8 Finite Fields

Lemma 8.1. If G is a finite group in which the equation xn = 1 has at most n
solutions for each n, then G is cyclic.
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Proof. Suppose that G is not cyclic. Let nk denote the number of elements of
G of order k. Then we have

∑
k||G|

nk = |G|. Suppose that nk ≤ φ(k) for all k.

We have n|G| = 0, so

|G| =
∑
k||G|

nk ≤
∑

k||G|,k 6=|G|

φ(k) <
∑
k||G|

φ(k) = |G|,

a contradiction. Therefore, there is k such that nk > φ(k). Let a ∈ G have
order k. Then the k elements of the subgroup generated by a satisfy xk = 1.
But this subgroup has φ(k) elements of order k, so there is another element of
G of order k not in this subgroup, which also satisfies xk = 1, so there are more
than k solutions to xk = 1 in G, a contradiction. It follows that G is cyclic.

Corollary 8.2. Any finite subgroup of the multiplicative group of a field is cyclic

Proof. The equation xn = 1 has at most n solutions in any field.

Lemma 8.3. If F is a field of characteristic p, then (a + b)p = ap + bp for
a, b ∈ F .

Proof. The binomial coefficient
(
p

k

)
=

p!
k!(p− k)!

for 1 ≤ k ≤ p− 1 is divisible

by p since there are no multiples of p in the denominator. Therefore, (a+ b)p =
p∑
k=0

akbp−k
(
p

k

)
= ap + bp.

It follows that the map sending x to xp is an automorphism of the field F .

Definition 8.4. This automorphism is called the Frobenius automorphism of
F.

If |E| = pk, then there is an element a of order pk−1. If we apply the Frobe-
nius automorphism fewer than k times to a, we get an element distinct from a,
and if we apply it k times, we get a again. It follows that because a generates
E×, the Frobenius automorphism has order k. Since E has degree k over Fp, all
elements of Gal(E/Fp) ∼= Ck are powers of the Frobenius automorphism, and
E/Fp is Galois. It follows that all extensions of finite fields are Galois (as they
are the splitting field of a separable polynomial).

For any positive integer k, we can construct the splitting field E of f(x) =
xp

k − x over Fp. The derivative of this polynomial is −1, so it has no repeated
roots. Thus E has at least pk elements. Furthermore, the pk roots of this
polynomial form a subfield of E, and since f(x) splits in this subfield, it follows
that this subfield must be equal to E, so E has pk elements. Furthermore, if E
and E′ both have pk elements, then each is a splitting field for xp

k − x over Fp,
so they are isomorphic. We have proved:

Theorem 8.5. There is a unique finite field of each prime power order pk,
denoted Fpk . Its Galois group over Fp is the cyclic group of order k.

13



In fact, any finite field must have prime power order, as it is a vector space
over Fp, where p is its characteristic.

Here is another proof of the uniqueness of finite fields of a given order,
which, although unnecessary, is a nice application of the Fundamental Theorem
of Galois Theory.

Proposition 8.6. If E and F are two finite fields of the same order, then they
are isomorphic.

Proof. Let E and F be two fields of order pk, and say they are formed by
adjoining a root of the polynomials q and r with degree k respectively. If they
are not isomorphic, then E does not contain a root of r, so we can form an
extension L of E that contains a root of r. Then L contains both E and F . But
the Galois group of L is cyclic, and cyclic groups have at most one subgroup of
each order, so by the fundamental theorem of Galois theory, we have that there
is at most one subfield of a given order. This means that E = F as subfields of
L, so they are isomorphic.

9 Gauss’s Lemma and Unique Factorization in
U[x]

Definition 9.1. If U is a UFD, then the content of a polynomial p(x) ∈ U [x]
is the greatest common divisor of its coefficients. A polynomial is said to be
primitive if it has content 1.

Any polynomial in U [x] can be uniquely expressed as an element of U times
a primitive polynomial, and this element of U is its content.

Lemma 9.2. If f(x), g(x) ∈ U [x] are primitive, then so is f(x)g(x).

Proof. Suppose f(x) and g(x) are primitive, and suppose f(x)g(x) is primitive.
Then there is a prime p ∈ U [x] such that p divides all the coefficients of f(x)g(x).
Since f(x) and g(x) are primitive, p does not divide all the coefficients of either
of f(x) and g(x). It follows that when reduced modulo p, f(x) and g(x) are
nonzero, while f(x)g(x) is zero. But p is prime, so U/(p) and therefore U/(p)[x]
are integral domains, so f(x)g(x) is not zero, giving a contradiction. It follows
that f(x)g(x) was primitive in the first place.

Definition 9.3. Let D be the field of fractions of U , and let p(x) ∈ D[x]. There
exists a ∈ U [x] such that ap(x) ∈ U [x] (for example, take the product of the
denominators of the coefficients of p(x)). Define the content of p(x) to be the
content of ap(x) divided by a.

Lemma 9.4. The content of a polynomial p(x) ∈ D[x] is well defined up to
units, and if p(x) = af(x) for f(x) ∈ U [x] primitive, then a is the content of
p(x).
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Proposition 9.5 (Gauss’s Lemma). Suppose p(x) ∈ U [x] factors in D[x]. Then
it factors in U [x].

Proof.

Proposition 9.6 (Eisentein’s Criterion). Suppose p(x) =
∑n
k=0 akx

k ∈ U [x]
for which there exists a prime p ∈ U such that p | ak for 0 ≤ k ≤ n − 1 and
p2 - a0. Then p(x) is irreducible.

Proof.

10 Cyclotomic Extensions

Definition 10.1. An nth root of unity is an element ζ of a field F such that
ζn = 1 for some positive integer n.

Definition 10.2. If E is a finite extension of Q obtained by adjoining a root
of unity, it is called a cyclotomic extension.

Since all nth roots of unity are roots of the polynomial xn − 1, there are at
most n of them. Furthermore, the derivative of this polynomial is nxn−1, whose
only root is 0, which is clearly not a root of xn − 1. Therefore, the polynomial
xn − 1 has no multiple roots, and we can form a splitting field E of xn − 1 over
a field F which contains n distinct roots of xn − 1.

Furthermore, if an = bn = 1, then (ab)n = 1, so the roots of xn − 1 in any
field form a multiplicative group. If E has all the roots of xn− 1, this is a finite
group of order n, and by Corollary 8.2 is cyclic. Each element of this group has
some order dividing n, and for each k | n, there are φ(k) elements of order k
and k kth roots of unity.

Definition 10.3. A root of unity of order k is called a primitive kth root of
unity.

If we adjoin a primitive nth root of unity ζn to a field F , then its minimal
polynomial divides xn − 1, so we can imbed F (ζn) in the splitting field E of
xn− 1 over F . Then all the roots of xn− 1 can be expressed as powers of ζn, so
E = F (ζn). Since xn − 1 has no multiple roots and is therefore separable, this
extension is always Galois.

It follows that if ζk is a primitive kth root of unity sitting inside E, then
F (ζk) is a splitting field for xk − 1 over F , i.e. the splitting field of xk − 1 sits
inside that of xn − 1. This allows us to freely talk about kth roots of unity
sitting in the splitting field of xn− 1 just as if they were in the splitting field of
xk − 1.

Fix a primitive nth root of unity ζn ∈ E. Any automorphism of E must
restrict to an automorphism of the group of nth roots of unity, and such an au-
tomorphism must send primitive roots to primitive roots of unity. Furthermore,
any element of Gal(E/F ) is determined by its action on ζn and therefore on the
subgroup of nth roots of unity. The automorphism group of a cyclic group of
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order n is isomorphic to (Z/n)×, so Gal(E/F ) imbeds in this group. We have
proven:

Proposition 10.4. If F is a field, and E = F (ζn), where ζn is a primitive nth
root of unity, then E/F is Galois and equal to the splitting field of xn − 1 over
F , and Gal(E/F ) imbeds in (Z/n)×.

It follows that Gal(E/F ) sends primitive nth roots of unity only to primitive
nth roots of unity, and so the minimal polynomial of each primitive root of unity
has only primitive nth roots of unity as roots. It follows that the product of
x− ζn for each primitive nth root of unity ζn has coefficients in F . We define:

Definition 10.5. The polynomial Φn(x) =
∏

(x − ζn) over all primitive nth
roots of unity ζn is called the nth cyclotomic polynomial.

By definition, the polynomial Φn(x) has degree φ(n).
Since the roots of xn− 1 are those which have order k for some k | n, we get

xn − 1 =
∏
k|n

Φk(x).

For the rest of this section, we work over the base field Q.

Proposition 10.6. For all n, Φn(x) has integer coefficients and is primitive.

Proof. We induct on n. For n = 1, we have Φ1(x) = x− 1.
Suppose the proposition is true for all n ≤ m−1 ≥ 1. The polynomial xm−1

splits as
m∏
a=1

(x − ζam). By hypothesis, for each k | m, k 6= m, the polynomial

Φk(x) has integer coefficients, content 1, and divides xm − 1. The product

p(x) =
∏

k|m,k 6=m

Φk(x)

is therefore primitive with integer coefficients. We can thus write xm − 1 =
f(x)p(x) for f(x) primitive with integer coefficients, by Gauss’s Lemma. But

xm − 1 = Φm(x)p(x),

so Φm(x) = f(x), and Φm(x) has integer coefficients and is primitive.

Lemma 10.7. If pk is a power of a prime in Z, then Φpk(x) is irreducible.

Proof. The primitive pkth roots of unity are the pkth roots of unity which are

not pk−1th roots of unity, so Φpk(x) =
xp

k − 1
xpk−1 − 1

=
p−1∑
i=0

xip
k−1

. Now Φpk(x) is

irreducible iff Φpk(x+ 1) is. Then

Φpk(x+ 1) =
p−1∑
i=0

(x+ 1)ip
k−1

.
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The constant term of Φpk(x+ 1) is p, and the leading coefficient is 1.
Taking (xp

k−1 −1)Φpk(x) = xp
k −1 and reducing both sides of this equation

mod p, we get (x−1)p
k−1

Φpk(x) ≡ (x−1)p
k

mod p. Since Z/p[x] is an integral
domain, we can conclude Φpk(x) ≡ (x − 1)p

k−pk−1
mod p, so Φpk(x + 1) ≡

xp
k−pk−1

mod p. This means that all the coefficients other than the leading
coefficient of Φpk(x + 1) are divisible by p. It follows by Eisenstein’s Criterion
that Φpk(x+ 1) and therefore Φpk(x) are irreducible.

By the above lemma, the extension Q(ζpk)/Q, where ζpk is a primitive pkth
root of unity, has degree φ(pk). Since the extension is Galois, this is the order
of its Galois group, so by Proposition 10.4, the Galois group is isomorphic to
(Z/pk)×.

Theorem 10.8. The cyclotomic polynomial Φn(x) is irreducible over Q for all
positive integers n.

Proof. Let E be the splitting field of xn − 1. Then E = Q(ζn), where ζn is a
primitive nth root of unity. If we can show that E/F = |Gal(E/F )| = φ(n),
then the minimal polynomial of ζn over Q has degree φ(n), and therefore Φn(x)
must be this minimal polynomial, so Φn(x) is irreducible.

Let ζm denote a primitive mth root of unity for all positive integer m. We
now prove by induction on n that |Gal(E/F )| = φ(n), where E = Q(ζn). For
n = 1, we have ζn = 1, so the result is trivial.

Now suppose the hypothesis is true for all n < k > 1. We prove the result
for n = k.

Let E denote the splitting field of xk − 1 over Q. Suppose k factors as
pe11 · · · p

ek

k . Let m = k
p

e1
1

. Let F/Q denote the splitting field of xm−1, which, by
hypothesis, has degree φ(m). Note that we can imbed F in E. If H = Gal(E/K)
and N = Gal(E/Q(ζpe1

1
)), then H ∩N is the trivial subgroup, since K and ζpe1

1
together generate E over Q.

The product of two elements of a finite group with relatively prime orders
has order equal to their product, and by induction, the product ζpe1

1
· · · ζpek

k

has order n. If Ei denotes Q(ζpei
i

), this implies that E1 ∪ · · · ∪ Ek = E. Let
Gi = Gal(E/Ei) ≤ Gal(E/Q).

11 Ruler and Compass Constructions

12 Noether’s Equations and Hilbert’s Theorem
90

Definition 12.1. If G is a finite group of automorphisms of a field E, then
a mapping G → E× defined by σ → xσ for σ ∈ G is said to be a solution to
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Noether’s Equations if for all σ, τ ∈ G, we have

xσσ(xτ ) = xστ .

If xσ is contained in the fixed field F of G for all σ ∈ G, then xσxτ = xστ ,
so we have a character of G in F . Similarly, given a character of G in F , then
we have a solution of Noether’s Equations contained in F .

Proposition 12.2. {xσ}σ∈G is a solution to Noether’s Equations iff there exists
α ∈ E such that xσ =

α

σ(α)
for all σ ∈ G.

Proof. If α ∈ E, and xσ =
α

σ(α)
, then

xσσ(xτ ) =
(

α

σ(α)

)
σ

(
α

τ(α)

)
=

(
α

σ(α)

)(
σ(α)

σ(τ(α))

)
=

α

σ(τ(α))
= xστ

So then {xσ}σ∈G is a solution to Noether’s Equations.
Conversely, suppose {xσ}σ∈G is a solution to Noether’s Equations.
By the linear independence of characters, there exists a ∈ E such that∑

τ∈G
xττ(a) = α 6= 0. Then

xσσ(α) = xσσ

(∑
τ∈G

xττ(a)

)
=

∑
τ∈G

xσσ(xτ )σ(τ(a))

=
∑
τ∈G

xστσ(τ(a))

=
∑
τ∈G

xττ(a)

= α

It follows that xσ =
α

σ(α)
for all σ ∈ G.

Definition 12.3. If E/F is a Galois extension, and α ∈ E, we define the norm
NE/F (α) to be ∏

σ∈Gal(E/F )

σ(α).
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It follows that τ(NE/F (α)) = NE/F (α) for all τ ∈ Gal(E/F ), so NE/F (α) ∈
F . In addition, for α, β ∈ E, we have NE/F (αβ) = NE/F (α)NE/F (β).

Corollary 12.4 (Hilbert’s Theorem 90). Suppose E/F is Galois with cyclic
Galois group of order n generated by σ. Suppose a ∈ E has norm 1. Then there
exists α ∈ E such that a =

α

σ(α)
.

Proof. Let xσk =
k−1∏
i=0

σi(a) for all integers k ≥ 0. Note that this is well-defined

since NE/F (a) = 1, so

n+k−1∏
i=0

σi(a) = NE/F (a)
n+k−1∏
i=n

σi(a)

=
n+k−1∏
i=n

σi(a)

=
k−1∏
i=0

σi+n(a)

=
k−1∏
i=0

σi(a).

Then

xσkσk(xσl) =

(
k−1∏
i=0

σi(a)

)
σk

(
k−1∏
i=0

σi(a)

)

=

(
k−1∏
i=0

σi(a)

)(
k−1∏
i=0

σi+k(a)

)

=

(
k−1∏
i=0

σi(a)

)(
l+k−1∏
i=k

σi+k(a)

)
= xσl+k ,

so we have a solution to Noether’s Equations. Then there exists α such that
a = xσ =

α

σ(α)
by Proposition 12.2.

Corollary 12.5. Suppose E/F is Galois with cyclic Galois group of prime
order p, and suppose that F contains a primitive pth root of unity. Then E is
the splitting field of a polynomial of the form xp − a where a ∈ F .

Proof. Suppose ζ is a primitive pth root of unity. Then NE/F (ζ) = ζp = 1, and

therefore there is an α ∈ E such that ζ =
α

σ(α)
. Then

(
α

σ(α)

)p
= ζp = 1, so
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αp = σ(αp), so αp ∈ E, but α /∈ F since
α

σ(α)
= ζ 6= 1. Since [E : F ] is prime

and [F (α) : F ] > 1, we must have F (α) = E, so the roots of xp − αp generate
E, and this polynomial splits in E because E/F is Galois, so E is the splitting
field of xp − αp.

13 Solvability of Equations by Radicals

For the purposes of this section only, all fields are assumed to be
perfect. In particular, everything is separable, and all finite normal
extensions are Galois.

Definition 13.1. A group G is said to be solvable if there exists a chain of
subgroups 0 = G0 ≤ G1 ≤ · · · ≤ Gn = G such that for 1 ≤ i ≤ n, Gi−1 is
normal in Gi, and Gi/Gi−1 is Abelian.

Note that Abelian groups are trivially solvable.

Lemma 13.2. Suppose f : G1 → G2 is a surjective homomorphism, and K2 E
H2 ≤ G. Let K1 and H1 denote the preimages of K2 and H2 respectively under
f . Then K1 EH1, and H1/K1

∼= H2/K2. In particular, |H1/K1| = |H2/K2|.

Proof. Restrict f to H1, and compose it with the natural map H2 → H2/K2.
Call this map g. Since f is surjective, H1 hits all of H2 and therefore all of
H2/K2. An element of H1 goes to 0 under g iff its image under f is in K2, that
is to say, iff it is in K1. Therefore, H1/K1

∼= H2/K2.

Proposition 13.3. Suppose G is solvable. Then any quotient or subgroup of G
is also solvable.

Proof. Suppose H ≤ G. We have a chain of subgroups 0 = G0 ≤ G1 ≤ · · · ≤
Gn = G such that for 1 ≤ i ≤ n, Gi−1 is normal in Gi, and Gi/Gi−1 is Abelian.
Let Hi = Gi ∩H for 0 ≤ i ≤ n.

If fi denotes the inclusion of Hi into Gi, and gi denotes the natural map of
Gi onto Gi/Gi−1 for 1 ≤ i ≤ n. An element of Hi is in the kernel iff it is in
Hi∩Gi−1 = H ∩Gi−1 = Hi−1, so the image is isomorphic to Hi/Hi−1, and this
group must be Abelian because it is a subgroup of Gi/Gi−1. It follows that H
is solvable by the chain of subgroups 0 = H0 ≤ H1 ≤ · · · ≤ Hn = H.

Suppose f : G→ H is surjective, i.e. H is a quotient of G. We have a chain
of subgroups 0 = G0 ≤ G1 ≤ · · · ≤ Gn = G such that for 1 ≤ i ≤ n, Gi−1 is
normal in Gi, and Gi/Gi−1 is Abelian. Let Hi = f(Gi) for 0 ≤ i ≤ n. Then
H0 = 0, and Hn = H. Furthermore, if h1 = f(g1) ∈ Hi, and h2 = f(g2) ∈ Hi−1,
where g1 ∈ Gi and g2 ∈ Gi−1, then h1h2h

−1
1 = f(g1g2g−1

1 ) ∈ Hi−1 since
g1g2g

−1
1 ∈ Gi−1 because Gi−1 EGi. Therefore, Hi−1 EHi.

Let gi denote the natural map Hi → Hi/Hi−1 for 1 ≤ i ≤ n. Let fi
denote f restricted to Gi, and let hi = gi ◦ fi for 1 ≤ i ≤ n. Then this map
is surjective, and Gi−1 is contained in its kernel, so there exists a surjective
homomorphism Gi/Gi−1 → Hi/Hi−1, meaning that Hi/Hi−1 is Abelian since
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Gi/Gi−1 is. Then the chain of subgroups 0 = H0 ≤ H1 ≤ · · · ≤ Hn = H gives
us that H is solvable.

Proposition 13.4. Suppose N EG, and N and G/N are solvable. Then G is
solvable.

Proof. Since G/N is solvable, we have a chain of subgroups 0 = G0 ≤ G1 ≤
· · · ≤ Gn = G/N such that for 1 ≤ i ≤ n, Gi−1 is normal in Gi, and Gi/Gi−1 is
Abelian. If we let Hi be the preimage of Gi under the natural map G→ G/N
for 0 ≤ i ≤ n, then Hi/Hi−1 is Abelian for 1 ≤ i ≤ n by Lemma 13.2. Note that
H0 = N , and Hn = G. Let 0 = K0 ≤ K1 ≤ · · · ≤ Kn = N be a similar chain of
subgroups in N . Then the sequence of subgroups 0 = K0 ≤ K1 ≤ · · · ≤ Kn =
N = H0 ≤ H1 ≤ · · · ≤ Hn = G implies that G is solvable.

Proposition 13.5. The following are equivalent for a group G:

1. G is solvable.

2. There exists a chain of subgroups 0 = G0 ≤ G1 ≤ · · · ≤ Gn = G such that
for 1 ≤ i ≤ n, Gi−1 is normal in Gi, and Gi/Gi−1 is cyclic.

3. There exists a chain of subgroups 0 = G0 ≤ G1 ≤ · · · ≤ Gn = G such
that for 1 ≤ i ≤ n, Gi−1 is normal in Gi, and Gi/Gi−1 is cyclic of prime
order.

Proof. It is clear that 3 → 2 → 1.
We will first show by induction that any Abelian group A has chain of

subgroups as in 3. For |A| = 1 it trivially holds.
Suppose it is true for all |A| ≤ k ≥ 1. Suppose |A| = k+ 1. Since k+ 1 ≥ 2,

there is a prime p | |A|, and by Cauchy’s Theorem, there is a subgroup N of A

of order p. Then N E A since A is Abelian, and |A/N | =
k + 1
p

< k + 1. We

therefore have, by hypothesis, a chain of subgroups 0 = G0 ≤ G1 ≤ · · · ≤ Gn =
A/N such that for 1 ≤ i ≤ n, Gi−1 is normal in Gi, and Gi/Gi−1 is cyclic of
prime order (or trivial). If we let Ni be the preimage of Gi under the natural
map A → A/N for 0 ≤ i ≤ n, then we have that Ni/Ni−1 is cyclic of prime
order for 1 ≤ i ≤ n by Lemma 13.2. Furthermore, N0/0 = N is cyclic of order
p, so we have our desired chain of subgroups 0 ≤ N0 ≤ N1 ≤ · · · ≤ Nn = A.

Now suppose G is solvable with a chain of subgroups 0 = G0 ≤ G1 ≤ · · · ≤
Gn = G such that for 1 ≤ i ≤ n, Gi−1 is normal in Gi, and Gi/Gi−1 is Abelian.
Let 0 = Hi0 ≤ Hi1 ≤ · · · ≤ Hiri = Gi/Gi−1 for 1 ≤ i ≤ n, where Hij/Hi(j−1) is
cyclic of prime order for 1 ≤ j ≤ ri. For 1 ≤ i ≤ n and 0 ≤ j ≤ ri, let Kij be
the preimage of Hij under the natural map Gi → Gi/Gi−1. Then Ki0 = Gi−1,
Kiri

= Gi, and Kij/Ki(j−1) is cyclic of prime order for 1 ≤ i ≤ n and 1 ≤ j ≤ ri.
It follows that 0 = G0 = G10 ≤ G11 ≤ · · · ≤ G1r1 = G1 = G20 ≤ G21 ≤ · · · ≤
· · · ≤ Gn0 ≤ Gn1 ≤ · · · ≤ Gnrn = Gn = G is the desired chain of subgroups.
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Definition 13.6. An extension E/F is said to be radical if there is a sequence
of intermediate fields F = E0 ⊆ E1 ⊆ · · · ⊆ En−1 ⊆ En = E such that for
1 ≤ i ≤ n, the extension Ei is the splitting field over Ei−1 of a polynomial
xr − a for a ∈ Ei−1. Such an extension is Galois by Proposition 7.4.

Definition 13.7. A polynomial p(x) is said to be solvable by radicals over F
iff the splitting field E of p(x) can be imbedded in a radical extension of F .

Lemma 13.8. A radical extension has a solvable Galois group.

Proof.

Theorem 13.9. The roots of a polynomial p(x) ∈ F [x] can be obtained by
adjoining radicals iff Gal(E/F ), where E is the splitting field of p(x), is solvable.

Proof. If E can be imbedded in a radical extension R of F . Then Gal(E/F ) is
a quotient of Gal(R/F ), which is solvable, so by Proposition 13.3, Gal(E/F ) is
solvable.

Conversely, suppose Gal(E/F ) is solvable. Let K = E(ζn), where n is the
product of the prime factors of |Gal(E/F )|, and ζn is a primitive nth root of
unity. Note that K/F is Galois by Proposition 7.4, since K/E and E/F are
both Galois, the former by Proposition 10.4. If we let L = F (ζn), then there
is an injection from Gal(K/L) into Gal(E/F ) by restricting to E, since if an
element of Gal(K/L) is constant on E, then it is constant on K too. It follows
that |Gal(K/L)| | |Gal(E/F )|. In addition, Gal(K/L) must be solvable.

By Proposition 13.5, we have a chain of subgroups 0 = G0 ≤ G1 ≤ · · · ≤
Gn = Gal(K/L) such that for 1 ≤ i ≤ n, Gi−1 is normal in Gi, and Gi/Gi−1

is cyclic of prime order. For 0 ≤ i ≤ n, let Ki = KGi , so that K0 = K, and
Kn = L. Then Ki+1/Ki is a Galois extension of prime order p for 0 ≤ i ≤ n−1.
This prime order divides Gal(L/K) and therefore Gal(E/F ), so by assumption,
L, and therefore Ki, contains a primitive pth root of unity. By Corollary 12.5,
Ki+1 is the splitting field of a polynomial xp − a for a ∈ Ki. Since L is the
splitting field of xn−1 over F , it follows that K/F is a radical extension by the
sequence of intermediate fields F ⊆ L ⊆ Kn−1 ⊆ · · · ,⊆ K. Then since E/F
can be imbedded in K/F , the polynomial p(x) is solvable by radicals.

Lemma 13.10. The groups An and Sn are not solvable for n ≥ 5.

Proof.

Corollary 13.11. There exists a polynomial over Q of degree 5 which is not
solvable by radicals.

Proof. The polynomial x5 − 10x− 5 is irreducible by Eiseinstein’s criterion. If
we adjoin one root, we get an extension of Q of degree 5, so its splitting field
has degree divisible by 5. Then the Galois group must have an element of order
5, and the only elements of order 5 in S5 are the 5-cycles, so the Galois group
contains a 5-cycle. In addition, this polynomial has exactly 2 imaginary root, so
complex conjugation is an automorphism which permutes these two. Since the
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Galois group contains a 2-cycle and a 5-cycle on the roots of the polynomial, it
must contain all permutations of the roots and be isomorphic to S5. But S5 is
not solvable, so the roots of this polynomial cannot be imbedded in a radical
extension of Q, and hence cannot be expressed in terms of iterations of radicals
of elements of Q.

14 Kummer Theory

We begin by stating without proof:

Theorem 14.1 (Fundamental Theorem of Finite Abelian Groups). A finite
Abelian group can be uniquely represented as a product of cyclic groups

Cq1 ⊕ · · · ⊕ Cqt
,

where qi | qi+1 for 1 ≤ i ≤ t− 1.

Definition 14.2. If σ1 and σ2 are two characters from a group G into a field F ,
we define their product to be the character sending each g ∈ G to σ1(g)σ2(g).
In this way, the characters form a group, with identity equal to the character
sending all of G to 1 ∈ F .

Proposition 14.3. If A is a finite Abelian group of exponent m, and the field
F contains a primitive mth root of unity, then the group of characters from A
into F is isomorphic to A.

Proof. First assume A is cyclic of order m, and let ζm ∈ F be a primitive mth
root of unity.

15 Artin-Schreier Extensions

16 Primitive Element and Normal Basis Theo-
rems
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