Bounds for spectral projectors on Riemannian manifolds

The HADES seminar on Tuesday, April 26 will be at 3:30 pm in Room 740.

Speaker: Pierre Germain

Abstract: On a Riemannian manifold, consider the spectral projector on a thin spectral band $[\lambda , \lambda + \delta]$ for the Laplace-Beltrami operator. What is its operator norm from $L^2$ to $L^q$? Or, to put it in semiclassical terms, how large can the $L^p$ norm of a quasimode normalized in $L^2$ be? This is a fascinating problem, which is closely related to a number of fundamental analytic questions. I will try and describe what is known, and some recent progress that have been made. There will be some overlap with my talk at the Analysis seminar, but not much.

Leave a Reply

Your email address will not be published. Required fields are marked *