
Chapter 1

Galois Groups and Fundamental
Groups

1.1 Galois Groups and Fundamental Groups

This begins a series of lectures on topics surrounding Galois groups, fundamental groups, étale
fundamental groups, and étale cohomology groups. These underly a lot of deep relations between
topics in topology and (algebraic) number theory, which in turn constitute an important part of
modern arithmetic geometry.

This survey is aimed at those with a basic background in (1) Galois theory and (2) fundamental
groups and covering spaces. A little bit of algebraic geometry (such as the first two chapters of
[SKKT00]) would be helpful, but we explain concepts as we go along. Now and then, we make
references to algebraic number theory, but these are not necessary to follow the text.

For a more detailed resource on this topic, I suggest the book [Sza09], aptly titled “Galois
Groups and Fundamental Groups.”

Our motivating idea is this: two theories, one in algebra, the other in topology, look remarkably
similar. These are the theories of Galois groups and field extensions and of fundamental groups
and covering spaces. We begin by reviewing these similarities.

1.1.1 Galois Groups

In the case of Galois groups, we have, given a Galois extension L/K of fields, a correspondence
between subgroups H of the Galois group Gal(L/K) and intermediate field extensions

L/M/K,

where H = Gal(L/M).
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In particular, if L is the (separable) algebraic closure K, then the intermediate extensions
correspond to all algebraic extensions of K, and the Galois group is the absolute Galois group
GK := Gal(K/K) of K. Then H = GM .

If H1, H2 are subgroups corresponding to intermediate extensions M1,M2, then H1 ⊆ H2 iff

M2 ⊆M1.

In other words, a smaller subgroup corresponds to a larger extension. The whole group H =
Gal(L/K) corresponds to K, and the trivial subgroup H = {id} corresponds to L. There is a
notion of degree [M : K] of an extension (it is the dimension of one field as a vector space over
the other), and if the extension has finite degree over K, then the degree equals the index of the
corresponding subgroup H in Gal(L/K). Finally, the subgroup H is normal iff the corresponding
field extension M/K is normal. In that case, there is an isomorphism between Gal(L/K)/H and
the group Gal(M/K) of automorphisms of the field extension M/K. Finally, a field is separably
closed (if you’re not used to this, this is the same as algebraically closed in characteristic 0) iff it
has no separable extensions, which is to say that its absolute Galois group is trivial.

1.1.2 Fundamental Groups

In the case of fundamental groups, we have a correspondence between subgroups H of the fun-
damental group π1(X) of a space X (I will for now ignore basepoints and assume the space is
connected) and connected covers

Y → X.

Then our M before corresponds to Y , and K corresponds to the universal cover X̃. We have
H1 ⊆ H2 iff Y1 dominates Y2, again meaning that a smaller subgroup corresponds to a larger cover.
The whole group H = π1(X) corresponds to X, and the trivial subgroup H = {id} corresponds to
its universal cover X̃. There is a notion of degree of a cover (it is the number of preimages of any
point), and if the cover has finite degree, then the degree equals the index of the corresponding
subgroup. Finally the subgroup is normal iff the corresponding cover is normal, and there is an
isomorphism between the quotient of the fundamental group by the corresponding subgroup and
the deck transformations (i.e. automorphisms respecting the projection to X) of the cover. Finally,
a space is simply connected iff it has no connected covers, which is to say that its fundamental
group is trivial.

This is a nice analogy. But is it just an analogy? They clearly have the same formal properties.
But more deeply, could we find some sort of function (functor) associating a group to each of some
class of objects, such that both fields and spaces are contained within that class of objects, and
such that that function assigns to a space is fundamental group and to a field its (absolute) Galois
group? Secondly, could we find some object in between a space and a field, so that Galois groups
and fundamental groups are intertwined?

We shall give at least partial answers to both questions. As we shall see, it is very related to
the following question. Suppose the space X ⊆ Cn is the solution set to a system of polynomial
equations in n variables (or more generally, a complex algebraic variety, affine or projective). For
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example, consider surfaces in C2 cut out by the equations

xy − 1 = 0

and
y2 = x3 + ax+ b.

The first is isomorphic to C \ {0}, which has fundamental group Z, and the second is a punctured
torus. Then can we find the fundamental groups of this objects by purely algebraic means? The
answer is partially yes, as we shall see in §1.3.

We will eventually see in §2.3 see that if such a space is defined by equations with coefficients
in Q (or more generally some finite extension K of Q), then the absolute Galois group of K is
intertwined with the fundamental group of our space in a deep way that has important consequences
for Diophantine solutions of such equations. For now, we will not get to all of these topics, but we
will see how the fundamental group of a certain space relates to the Galois group of a related field
of functions on that space.

1.2 Rings of Functions on Spaces and Primes as Points

Before proceeding, we mention two important general principles. Much of the ideas in §1.2 can
be learned in a basic course on algebraic geometry; we highly recommend [SKKT00], especially
[SKKT00, §2.5-6]. See also [EH00, I.1].

First, if X is some space (usually a manifold, or a subset of Rn, or even just the real line R if
you like), we often like to consider functions that associate a real number to each point of X. We
often ask that such functions be continuous, or differentiable, or smooth, or infinitely differentiable.
We might also consider functions associating a complex number to each point, and ask that they
too be continuous, or even complex-differentiable (holomorphic).

If we have two functions on a space, we can multiply them, by multiplying their values at
each point, and we can similarly add them. It is a basic fact that the sum and product of two
continuous functions is again continuous, and the same is true for differentiable functions, and just
about every other type of functions we’ve listed. One can see that the set of continuous real-valued
functions on a space forms a ring. The same is true of the set of differentiable or smooth functions,
of complex-valued continuous functions, of holomorphic functions, or just about anything you ask
for. They all form (commutative) rings under pointwise addition and multiplication.

Another important ring of functions that algebraic geometers often consider is the ring of
functions on Cn given by polynomials in n variables, denoted C[x1, · · · , xn]. This ring is contained
within the ring of continuous, differentiable, even holomorphic functions on Cn.

Now suppose r : X → Y is a map of spaces. If we just care about the topological structure
and are considering continuous functions, we want this map to be continuous. If we care about
differentiability, we want this map to be differentiable, so on and so forth. Then if f is a function
on Y (of the appropriate kind, i.e., differentiable or continuous or whatever), the composition
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f ◦ r is a function on X (this is called the pullback of f by r). In particular, this defines a
homomorphism r∗ from the ring of functions on Y to the ring of functions on X. Note that if
r is merely continuous, we get a homomorphism between the corresponding rings of continuous
functions, and if r is differentiable, we get a homomorphism of rings of differentiable functions, etc.
We have the following principle:

Principle 1.2.1. A map of spaces going in one direction induces via pullback a map of rings going
in the other direction.

The second principle is this. Let P be a point of a space X, and suppose we are considering
complex-valued functions on X (we could do real-valued is well, but I’m picking for the sake of
example), either continuous or differentiable or holomorphic functions, whichever ring you wish.
Then there is a homomorphism from the ring of functions on X to C, sending a function f to its
value f(P ) at P . In general, this map will be surjective, and since C is a field, the kernel will be a
maximal ideal. This is the ideal of functions that vanish at P and is denoted mP . More generally,
if S is a subset of X, then the set of functions vanishing on S is an ideal, though not necessarily
maximal.

Furthermore, suppose that r : X → Y is a map of spaces, P ∈ X, Q ∈ Y , and r(P ) = Q. Then
a function f on Y vanishes at Q (is in mQ) iff f ◦ r vanishes at P (i.e., is in mP ). In particular, mQ

is the preimage of mP under the ring homomorphism induced by r. In particular, if we didn’t know
the function r but only knew the ring homomorphism induced by r, we might be able to detect
that r(P ) = Q by seeing what happens to maximal ideals under the ring homomorphism.

There is an important observation that, in many contexts (for example, the ring of continuous
functions on a compact Hausdorff space, or the coordinate ring of an affine algebraic variety), every
single maximal ideal of the ring of functions is the ideal of functions vanishing at some point. We
therefore have the principle:

Principle 1.2.2. Points and maximal ideals are two ways of looking at the same thing.

Let’s illustrate this with the example of the ring C[z]. Every polynomial in z is a function on
the complex plane, i.e. associates a complex number to each point of the complex plane.

The maximal ideals in this ring are of the form (z − a), where a ∈ C. In particular, they
correspond bijectively to the points of C. It is easy to see that the ideal (z − a) is the set of
polynomials vanishing at a. Furthermore, the division algorithm tells us that for any polynomial
f(z), we can write

f(z) = q(z)(z − a) + r,

where r has degree 0 and is therefore a constant. Plugging in a for z, we see that

f(a) = q(a)(a− a) + r = r.

That is, the remainder of f(z) upon division by z − a is the value of f at a.

Mathematicians dating back to the 1800’s noticed an analogy between the ring C[z] and the
ring Z; for example, they are both principal ideal domains. The maximal ideals of Z correspond
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to the prime numbers. Therefore, one might pretend that there is some space whose points are
in bijection with the set of prime numbers. Under this analogy, the ring Z is the set of functions
on that space. Carrying this analogy further, the value of an integer n, which we think of as a
function on our space, at a prime number p, which we think of as a point in our space, should just
be the reduction modulo p of the integer n, or the remainder of n upon division by p. In particular,
its value at p lies in the field Fp = Z/pZ, the finite field of order p. In this bizarre world, the
values of a single function at different points live in different fields. This is pointed out in 3.2.1 of
http://math.stanford.edu/~vakil/216blog/FOAGnov1817public.pdf.

While this may seem very strange, the analogy becomes more fruitful when we consider exten-
sions of Z, the simplest of which is Z[i]. We put this in analogy with C[

√
z]/C[z]; our geometric

intuition from the latter case will then help us better understand extensions like Z[i]/Z. In partic-
ular, it will give us a geometric way to think about how primes of Z split in Z[i] (for example, 3 is
prime in Z[i], 5 = (2 + i)(2− i), and 2 is divisible by (1 + i)2). In the next section, we talk about
the relationship between field extensions of C[z] and fundamental groups.

For more details on the analogy between number rings and ring of functions, see §2.6 of http:
//www-math.mit.edu/~poonen/papers/curves.pdf.

1.3 Fundamental Groups of Punctured Planes and Galois Groups

1.3.1 The Squaring Map

We now switch gears and talk about actual fundamental groups. We consider the simple covering
map p from the complex plane C to itself given by sending a complex number to its square.

We recall some important terminology that applies to all covering maps: If p is a covering map,
then the domain of p is called the cover, and the range of p is called the base.

To make things more clear later on, we suppose that the cover has coordinate w, and the base
has coordinate z. In particular, this means

z = p(w) = w2.

We include a diagram on the next page. The w plane lies twisted above the z plane so that
every point w0 lies directly above z0 = p(w0). The figure isn’t really supposed to intersect itself;
unfortunately, you would need four dimensions to draw it properly, and this is not a four-dimensional
document.

For all a 6= 0 in C, the preimage p−1(a) of a has two elements, the two square roots of a.
But p−1(0) has only one element, namely 0. In particular, this map cannot be a covering map,
since in a covering of a connected space, each point must have the same number of preimages.
(Alternatively, you can show that this can’t be a covering map because C is simply connected, so
it has no connected coverings!)
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Figure 1.1: http://upload.wikimedia.org/wikipedia/commons/b/b5/Riemann sqrt.jpg
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What we can do to mend the situation is to take out the point 0. That is, when restricted to
C \ {0}, p induces a map C \ {0} → C \ {0} sending a nonzero complex number to its square. One
can in fact show that this map (the one from C \ {0} to C \ {0}) is a covering map. (To prove
that it is a covering map, one can note that the complex derivative, or Jacobian determinant if you
don’t like complex analysis, vanishes nowhere, and then use the inverse function theorem to show
the map is a local homeomorphism.) Furthermore, this covering corresponds to the subgroup

2Z ⊆ Z ∼= π1(C \ {0}).

This covering also has a nontrivial automorphism, σ, sending w to −w. Then σ respects the covering
p because p(w) = w2 = (−w)2 = p(−w) = p(σ(w)); in other words, σ is a deck transformation.1

This nontrivial deck transformation corresponds to the nontrivial element of

π1(C \ {0})/2π1(C \ {0})

in that for any w and a path γ from w to σ(w), the path p(γ) is a loop based at p(w) = p(σ(w))
representing this element of π1(C \ {0})/2π1(C \ {0}).

Caveat: σ is a map from the cover to itself. It does not involve the base.

We know that this is the cover of C \ {0} of degree 2 simply because every point has two
preimages. But if you want to think about fundamental groups in terms of actual loops, note that
squaring in the complex plane wraps the unit circle around itself twice, meaning it corresponds to
doubling in the fundamental group. Therefore, p gives the multiplication-by-2 map on π1(C \ {0}).

Next, consider the ring C(z) of rational functions in z. While an arbitrary rational function
does not define a function on all of C (as it is undefined wherever its denominator vanishes), it at
least defines a function on most of C. In particular, we can still add and multiply rational functions,
and we can pull them back by maps. In other words, we may think of the ring C(z) as a ring of
functions on the base of p. Similarly, we may think of C(w) as a ring of functions on the cover
associated to p.

Under the map p, the function assigning to each point of C \ {0} its coordinate z pulls back to
the function w2 on the w-plane. This map p corresponds therefore to an inclusion

p∗ : C(z) ↪→ C(w)

of fields sending z to w2.

The relation z = w2 is essentially the same as w =
√
z, and we can view C(w) as the field

extension C(z)[
√
z]. More formally, we have

C(w) = C(z)[w]/(w − z2).

This is a field extension of C(w) of degree 2, and its Galois group has order 2. The nontrivial element
of this Galois group sends

√
z to −

√
z, or w to −w. In particular, it is the ring homomorphism

induced by σ under Principle 1.2.1.

1Recall that if p : Y → X is a covering map, then a deck transformation is a map σ from Y to itself such that
p = p ◦ σ.
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1.3.2 Finite Covers of C \ {0}

More generally, consider the map pk : w 7→ z = wk, for k ∈ N. Then the preimage of z = a ∈ C
consists of all kth roots of a. What are the kth roots of a? Well if w = k

√
a denotes one of them,

then the others are of the form
{ζnkw}n∈Z,

where ζk is a primitive kth root of unity, and there are exactly k of them. If a is 0, then it
has only one preimage, and as before, the map pk is a covering only when restricted to a map
C \ {0} → C \ {0}. In fact, pk is the unique degree k connected cover of C \ {0}, and it corresponds
to the subgroup

kZ = kπ1(C \ {0}) ⊆ π1(C \ {0}) = Z.

In a similar way, this map corresponds to the field extension

C(w = k
√
z)/C(z).

Its Galois group Gal(C(w)/C(z)) is generated by the automorphism

w 7→ ζkw.

But this is precisely the formula for a deck transformation of the cover

pk : C \ {0} → C \ {0};

more specifically, we get a natural isomorphism

π1(C \ {0})/kπ1(C \ {0}) ∼= Gal(C(w)/C(z)) ∼= µk := {ζjk : 0 ≤ j ≤ k − 1},

where µk denotes the group of kth roots of unity in C. In this way, all finite covers of C \ {0}
correspond to certain Galois extensions of the field C(z), and the groups of deck transformations
can be recovered as the Galois groups of these field extensions.

What if we wanted to write down the universal cover? The universal cover is given by the
exponential map from C to C\{0}. Under the exponential map, the group π1(C\{0}) corresponds
to the subgroup 2πiZ ⊆ C. However, we wish to do algebraic geometry; and for that reason, we
cannot consider the universal cover, because the exponential map is not a polynomial map. One
way to see why the universal covering map cannot be given by polynomials is that a polynomial
has finitely many roots, while every point of C \ {0} has infinitely many preimages in the universal
cover.

In some sense, we can recover all finite quotients of the fundamental group π1(C\{0}) from the
Galois groups of field extensions of the field C(z). For any group G, there is a topological group,
Ĝ, known as the profinite completion of G, which has the same set of finite quotients as G, and is
in fact uniquely determined by those finite quotients. There is a natural homomorphism G → Ĝ,
and in many cases this map is injective. In particular, the profinite completion of Z is a group
known as Ẑ, which we describe in more detail in the next section. In this case, Ẑ is the (infinite)
Galois group of the extension of the field C(z) attained by adjoining all kth roots of z. I won’t say
precisely what this means now, but this implies that the étale fundamental group

πét
1 (C \ {0}) ∼= Ẑ.
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1.3.3 Ramified Covers of the Complex Plane

Now, I’d like to go back for a second to the map p : C→ C (sending w ∈ C to z = w2 ∈ C) which
is manifestly not a covering. It is, however, something more general, known as a ramified cover.
The point z = 0 over which the map is not a cover is called a branch point, and its preimage w = 0
is called a ramification point. In particular, a map is unramified and therefore a covering map if it
has no ramification points.

Now, recall that to each point a ∈ C (in the z-plane) is associated the ideal (z − a) in the ring
C[w]. Consider the image of z−a in the ring C[z]. It maps to w2−a ∈ C[w]. If a 6= 0, it splits as a
product of two distinct irreducibles in C[w], namely, w−

√
a and w+

√
a. If a = 0, then it is simply

a nontrivial power of a single irreducible polynomial, namely w2. More generally, if we consider
the kth power map pk, the same holds. That is, the ideal associated to a non-branch-point splits
as a product of k distinct primes when viewed in C[w], and the ideal associated to z = 0 equals a
power of a prime.

This is analogous to the fact that most primes of Z either remain prime or split as a product of
two distinct prime ideals in Z[i], whereas the prime 2 generates the power of a prime ideal, namely
(1 + i)2. This phenomenon is known as ramification in algebraic number theory; to learn more
about it, consult a standard book on algebraic number theory, such as [Mar18] or [Sam70]. For the
case of quadratic extensions, see Chapter 13 of Michael Artin’s book Algebra.

Remark 1.3.1. The reader may object that none of the irreducibles of C[z] remain irreducible
in C[w], whereas some prime numbers remain prime in Z[i] (more specifically, it is the set of
primes congruent to 3 modulo 4, such as 3, 7, 11, 19, · · · ). For this, we could consider the extension
R[w =

√
z]/R[z]. Here, ideals z − a for a positive or zero work exactly as before, while z − a for a

negative are just like the prime 3 in Z[i].

More generally, suppose we have a map f : C→ C given by a polynomial z = f(w). Then the
map is ramified precisely at those points w0 for which f ′(w0) = 0 (we can see this either by using
the inverse function theorem, or at least prove it’s not a cover by using the derivative to describe
numbers of preimages). The branch points are their images under f . Let S be the set of branch
points in C. Then f is a covering of C \ S. In particular, it corresponds to some subgroup of
π1(C \ S).

On the field-theoretic side, this corresponds to a field extension C(w) of C(z) obtained by
sending z to f(w). In particular, the degree of this extension equals the degree of the polynomial
f . If this field extension is Galois, then the corresponding subgroup of π1(C \S) is normal, and the
quotient by this subgroup is the Galois group of the extension.

Example 1.3.2. Consider the polynomial f(w) = w3−6w2+9w+1, so that C(w) = C(z)[w]/(w3−
6w2+9w+1−z). We have f ′(w) = 3w2−12w+9, which factors as 3(w−1)(w−3), so the ramification
points are 1 and 3. The corresponding branch points are w = f(1) = 1 and w = f(3) = 5, so 1
and 5 are the branch points of this map. In particular, this map is a covering of C \ {1, 5}, and it
corresponds to a finite index subgroup of π1(C \ {1, 5}). Let K be the Galois closure of C(w) over
C(z); then K corresponds to a normal cover of C \ {1, 5}, and the Galois group Gal(K/C(z)) is
isomorphic to a quotient of the fundamental group of π1(C\{1, 5}). (We could have also considered
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a polynomial like w3 − 9w2 + 18w − z, a root of which gives a Galois cubic extension over C(z).)
Now C \ {1, 5} is a twice-punctured plane and hence homotopy equivalent to a figure-eight, which
has fundamental group isomorphic to the free group on two generators. In particular, the Galois
group of this extension can be generated by two elements.

1.3.4 The Correspondence Between Galois Groups and Fundamental Groups

More generally, any finite field extension K/C(z) corresponds to a connected cover of the complex
plane punctured at some finite number of points. To see this, we can take a primitive element
w ∈ K such that g(w, z) = 0 for some g(x, z) ∈ C[x, z],2 then consider the set {X := (w, z) ∈
C2 | g(w, z) = 0}. This set X maps onto C by sending (w, z) to z. One can show that this is a
ramified cover and that it corresponds to the field extension K in the same way as before. If its
set of branch points (the images under the map of the ramification points, i.e. the points at which
the derivative vanishes) is S, then it gives a topological covering3 of C \ S, hence corresponds to a
subgroup of π1(C \S). In particular, if K/C(z) is chosen to be Galois, then there is a natural map

π1(C \ S)→ Gal(K/C(z))

whose kernel is π1(X).

Remark 1.3.3. In fact, a field extension gives a unique ramified cover, and its branch points (which
are the points over which the map is not a cover) are are determined by the cover. Furthermore, if
L/K/C(z), then every branch point of K is a branch point of L, so that we have to puncture in at
least as many places to get a covering for L as we do for K.

We’ve now explained how every finite field extension of C(z) gives rise to some finite topological
cover of an open subset of C. Conversely, suppose we have a topological covering of C \S for some
finite set S. Then the famous Riemann Existence Theorem says that there is a field extension of
C(w) giving rise to it.

In particular, all finite quotients of the fundamental groups of puncturings of the complex plane
arise as Galois groups of field extensions of C(z). This has an interesting application. Let G be an
arbitrary finite group. Then it can be generated by some number of elements, say n. Let S be a set
of n complex numbers. Then π1(C \S) is the free group on n generators, which has G as one of its
quotients. Thus there is a finite covering X of C \S with covering group G. It then corresponds to
a field extension K/C(z) with Galois group G. In particular, every finite group is the Galois group
of an extension of C(z). What’s amazing is that we proved this using topology.

Let’s fix a particular finite set S ⊆ C and try to understand π1(C \ S) in terms of Galois
theory. Luckily, the compositum of two fields unramified above a point is again unramified above
that point. Therefore, for a given set of points S, we can take the compositum KS of all finite

2In other words, for some polynomial g in one variable x with coefficients in the ring C[z].
3Technically it could be an open subset of a topological covering, but we will not worry about this point here.

The reader with a background in algebraic geometry will note that this does not matter because we are considering
function fields rather than coordinate rings.
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extensions K/C(z), whose branch points are contained in S. Then KS is a Galois algebraic (but
not necessarily finite) extension of C(z), and there is a natural map

π1(C \ S)→ Gal(KS/C(z)).

Riemann’s existence theorem would seem to suggest that this is an isomorphism; that is almost
true, but not quite. Let’s think about the case S = {0}. Then π1(C \ S) = Z, while

KS = C(z)[{ k
√
z}k∈N].

In Galois theory, everything comes from finite extensions; in particular, the infinite Galois group
Gal(KS/C(z)) is not Z, but rather the inverse limit lim←−

k

Z/kZ known as Ẑ. This is the group of all

compatible systems of elements of Z/kZ, i.e.

Ẑ =

{
(nk)k ∈

∏
k

Z/kZ
∣∣nk ≡ nk′ (mod k) if k | k′

}

Thus the map
π1(C \ S)→ Gal(KS/C(z)).

is not an isomorphism, but it does induce a bijection between all finite quotients of the left-
and right-hand sides. In particular, this map realizes Gal(KS/C(z)) as the profinite completion
̂π1(C \ S) of π1(C \ S).

We now have an isomorphism

Gal(KS/C(w)) ∼= ̂π1(C \ S)

between the Galois group of this extension and the fundamental group of C \ S. This is the “free
profinite group on |S| generators,” also the free product of Ẑ with itself n times, if you know what
either of those terms mean.

Remark 1.3.4. In a very technical sense, there is really a canonical anti-isomorphism between
the Galois group and the fundamental group, because maps of spaces go the opposite direction as
maps of rings or fields. So left actions of one correspond to right actions of the other. (On the
é-tale site.) But every group is isomorphic to its opposite via the inverse map.

More generally, Riemann’s theorem works with C replaced by any compact Riemann surface (in
the case of C, it is the Riemann sphere), and C(z) replaced by the field of meromorphic functions
on that Riemann surface. Then we can find (profinite completions of) fundamental groups in terms
of Galois groups of function fields.

In conclusion, we have seen a concrete situation where certain Galois groups correspond to
certain fundamental groups, and we can (partially) recover the fundamental group from the Galois
group of a certain extension. Next time we will come at the problem from a different (but related)
angle and answer some of the questions posed at the beginning.
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Chapter 2

Etale Fundamental Groups

We will now talk about Grothendieck’s approach to fundamental groups of varieties, building upon
others before him. The étale fundamental group was first introduced in the massive work [SGA03].
We refer to [Sza09, Chapter 5] for a gentle modern treatment.

We will greatly use the two principles from last time. Before we begin, we review affine varieties.

2.1 Affine Varieties

A very good reference is once again [SKKT00]. We also recommend [Sil09, Chapter I].

A (complex) affine variety X is the subset of Cm consisting of the solutions to a system of
polynomial equations

f1(x1, · · · , xm) = f2(· · · ) = · · · = fs(x1, · · · , xm) = 0

in m variables. To the variety, we associate its affine coordinate ring

A(X) := C[x1, · · · , xm]/I(X),

where I(X) is the set of polynomials vanishing on X. Hilbert Nullstellensatz states that this is
the radical of the ideal generated by f1, · · · , fs. Conversely, X is the set of points at which every
element of I(X) vanishes. Since every element of I(X) vanishes on X, the elements of A(X) are
well-defined complex-valued functions on X, and an element of A(X) is determined by its value at
each point.

To every point P ∈ X we associate the ideal mP ⊆ A(X) of functions that vanish at X. It is
a maximal ideal, and Hilbert’s Nullstellensatz implies that every maximal ideal corresponds to a
unique point.

If X ⊆ Cm and Y ⊆ Cn are affine varieties, then a map (or morphism) between the varieties is
a map from the set Y to the set X given by m polynomials h1, · · · , hm each in n variables. The
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map defined by a sequence of polynomials sends the point (y1, · · · , yn) ∈ Y to

(h1(y1, · · · , yn), h2(· · · ), · · · , hm(· · · )) ∈ X ⊆ Cm.

If r : Y → X is a map between varieties, then the pullback of any polynomial function on X (i.e.
an element of the ring A(X)) is a polynomial function on Y , and this defines a ring homomorphism
r∗ : A(X) → A(Y ). The key observation is that this actually gives a bijection between maps
from Y to X and C-algebra homomorphisms from A(X) to A(Y ). Another way to say this is that
the category of affine varieties is anti-equivalent to the category of affine coordinate rings (with
C-algebra homomorphisms as morphisms).

To see why, first consider the case X = Cm, Y = Cn. Then a map from Y to X is the same as
a collection of m polynomials in n variables. But this is the same as a C-algebra homomorphism
C[x1, · · · , xm]→ C[y1, · · · , yn], since such a map is determined uniquely by a choice of where each
xi goes.

Now, suppose that X and Y are cut out by polynomials f1, · · · , fs and g1, · · · , gr, respectively.
Then a map Y → X is uniquely determined by a collection of m polynomial functions on Y , i.e. m
elements of A(Y ), which is the same as a C-algebra homomorphism C[x1, · · · , xm] → A(Y ). This
map is a map to X iff the image is contained within X, which is to say that every polynomial in I(X)
vanishes on the image. But this exactly corresponds to the condition that the map C[x1, · · · , xm]→
A(Y ) factor through the quotient

C[x1, · · · , xm]→ C[x1, · · · , xm]/I(X) ∼= A(X).

This is explained on p.24-25 of [SKKT00].

2.1.1 Fundamental Groups of Affine Varieties

Let’s bring topology back into the picture. Cm has a topology, being homeomorphic to R2m, and
X has a topology as a closed subspace of Cm. Furthermore, polynomial maps are continuous, and
so we can talk about what it means for a map between varieties to be a covering map.

Since maps between varieties correspond bijectively to maps between their affine coordinate
rings, we can single out those ring homomorphisms between affine coordinate rings that correspond
to covering maps of varieties and call them covering ring homomorphisms. We would like to now find
an intrinsically ring-theoretic criterion for a map between rings to be a covering ring homomorphism.
One reason for wanting such a ring-theoretic criterion is that we would like to give a purely algebraic
construction of the fundamental group, and giving an algebraic definition of covering space is one
step in that direction. The other reason is in order to make a vast generalization that we will see
in the next section.

Such a criterion exists, and it is the notion of a (finite) étale map of rings. This is precisely
why the word “étale” pops up so often in things like étale fundamental groups, étale cohomology,
and so on.

13



Thus a map between varieties is a covering iff the corresponding map on affine coordinate rings
is finite étale. We give a sketch of how you might define such a notion, but the reader may wish
to skip this sketch. However, what’s most important to know is simply that there exists an abstract
ring-theoretic condition corresponding to a covering map.

2.1.2 Sketch of the Definition of Etale

In Terms of Ramification

Let’s recall some notation from §1.3.3. Recall that the map pk : C→ C is not a covering map because
of the existence of branch points. Our intuition is therefore that a covering map is simply a map
without branch points. We would therefore like an algebraic criterion for determining whether a
map of rings has branch points (equivalently, ramification points).

Remark 2.1.1. Technically, as we’ll see, the notion of being a covering map is a little more
restrictive than just not having branch points. A map without branch points is always an open
subset of a covering map,1 and is known as a local homeomorphism (more on what that means
below). A standard example of a local homeomorphism that is not a covering map would be the
map

pk : C \ {0, 1} → C \ {0}.

This difference corresponds to the difference between étale and finite étale (the former corre-
sponding to local homeomorphisms). A finite étale map is essentially an étale map such that every
point on the base has “enough preimages,” while an étale map is the composition of a finite étale
map with the inclusion of an open set.

Recall furthermore from §1.3.3 a ring-theoretic avatar of the fact that 0 is a branch point of pk.
This was the fact that the irreducible polynomial z splits in C[w] as a nontrivial power wk, where
k > 1. Therefore, as an approximate definition, we might say that a map f : A → B of rings is
étale if for every prime ideal p of A, the ideal pB does not have any repeated factors (in a sense, is
“square-free”).

The technical definition is that a map of rings q : R→ S is unramified if for every prime ideal p
of S, the corresponding map on local rings Rq−1(p) → Sp sends q−1(p) onto the maximal ideal of Sp
(rather than onto a power of it, say). Then a map is étale if it is flat, locally of finite presentation,
and unramified.

In Terms of Local Homeomorphisms

First, let’s say a little bit more about what “local homeomorphism” means. Obviously, a nontrivial
cover is not a homeomorphism, for any point x ∈ X has multiple preimages. But you might not

1In algebraic geometry, the fact that any étale map may be factored by an open immersion followed by a finite
étale map is nontrivial and follows from Zariski’s Main Theorem.
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object that it’s not even locally a homeomorphism, because no matter how small a neighborhood you
take of X, the map is not a homeomorphism on that neighborhood. The key is that it is locally on
Y a homeomorphism. In other words, “local homeomorphism” means that it is a homeomorphism
when we restrict to an open neighborhood of some preimage y of X. And indeed, for any y ∈ Y ,
there exists a neighborhood of h such that the restriction of the covering map to that neighborhood
is a homeomorphism onto its image.

Our motivation now comes from differential geometry. If we’re considering maps of smooth
manifolds, then the map is locally a homeomorphism at a point iff its map on tangent spaces is
an isomorphism, or equivalently its Jacobian determinant does not vanish. This follows from the
inverse function theorem.

This already seems somewhat more algebraic, because we can define derivatives of polynomials
in a purely formal and algebraic way. However, we would like something even more ring-theoretic.
If P is a point of X, then mP is the ideal of functions vanishing at X. Each function has a gradient
at P , which is a cotangent vector at P . The functions with vanishing gradient are those in m2

P .
In particular, the cotangent space to the variety at P is isomorphic to mP /m

2
P . This gives us a

ring-theoretic way to consider the cotangent space. We might then say that r : Y → X is a covering
iff for all P,Q ∈ X,Y such that r(Q) = P , the induced homomorphism

A(X)/m2
P → A(Y )/m2

Q

is an isomorphism. This definition turns out to be satisfactory when the varieties are nonsingular,
and it is the definition of étale in that case.

When the varieties are singular, we need higher order information. It turns out that the right
definition is that the map is étale if A(X)/mk

P → A(Y )/mk
Q is an isomorphism for all k ∈ N. More

generally, we say that a homomorphism q : R→ S of rings is étale if for all maximal ideals m of S,
the induced homomorphism

R/q−1(m)k → S/mk

is an isomorphism. This is equivalent to the other definition of étale for rings satisfying reasonable
conditions.

More on Etale vs. Finite Etale

This subsection is already getting quite technical. But feel free to read it if you’re bugged by the
adjective “finite” always appearing before “étale.”

As we’ve said, not every local homeomorphism is a covering. For an even simpler example
than in Remark 2.1.1, the inclusion of an open subset U into a space X (also known as an open
immersion) is locally a homeomorphism, but it is clearly not a covering.

What condition on a local homoeomorphism ensures that it’s a covering map? We might, as a
first approximation, require that our map be surjective. But consider the map from C \ {0, 1} to
C \ {0} given by sending z to z2. Then this map is a local homeomorphism and is surjective, but it

15



is not a covering. In particular, the point 1 is missing an element of its fiber. This is because the
map is obtained by the composition

C \ {0, 1} → C \ {0} → C \ {0}

of an open immersion with a covering.

Let’s explain why the word “finite” appears. The finite condition on finite étale homomorphisms
of rings ensures that the map is actually a cover. A ring homomorphism R → S is finite if S is a
finitely-generated module over R. Note that this does not have to do with the fact that every point
has finitely-many preimages - for the same is true of any open immersion! Rather, it has to do with
the fact that an open immersion is the roughly same thing as localization, or formally inverting
elements. For example, the inclusion C \ {0} ↪→ C corresponds in algebraic geometry to the ring

homomorphism C[z]→ C[z]

[
1

z

]
(because when we restrict to C \ {0}, z becomes invertible). Since

we can consider arbitrarily high powers of
1

z
, the ring C[z]

[
1

z

]
is not finitely-generated as a module

over C[z]. It is this finiteness condition that ensures an étale map is actually a covering.

More specifically, a map A → B of rings is finite étale if it is finite and étale. It is this
ring-theoretic criterion that corresponds precisely to covering maps in topology.

2.2 Grothendieck’s Approach and Etale Fundamental Groups

2.2.1 Spaces and Rings

We recommend [SKKT00, §2.5-6] and [EH00, I.1] as companion reading to this section.

We now outline Grothendieck’s point of view on all of this. He noted that affine varieties
correspond bijectively to affine coordinate rings, which can be characterized as finitely-generated
reduced C-algebras. The “finitely-generated” condition just says that the ring is the quotient of
a polynomial ring, and the “reduced” (also known as “nilpotent-free”) condition comes from the
fact that I(X) is the radical of another ideal by the Nullstellensatz. Furthermore, C-algebra maps
correspond bijectively to maps of varieties going in the other direction. In other words, we have
an anti-equivalence of categories between affine algebraic varieties over C and reduced finitely-
generated C-algebras (see [SKKT00, §2.5] or [EH00, p.8]).

Grothendieck’s important contribution was to ask why we restrict ourselves to such a specific
class of rings, namely finitely-generated reduced C-algebras, and not instead consider all commu-
tative rings. He imagined that every ring is the ring of functions on some space, and if A is a ring,
he called this imagined space “SpecA.” This space would correspond to A in the same way that
an affine variety corresponds to its affine coordinate ring. He referred to this space as an “affine
scheme.” Put another way, he simply defined the category of affine schemes to be the opposite of
the category of rings.
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Taking this (imagined) analogy further, the “points” of this “space” SpecA should correspond
to the maximal ideals m of A, and if q : A → B was a ring homomorphism, then the point (or
maximal ideal) m ⊆ B should map to the maximal ideal q−1(m) in A. He further noted that the
preimage of a maximal ideal was not always maximal (consider the preimage of (0) ⊆ Q under the
inclusion of Z into Q) and therefore suggested that all prime ideals of A should count as points of
this space.

Armed with this point of view, we should say that the map of spaces SpecB → SpecA is a
covering iff the corresponding map of rings A → B is finite étale (we say that B is a “finite étale
extension” of A). We don’t actually know what these spaces are or mean or if they exist (or what
that would mean!); they are imagined. But whatever they are, we are defining a map between
these spaces to be a covering if the corresponding map on rings is étale:

Definition 2.2.1. We define a covering of an affine scheme A to be a map SpecB → SpecA such
that the map of rings A→ B is finite étale.

Note that once we know what ‘finite étale’ means, this definition is nothing more than a for-
mality.

A deck transformation of such a covering is just an automorphism of B that restricts to the
identity on the image of A.

2.2.2 Etale Fundamental Groups

Now let’s suppose we have a ring A and we want to compute the fundamental group of SpecA.
Then we should consider each connected SpecB → SpecA and its group of deck transformations.

Note that we have defined “covering” but not “connected.” But the idea is quite simple. If a
space X is disconnected, say it is a disjoint union X1 t X2, then a specifying a function on X is
the same as independently specifying a function on X1 and a function on X2. In particular, the
ring of functions on X is just the direct product of the ring of functions on X1 with the ring of
functions on X2. In particular, a space is connected if its ring of functions is not the direct product
of two other rings. Therefore, we say SpecB is connected if B is not the direct sum of two other
rings. In general, we should require SpecA to be connected from the start, as we should consider
fundamental groups only of connected spaces.

Now we want to construct a group πét
1 (SpecA) whose subgroups correspond to the covers of

SpecA. For this, we focus on its normal subgroups. If N is a normal subgroup of πét
1 (SpecA), then

N corresponds to a covering SpecB → SpecA for which πét
1 (SpecA)/N is isomorphic to the group

of deck transformations of this covering. (If N is not normal, then the corresponding covering
will not have enough deck transformations, just as non-Galois field extensions don’t have enough
automorphisms.) As mentioned above, the set of deck transformations is the set of automorphisms
of B that act as the identity on A, aka the automorphisms of B as an A-algebra.2 We thus should

2Again, as mentioned in an earlier footnote, the group structure is the opposite because of contravariance.
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have
πét

1 (SpecA)/N = AutA(B)

We can thus define the étale fundamental group

πét
1 (SpecA) := lim

←
AutA(B)

as an inverse limit over all finite étale homomorphisms from A to connected rings B. This is the
profinite completion of what the fundamental group should be, but it serves our purposes for the
moment. We have given a meaning to “the fundamental group of SpecA”!

Spoiler (more details below): The étale fundamental group of an affine variety is just the
profinite completion of the ordinary topological fundamental group. On the other hand, if A = K
is a field, then πét

1 (SpecA) is just GK = Gal(K/K), the absolute Galois group of K!

In more detail, if we have an affine variety X, we can consider its affine coordinate ring A(X)
and then consider all finite étale homomorphisms A(X)→ B. It turns out that B will always be an
affine coordinate ring, with a C-algebra structure inherited from A (so the map will be a C-algebra
homomorphism!). The important fact is that a more general form of Riemann’s existence theorem
than the one we used last time ensures that any finite topological covering of a complex algebraic
variety arises as a polynomial map between varieties, and the deck transformations are maps of
varieties. This means that finite topological covers of X correspond bijectively to finite étale maps
A(X)→ B. In particular, we have an isomorphism

πét
1 (SpecA(X)) ∼= ̂π1(X(C)),

where X(C) denotes the points of X in the complex topology.

We thus have a purely algebraic way to define the fundamental group of a complex algebraic
variety; no loops or continuous maps involved! One might ask whether we can recover the fun-
damental group of a variety, not only its profinite completion, in a purely algebraic manner; i.e.
solely from the ring A(X). This method doesn’t seem to work, but you might wonder if there is a
different way. As it turns out, Serre provided an example that proves there is no different way. (I
sometimes refer to this as “Theorem: Too Bad”; that even made it onto a t-shirt.)

If one has a set of polynomial equations in C that cut out a variety, one can apply an automor-
phism of C to all of the coefficients. Assuming the coefficients are not all rational, this can change
the variety and actually change the topology of the variety. However, because the algebra of both
varieties is exactly the same, their affine coordinates rings are isomorphic (note that they are not
isomorphic as C-algebras, for the varieties are not isomorphic). In particular, this means that their
étale fundamental groups are isomorphic. Serre found an example of two varieties with isomorphic
affine coordinate rings but whose fundamental groups were different ([Ser64]). By everything we’ve
said, the profinite completions of these different fundamental groups had to be the same, for they
are both the étale fundamental group of the underlying coordinate ring. But this means that we
cannot recover the fundamental group of a variety from its affine coordinate ring; we can recover
only its finite quotients.
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2.2.3 Galois Groups as Fundamental Groups

We have recovered the fundamental group of a variety, or at least its finite quotients, in a purely
algebraic way, thus answering one of the original questions. But we have done something even
deeper: we’ve found a construction (étale fundamental group of a(n affine) scheme) such that when
we input a space, we get its fundamental group, and when we input a field, we get its (absolute)
Galois group.

As mentioned above, if K is a field, then

πét
1 (SpecK) ∼= Gal(K/K).

(Note that K denotes the separable closure of K.)

This follows from the fact, which one can prove in commutative algebra, that the finite connected
étale homomorphisms out of K are precisely the finite separable field extensions of K. It follows
immediately from our definitions that the above statement is true (and again, there is a canonical
anti-equivalence between the two, as a map of rings corresponds to a map of spaces going in the
other direction). To see why separable might come into the étale picture, recall that separability
can be defined by saying that the derivative of the polynomial defining the extension doesn’t vanish
identically. But if the derivative were to vanish identically, then every point would be a ramification
point.

Furthermore, the correspondence between finite-index subgroups of the étale fundamental group
and connected finite étale covers is exactly the same as the correspondence between subgroups of
the Galois group and separable finite extensions of K. Furthermore, a map SpecB → SpecA of
spaces should induce a homomorphism πét

1 (SpecB)→ πét
1 (SpecA), and it in fact does. In the case

of a separable algebraic extension K ↪→ L, the map SpecL→ SpecK induces the natural inclusion
Gal(L/L) ↪→ Gal(K/L).

In particular, a K is separably closed iff SpecK has no nontrivial finite separable extensions,
which is to say that its étale fundamental group is trivial and that it is simply connected. More
generally, we say that SpecA is simply connected if it has no nontrivial connected coverings.

The funny thing to note is that if K is not separably closed (e.g. Q), then it is not simply
connected, yet SpecK consists of only a point, since K has only one prime ideal. In some bizarre
sense, there are nontrivial loops in this one-point space! At the very least, this demonstrates that the
point-set of SpecK tells us very little about the actual “geometry” of SpecK. In modern language,
one would say that the Zariski site of SpecK is trivial, but the étale site is very interesting.

Let’s go back to our discussion in §1.3.4 about the fundamental group of X = C \ S, where
S = {a1, · · · , an}. You may convince yourself that X is the set of solutions to the equation

(x− a1)(x− a2) · · · (x− an)y = 1,

so its coordinate ring is

A(X) = C[x]

[
1

(x− a1)(x− a2) · · · (x− an)

]
.
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As mentioned above, we must have πét
1 (SpecA(X)) = ̂π1(C \ S). We also recall our definition of

KS as the compositum of all extensions of C(z) coming from covers with branch points in S. Then
if you unravel the definition of étale, it turns out that, almost by definition, we have

πét
1 (SpecA(X)) = Gal(Ks/C(z)).

Furthermore, there is a natural inclusion A(X) → C(X), which induces a map SpecC(X) →
SpecA(X). As we’ve stated, this should induce, by functoriality of πét

1 , a map

πét
1 (SpecC(X))→ πét

1 (SpecA(X)).

As it turns out, this map is just the quotient map from Gal(C(X)/C(X)) to Gal(KS/C(X)).

2.2.4 Etale Fundamental Groups of Arithmetic Schemes

If we apply the idea of schemes to the ring Z of integers, then SpecZ is some sort of space with a
point for each prime number p. For a picture, see [EH00, II.4.1]. Similarly, SpecZ[i] has points for
prime elements such as 1 + i, 3, and 1 + 2i.

The map SpecZ[i] → SpecZ coming from the inclusion Z ↪→ Z[i] sends 1 + i to 2, 3 to 3, and
1 + 2i to 5. Because (2) = (1 + i)2 (as ideals, not elements), the prime (or “point”) (2) ramifies in
the extension. This means that the map is not a covering.

We can, however, localize to get rid of the prime 2, forming instead hte ring homomorphism
Z[1/2] ↪→ Z[i][1/(1 + i)]. This is in fact a finite étale homormophism of rings. In particular,
SpecZ[1/2] is not simply connected. Because this cover goes away when we include the point (2),
we can think of there being a nontrivial “loop” running around the point (2).

See [EH00, II.4.2] for what happens in the case of the map SpecZ[
√

3] → SpecZ, including a
picture!

More generally, if you know algebraic number theory, let OK be the integer ring of a number
field K, S a finite set of primes, and OK,S the ring of S-integers, i.e., with primes in S inverted.
Then πét

1 (SpecOK,S) is the Galois group of the maximal extension of K unramified outside S.

There’s a theorem of Minkowski that Q has no unramified extensions; in other words, this says
that SpecZ is simply connected! Going even further, the theory of the Hilbert class field tells that
the (narrow) class group of OK is isomorphic to the Galois group of the maximal unramified abelian
extension of K. In other words,

Cl+(OK) ∼= πét
1 (SpecOK)ab.

One deficiency of the étale theory is that it does not detect “ramification” at the infinite places
and so does not see the full class group Cl(OK). There are some more sophisticated approaches to
this, such as the Artin-Verdier étale topos (see [Mor11]).

On the other hand, note that πét
1 (SpecZ[1/p]) is already very large. It contains a quotient

isomorphic to Z×p , coming from the p-power cyclotomic extensions of Q.
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Knots and Primes

In this direction of considering fundamental groups in arithmetic, note that for a finite field Fq, we

have Gal(Fq/Fq) ∼= Ẑ. This is the same as the étale fundamental group of C \ {0}, so we might
think that SpecFq is homotopically a circle. In more topological terms, we say that SpecFq is a

K(Ẑ, 1).

What about SpecZp? What is its étale fundamental group? First, let’s recall what happens
for SpecQp; as Qp is a field, a covering is just a map SpecK → SpecQp for a finite field extension
K/Qp, and πét

1 (SpecQp) = Gal(Qp/Qp).

Now, Qp is the fraction field of Zp. As we discussed at the end of §2.2.3, if A is the coordinate
ring of C\S (whose fraction field is C(z)), then the set of finite étale covers of A corresponds to only
some of the finite étale covers of C(z), and we have a quotient map πét

1 (SpecC(z))→ πét
1 (SpecA).

Similarly, only some finite field extensions K of Qp should give finite étale covers of SpecZp (and
when they do, the corresponding finite étale covering is SpecOK → SpecZp). Which ones? Based
on our discussion of ramification, the following answer should make sense to you: SpecOK →
SpecZp is étale precisely when pOK is not a nontrivial power of a prime ideal. In other words, this
is étale precisely when K/Qp is an unramified extension of Qp.

This tells us that πét
1 (SpecZp) = Gal(Qunr

p /Qp), where Qunr
p is the maximal unramified exten-

sion of Qp. From the basic theory of extensions of Qp, we know that this Galois group is naturally

isomorphic to Gal(Fp/Fp) ∼= Ẑ and has a natural generator known as Frobenius. In fact, this iso-
morphism comes from the fact that the natural inclusion of schemes SpecFp → SpecZp induces an
isomorphism on étale fundamental groups.

Taking this further, since SpecFp is like a circle, we might think of an embedding of SpecFp into
another scheme as being a knot in that scheme. In fact, for each prime number p, we have a natural
embedding of schemes SpecFp ↪→ SpecZ. For reasons that are too complicated to explain here
(they involve étale cohomology ; see [Maz73]), it is appropriate to think of SpecZ as a 3-manifold,
and so a prime number is like a knot in a 3-manifold. This analogy was originated by Mumford
and Mazur, who showed that the analogy goes fairly deep: quadratic residues are an arithmetic
analogue of linking number, and the Alexander polynomial has an arithmetic analogue in Iwasawa
theory! For a survey of these ideas, see [Mor10], or see [Mor12] for a more detailed introduction.

Minhyong Kim has recently tried to find arithmetic analogues of gauge theory and TQFT as
applied to knots; for a survey, see [Kim18].

2.3 Galois Groups and Fundamental Groups, Intertwined

We’ve so far considered covers of SpecA when A is an affine coordinate ring and when A is a field.
These give us topological covers of some space and extensions of some field, respectively. Can we
find a ring A that combines both worlds?
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The reason affine coordinate rings of complex varieties reflect geometric phenomena is that the
base field is algebraically closed. So let us consider varieties over a non-algebraically closed field.
In fact, let us consider a variety over Q. That is, let us consider a system of polynomials f1, · · · , fs
in m variables with rational coefficients. We then consider the ring

A := Q[x1, · · · , xm]/(f1, · · · , fs).

Note that we could replace Q by any number field, but we omit this generality for simplicity.

This ring has various étale extensions. Some correspond to algebraic extensions of Q, the
simplest being Q(

√
2)[x1, · · · , xm]/(f1, · · · , fs). Others correspond to actual geometric maps of

varieties. Some are a combination of the two. That would suggest that πét
1 (SpecA) is a combination

of πét
1 (SpecQ) = GQ and πét

1 (SpecAC), where

AC = C[x1, · · · , xm]/(f1, · · · , fs).

Notice that AC is the coordinate ring of a complex variety, a kind of ring we’ve considered before.

We can formalize this by considering the string of homomorphisms

Q→ A→ AC.

Remark 2.3.1. As a technical point, we want the polynomials to be such that AC is an integral
domain, i.e. the variety X it corresponds to is irreducible over C (we say geometrically irreducible).
For example, we would not consider f1(x, y) = f(x, y) = x2 + y2, even though A in this case would
be an integral domain.

These maps of rings give rise to maps

SpecAC → SpecA→ SpecQ.

As per functoriality of πét
1 , we should have a sequence of group homomorphisms

πét
1 (SpecAC))→ πét

1 (SpecA)→ πét
1 (SpecQ).

Assuming the variety is nonsingular, it turns out that this sequence is exact, with the last map
surjective. The idea behind this is that SpecA is somehow like a fiber bundle (or fibration) over
SpecQ with fiber SpecAC). This idea might seem strange, given that SpecQ is just a point. But
recall that it is a point with nontrivial loops, with nontrivial monodromy. In particular, it can have
nontrivial fiber bundles over it. To talk about the fiber over a point, we want to talk about the
fiber over a simply connected point. To that end, we look at the fiber over SpecC → SpecQ; and
that is where it all comes from!

It turns out, furthermore, that the first map is injective. Equating πét
1 (SpecAC) with ̂π1(X(C))

and πét
1 (SpecQ) with Gal(Q/Q), we have a short exact sequence

0→ ̂π1(X(C))→ πét
1 (SpecA)→ Gal(Q/Q)→ 0.

As it turns out, this exact sequence was known to Zariski, who came up with the notion of
“algebraic fundamental group” of a variety, a precursor to the notion of étale fundamental group.
We call this exact sequence the fundamental exact sequence.
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2.3.1 Sections and Rational Points

We now note an interesting connection with Diophantine equations, namely the study of rational
solutions to polynomial equations. A solution (x1, · · · , xm) to the equations

f1(x1, · · · , xm) = f2(x1, · · · , xm) = · · · = fs(x1, · · · , xm) = 0

with rational coordinates x1, · · · , xm is the same as a Q-algebra homomorphism

A→ Q.

This is therefore the same as a map SpecQ→ SpecA such that the composition

SpecQ→ SpecA→ SpecQ

is the identity. By functoriality of πét
1 , this gives us a map πét

1 (SpecQ) → πét
1 (SpecA) that splits

the fundamental exact sequence.

This means, for example, that if one could compute the fundamental exact sequence of a par-
ticular variety and then show that it does not split, one would have proven that the equations
have no rational solutions. More specifically, Grothendieck showed that if X is a hyperbolic curve
(an algebraic curve of genus g ≥ 2), then each rational point corresponds to a unique section. In
particular, if he could prove that the fundamental exact sequence has finitely many splittings, then
he could prove Mordell’s famous conjecture that such a curve has finitely many rational points!
Unfortunately, no one has been able to make good on this approach, and Faltings later proved the
Mordell conjecture using different methods.

Furthermore, Grothendieck conjectured ([Gro97a]) that for hyperbolic curves, every splitting
comes from a rational point. This is the famous section conjecture in anabelian geometry. The
term “anabelian” refers to the marked lack of abelian-ness of the fundamental groups of hyperbolic
curves and the fact that this might limit the number of splittings of the fundamental exact sequence.
For a modern survey of results related to the section conjecture, see [Sti13].

2.3.2 Geometric Galois Actions

We note one more consequence of the fundamental exact sequence. The group

πét
1 (SpecA)

acts on itself by conjugation, and since ̂π1(X(C)) is a normal subgroup, this action restricts to an

action on ̂π1(X(C)). We therefore have a homomorphism

πét
1 (SpecA)→ Aut( ̂π1(X(C))),

which we compose with the quotient map

Aut( ̂π1(X(C)))→ Out( ̂π1(X(C)))
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to the group of outer automorphisms of ̂π1(X(C)), the quotient of the group of all automorphisms by

the group of inner automorphisms. Since ̂π1(X(C)) ⊆ πét
1 (SpecA) acts by inner automorphisms on

itself, it maps to the identity in the group of outer automorphisms. This induces a homomorphism

Gal(Q/Q)→ Out( ̂π1(X(C))),

known as the outer action of the Galois group on the étale fundamental group.

We can now explain another important part of the “anabelian geometry” alluded to earlier,
also from [Gro97a]. Grothendieck was inspired by a theorem in hyperbolic geometry known as
Mostow Rigidity, which states that a hyperbolic manifold is determined by its fundamental group
(even the hyperbolic structure!). Grothendieck conjectured that if X is a hyperbolic curve over a
number field K, then this outer action (as encoded in the group πét

1 (X)) should determine X as
an algebro-geometric object! This conjecture was eventually settled by Shinichi Mochizuki; for a
survey, see [NTM01].

We’ve left open one important question: what does this action look like in concrete terms?
Let’s consider A = Q[x, 1/x], so that SpecAC is geometrically C \ {0}. Then πét

1 (SpecAC) ∼= Ẑ.
This has a degree k quotient Z/kZ. Recall from §1.3.2 that we identified this Z/kZ with the group
µk of kth roots of unity. The Galois action, in this case, is simply induced by the natural action of
GQ on µk, which factors through Gal(Q(µk)/Q). Taking the limit over all natural numbers k, the
action corresponds to a map

GQ = Aut(Ẑ) = Ẑ×

known as the cyclotomic character.

More generally, if X is a variety over Q, we choose a basepoint b ∈ X(Q) (whose role was played
by 1 ∈ C \ {0} above). We consider covers defined over Q for which there exists a rational point
over b (why we can do this is beyond us, but I’ll just say it comes from the theory of twisting
torsors). We may then identify the set of all Q-points of the cover above b with the group of
deck transformations. Then the GQ-action on these points determines an action on this group of
deck transformations. Taking a limit over all sufficiently large covers, we get an action of GQ on
̂π1(X(C)).3

This action of GQ on the (profinite completion of the) fundamental group of a variety is the
subject of much research. For example, if X is a configuration space, then its fundamental group
is a braid group, so we get a Galois action on braid groups.

This is reminiscent of Teichmuller theory, where one studies the mapping class group MCG(Σ)
of a surface Σ and the natural map

MCG(X(C))→ Out(π1(X(C))).

The mapping class group is the fundamental group of a Teichmuller space, which is analytically the
complex manifold associated to a moduli space of algebraic curves Mg. In fact, we may combine
braid groups and mapping class groups by considering Mg,n, the moduli space of genus g algebraic

3Notice that we got an actual action, not just an outer action. This is because we chose a rational basepoint b.
More generally, the outer action does not depend on the choice of basepoint.
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curves with n marked points. This has a structure of an algebraic variety over Q, so there is an
action of GQ on its profinite fundamental group, and the action of the mapping class group is
Galois-equivariant.

For more on this and related topics, see the volumes “Geometric Galois Actions” ([SL97a],
[SL97b]). See also the ICM address of Ihara [Iha91].

In fact, this has given rise to a field known as Grothendieck-Teichmuller theory. Grothendieck
gave a lot of thought to this in his gigantic collection of writings “La Longue Marche à Travers La
Théorie de Galois” ([Gro95]), as well as a much shorter survey [Gro97b], which is reproduced in
[SL97a].

Finally, we end by considering the case X = C\{0, 1}, also commonly referred to as P1\{0, 1,∞}
or M0,4. A famous theorem of Belyi shows that the outer action on π̂1(X) in this case is faith-
ful (i.e. the homomorphism is injective). In particular, this means that we can understand
Gal(Q/Q) through its action on something slightly more concrete, namely the outer automorphisms
of the profinite completion of the free group on two generators. This can be built into some-
thing combinatorial, which is known as the theory of Dessins d’enfant (see [Zap]). Grothendieck

found a combinatorially-defined subgroup ĜT, known as the Grothendieck-Teichmuller group, of

Out( ̂π1(C \ {0, 1})) that contains the image of GQ. Some even wonder whether this combinatorially-
defined group might be isomorphic to GQ; for more, see [Sch97].
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