Bernd
Sturmfels
Professor of Mathematics,
Statistics and
Computer Science
925 Evans Hall
Dept. of Mathematics
University of California
Berkeley, CA 94720
Phone messages: 510 642 6550

Research Interests:
Algebraic Geometry, Combinatorics,
Commutative Algebra, Algebraic Statistics,
Convex Optimization, Computational Biology
Office Hours:
Mondays 89, Wednesdays 10:3011:30, or by appointment


Introduction to Tropical Geometry
Diane Maclagan and I are writing this
textbook on tropical geometry.
It will be published by the American Mathematical Society.
Please attend the
Tropical April Seminar in Berkeley.


Waxing Moon
My wife
Hyungsook Kim published this excellent
historic novel, set in 19th century Korea. Buy it today,
and stay tuned for her second book. Also, check
out these pieces on
Persimmons and
Cornbread.


Seminars at Berkeley
Please join our
Algebraic Statistics Seminar in the Spring semester 2014.
Of course, there are many other
wonderful seminars in my areas of
interest in the Berkeley Mathematics Department, such as
Combinatorics,
Commutative Algebra,
Computational Biology,
Computational Algebra,
Tropical and NonArchimedean Geometry,
Discrete Mathematics, and
Representation Theory etc.


Applied Algebraic Geometry
I helped to start the
SIAM Activity Group on Algebraic Geometry,
currently chaired by
Seth Sullivant.
Please join us.
The next
conference of this group will take place in
August 2015 at Deajeon, Korea.


Convex Algebraic Geometry
Philipp Rostalski and I
ran a research seminar on this topic
at Berkeley in the Spring of 2010.
This seminar was part of a multiinstitutional
FRG project
funded by the
National Science Foundation. The other participants were
Bill Helton
and
Jiawang Nie
at UC San Diego,
Pablo Parrilo
at MIT and
Rekha Thomas
at U of Washington.


Lectures on Algebraic Statistics
This book is based on an
Oberwolfach seminar led by
Mathias Drton,
Seth Sullivant
and myself in May 2008.
Algebraic statistics is an emerging field, aimed at
solving statistical inference problems using concepts from algebraic
geometry as well as related computational and combinatorial techniques.

