[19] | The local structure of the energy landscape in multiphase mean curvature flow: Weak-strong uniqueness and stability of evolutions,
with Julian Fischer, Sebastian Hensel, and Thilo Simon, preprint. arXiv:2003.05478 |
|
[18] | Convergence rates of the Allen-Cahn equation to mean curvature flow: A short proof based on relative entropies,
with Julian Fischer and Thilo Simon, preprint. arXiv:2002.11994 |
|
[17] | Mullins-Sekerka as the Wasserstein flow of the perimeter,
with Antonin Chambolle, preprint. arXiv:1910.02508 |
|
[16] | Implicit time discretization for the mean curvature flow of mean convex sets,
with Guido De Philippis, to appear in Ann. Sc. Norm. Super. Pisa Cl. Sci. (5). arXiv:1806.02716 |
[15] | Well-posedness for degenerate elliptic PDE arising in optimal learning strategies,
with J. Miguel Villas-Boas, Interfaces Free Bound., 22(1):119-129, 2020. DOI: 10.4171/IFB/434 |
|
[14] | Brakke's inequality for the thresholding scheme,
with Felix Otto, Calc. Var. Partial Differential Equations, 59(1):39-65, 2020. DOI:10.1007/s00526-020-1696-8 |
|
[13] | Analysis of diffusion generated motion for mean curvature flow in codimension two: a gradient-flow approach,
with Aaron Yip, Arch. Ration. Mech. Anal., 232(2):1113-1163, 2019. DOI:10.1007/s00205-018-01340-x. |
|
[12] | Convergence of the Allen-Cahn equation to multiphase mean curvature flow,
with Thilo M. Simon, Comm. Pure Appl. Math., 71.8:1597-1647, 2018. DOI:10.1002/cpa.21747 |
|
[11] | Gradient-flow techniques for the analysis of numerical schemes for multi-phase mean-curvature flow,
Geometric Flows, 3(1):76-89, 2018. DOI:10.1515/geofl-2018-0006 |
|
[10] | The elastic flow of curves on the sphere,
with Anna Dall'Acqua, Chun-Chi Lin, Paola Pozzi, and Adrian Spener, Geometric Flows, 3(1):1-13, 2018. DOI:10.1515/geofl-2018-0001 |
|
[9] | Convergence of thresholding schemes incorporating bulk effects,
with Drew Swartz, Interfaces Free Bound., 19(2):273-304, 2017. DOI:10.4171/IFB/383 |
|
[8] | Convergence of the thresholding scheme for multi-phase mean-curvature flow,
with Felix Otto, Calc. Var. Partial Differential Equations, 55(5):1-74, 2016. DOI:10.1007/s00526-016-1053-0 |
[7] | A gradient-flow approach for the convergence of the anisotropic Allen-Cahn equation.
RIMS Kôkyûroku, Kyoto 2020. |
|
[6] | The thresholding scheme for mean curvature flow and De Giorgi's ideas for minimizings movements,
with Felix Otto. arXiv.1910.11442 |
|
[5] | Thresholding for mean curvature flow in codimension two,
Oberwolfach Report, 3/2019. DOI:10.4171/OWR/2019/3 |
|
[4] | Kornwachstum in Polykristallen: Algorithmen für den mittleren Krümmungsfluss,
with Felix Otto, Research Report, MPI for Mathematics in the Sciences, 2017. |
[3] | Convergence of phase-field models and thresholding schemes
via the gradient flow structure of multi-phase mean-curvature flow, PhD Thesis, Max Planck Institute for Mathematics in the Sciences and University of Leipzig, 2017. |
|
[2] | Dynamics of magnetic phase transitions, Master's Thesis, RWTH Aachen University, 2013. |
|
[1] | Maximum principles in differential inequalities and monotonicity of solutions, Bachelor's Thesis, RWTH Aachen University, 2011. |