Proof of the Residue Theorem

David Corwin

October 2018

Let D be an open disc bounded by a circle C, let $k \in \mathbb{Z}$ and $z_0 \in \mathbb{C}$. Then we recall that

$$\int_C (z - z_0)^k dz = \left\{ \begin{array}{ll} 0, & \text{for } k \neq -1 \\ 0, & \text{for } z_0 \notin D \\ 2\pi i, & \text{otherwise} \end{array} \right\}.$$

By Theorem 1.3 of Chapter 3 of S-S, if f(z) has a singularity at z_0 that is either a pole or removable, there is a unique way to write f(z) as

$$f(z) = G(z) + \sum_{k=\text{ord}_{z_0}(f)}^{-1} a_k (z - z_0)^k$$

where G(z) is holomorphic at z_0 . In this efer to $\sum_{n=1}^{-1} a_k(z-z)$

as $P_{f,z_0}(z)$ or the principal part of f(z) at z_0 . We write $G_{f,z_0} = f(z) - P_{f,z_0}(z)$, which is the holomorphic part of f(z) at z_0 . If z_0 is understood, we write $P_f(z)$ and $G_f(z)$, respectively.

The function f is holomorphic at z_0 (or has a removable singularity at z_0) if any only if $P_{f,z_0}(z) = 0$.

If γ is a simple closed loop going around z_0 , then

$$\int_{\gamma} P_{f,z_0}(z)dz = 2\pi i \operatorname{res}_{z_0}(f).$$

We then have:

Lemma. Let $w_0 \in \mathbb{C} \setminus \{z_0\}$, and suppose f(z) is either holomorphic at w_0 , or holomorphic in a deleted neighboor of w_0 with a pole at w_0 .

Then the principal part of f(z) at w_0 is the same as the principal part of $G_{f,z_0}(z)$ at w_0 .

Proof. We have

$$G_{f,z_0}(z) = f(z) - P_{f,z_0}(z)$$

$$= P_{f,w_0} + f(z) - P_{f,z_0}(z) - P_{f,w_0}(z)$$

$$= P_{f,w_0} + [f(z) - P_{f,w_0}(z)] - P_{f,z_0}(z).$$

Now $[f(z) - P_{f,w_0}(z)]$ is holomorphic at w_0 by the definition of $P_{f,w_0}(z)$, and $P_{f,z_0}(z)$ is holomorphic at w_0 because $w_0 \neq z_0$. Thus $[f(z) - P_{f,w_0}(z)] - P_{f,z_0}(z)$ is holomorphic at w_0 . It follows by the uniqueness statement in Theorem 1.3 of Chapter 3 that $P_{f,w_0}(z)$ is the principal part of $G_{f,z_0}(z)$ at w_0 .

Using this, we may now prove the Residue Theorem:

Theorem. Let Ω be an open subset of the complex plane containing a simple closed curve γ and its interior U (i.e., the region it bounds). Suppose that f is a function that is holomorphic on Ω except for a finite set of distinct poles z_1, \dots, z_N , all lying in U. Then

$$\int_{\gamma} f(z)dz = \sum_{j=1}^{N} 2\pi i \operatorname{res}_{z_{j}}(f).$$

Proof. We prove this by induction on N.

For N = 1, we have

$$\int_{\gamma} f(z)dz = \int_{\gamma} P_{f,z_1}(z) + G_{f,z_1}(z)dz$$

$$= \int_{\gamma} P_{f,z_1}(z)dz + \int_{\gamma} G_{f,z_1}dz$$

$$= 2\pi i \operatorname{res}_{z_1}(f) + \int_{\gamma} G_{f,z_1}dz$$

By the lemma, $G_{f,z_1}(z)$ is holomorphic on all of Ω , so Cauchy's Theorem implies that $\int_{\gamma} G_{f,z_1} dz$. This means $\int_{\gamma} f(z) dz = 2\pi i \mathrm{res}_{z_1}(f)$, proving the Residue Theorem for N=1.

Now suppose the Residue Theorem is true for $N \geq 1$ and all f. We prove it for N+1. That is, suppose that f is holomorphic except for poles z_1, \dots, z_N, z_{N+1} .

Then by the lemma, $G_{f,z_{N+1}}(z)$ is holomorphic on all of Ω except for poles at z_1, \dots, z_N (but not at z_{N+1}), where its residues are the same as those of f. As we are assuming the Residue Theorem for N, we have

$$\int_{\gamma} G_{f,z_{N+1}}(z)dz = \sum_{j=1}^{N} 2\pi i \operatorname{res}_{z_{j}}(G_{f,z_{N+1}}(z)) = \sum_{j=1}^{N} 2\pi i \operatorname{res}_{z_{j}}(f).$$

We then have

$$\int_{\gamma} f(z)dz = \int_{\gamma} P_{f,z_{N+1}}(z) + G_{f,z_{N+1}}(z)dz
= \int_{\gamma} P_{f,z_{N+1}}(z)dz + \int_{\gamma} G_{f,z_{N+1}}dz
= 2\pi i res_{z_{N+1}}(f) + \sum_{j=1}^{N} 2\pi i res_{z_{j}}(f)
= \sum_{j=1}^{N+1} 2\pi i res_{z_{j}}(f),$$

so the Residue Theorem is true.