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1 Interiors of Loops

Since I said a few things related to Chapter 2, Section 2 that weren’t in the
book, I’m writing a short note.

The general principle behind a lot of what we’ve done is the following:

Principle 1.1. If a function f is holomorphic at every point of a loop γ and

the interior of γ, i.e., the region bounded by γ, then

∫
γ

f(z)dz = 0.

This principle can be made into a theorem, known as Cauchy’s theorem.
The problem is that rigorously defining the term “the interior of γ” in a way
that would allow us to prove such a theorem would lead us into technical details
that are tangential to what we’re doing right now.

For now, we’ve made this result precise and proven it in the case of a triangle
(Goursat’s Theorem) and a circle (Corollary 2.3), and when γ is contained in
a disc on which f is holomorphic (Theorem 2.2). I also proved in class that
Theorem 2.2 holds more generally for any convex region:

Theorem 1.2. If Ω is an open convex subset of C, and f is defined on Ω, then

f has a primitive on Ω, and hence

∫
γ

f(z)dz = 0 for any loop γ contained in Ω.

Furthermore, you may use it for any of the “toy contours” on Figure 7 of
p.42 of S-S, even if we haven’t technically proven those cases. (Nonetheless, in
the case of a sector, a parallelogram, and a semicircle, you can easily prove it
by applying the argument of Corollary 2.3 to Theorem 1.2.)
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2 Simple-Connectivity

If we assume we know what is meant by the term “region bounded by γ,” then
we can make the following definition:

Definition 2.1. Let Ω be a region in C. We say that Ω is simply-connected if
for any loop γ contained in Ω, the region bounded by γ is also in Ω.

Some standard examples are (1) any convex open set and (2) the interiors
of any of the toy contours in Figure 7.

Some non-examples are:

1. an annulus of the form {z ∈ C : a < |z| < b for some 0 ≤ a < b

2. the punctured complex plane C \ {0}

3. more generally, C punctured at a finite nonempty set of points

4. even more generally, any nonempty open region with a nonempty finite
set of points removed.

Intuitively, being simply connected means that Ω doesn’t have any holes,
i.e., doesn’t wrap around any points of C not contained in Ω.

We then have the following principle:

Principle 2.2. If Ω is simply-connected, and f is holomorphic in Ω, then f has

a primitive in Ω. Hence for any loop γ contained in Ω, we have

∫
γ

f(z)dz = 0.

Remark 2.3. In fact, the converse is true. I.e., if every holomorphic function
on Ω has a primitive, then Ω is simply-connected.

In practice, you can only use this principle only if you know which regions
are simply-connected. You can use Principle 2.2 whenever Ω is convex because
we proved Theorem 1.2. Furthermore, I mentioned the following in class:

Fact 2.4. If R denotes a (closed) ray in C, then the complement C \ R is
simply-connected.

This is important for defining the logarithm. This says that if R is a ray

containing the origin, then since the function
1

z
is holomorphic on Ω := C \ R,

it has a primitive on Ω. We will come back to this concept toward the end of
Chapter 3.
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3 A general criterion for having existence of prim-
itives

Here is some material that I did NOT discuss in class. It’s optional, because I
already told you that you can use the fact that C \R is simply-connected if you
want to do so in calculations. But for those who don’t like taking statements
on faith, here’s a simple proof in this case.

Definition 3.1. If Ω is an open subset of C, we say that Ω is holomorphically
simply-connected or holomorphically sc if every holomorphic function f on Ω
has a primitve on Ω.

Remark 3.2. If you accept Principle 2.2 and Remark 2.3, then then being
holomorphically sc is equivalent to being simply-connected. As well, Theorem
1.2 says that all convex open sets are holomorphically sc.

Theorem 3.3. Suppose Ω1 and Ω2 be two holomorphically sc open sets such
that Ω1 ∩ Ω2 is connected. Then Ω := Ω1 ∪ Ω2 is holomorphically sc.

Proof. Let f be an arbitrary holomorphic function on Ω, and let F1 and F2 be
primitives on Ω1 and Ω2, respectively. If Ω1 ∩ Ω2 is empty, then we are done.
Otherwise, the function F1 − F2, defined on Ω1 ∩ Ω2 has derivative 0, so it is
constant, call it C (this is by Corollary 3.4 in Chapter 1 of S-S). It follows that
F2 + C is a primitive of f on Ω2 that agrees with F1 on Ω1 ∩ Ω2.

We therefore defined a function F on Ω by F (z) = F1(z) for z ∈ Ω1 and
F (z) = F2(z) + C for z ∈ Ω2. The agreement on Ω1 ∩ Ω2 ensures that F is
well-defined. Furthermore, as derivatives can be taken locally, it follows that F
is holomorphic and is a primitive of f . Thus we are done.

Corollary 3.4. If R is a ray in C, then C \R is holomorphically sc.

Proof. By symmetry, the proof reduces to the case where R is the negative real
axis. In this case, we define Ω1 = {z ∈ C : =(z) > 0}, Ω2 = {z ∈ C : <(z) > 0},
and Ω3 = {z ∈ C : =(z) < 0}.

Now each Ωi is convex, hence holomorphically sc. As Ω1 ∩ Ω2 is convex
and hence connected, we find that Ω1 ∪ Ω2 is holomorphically sc. Finally, as
Ω3 ∩ (Ω1 ∪Ω2) = Ω3 ∩Ω2 is also connected, we find that (Ω1 ∪Ω2)∪Ω3 = C \R
is holomorphically sc.
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4 One rigorous definition of interior

This section is also optional, but if you want things to be more precise, it could be
helpful. For now, you really only need the Facts and Theorems mentioned above,
and to understand intuitively the notions of interior and simple-connectedness.

Definition 4.1. If γ is a loop in C, then the interior of γ or the region bounded
by γ is the set of z ∈ C \ γ such that∫

γ

1

w − z
dw 6= 0.

With this definition of interior and hence of simply-connected, Remark 2.3
is easy to prove:

Proposition 4.2. If Ω is holomorphically sc, and γ is a loop in Ω, then the
interior of γ (via Definition 4.1) is in Ω.

Proof. Suppose otherwise, i.e., that z is in the interior of γ but not in Ω. Then
1

w − z
is holomorphic on Ω as a function of w, so it must have a primitive on

Ω. As γ is contained in Ω, we therefore have

∫
γ

1

w − z
dw = 0, contradicting the

claim that z was in the interior of γ.

Furthermore, with Definition 4.1, Principle 1.1 implies Principle 2.2. The
reason I didn’t just use Definition 4.1 is because it’s hard to rigorously prove
Principle 1.1 using it.
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