Math 113 Homework 6

David Corwin

March 11, 2019

There are six problems due Monday, March 18.

Let G be a group and $H \subseteq G$ a subgroup. Given $g \in G$, let

$$
g H g^{-1}:=\left\{g h g^{-1} \mid h \in H\right\}
$$

Notice that $g H g^{-1}$ is a subgroup of G. Letting $\operatorname{Sub}(G)$ denote the set of all subgroups of G, this construction defines an action of G on $S u b(G)$.

1. Let $S y m_{3}$ act on $S u b\left(S y m_{3}\right)$ as described above. Describe all orbits of this action. Calculate the stabilizer subgroups of the subgroup generated by (12) and of the subgroup generated by (123). [Hint: remember that you determined the set $S u b\left(S y m_{3}\right)$ in the previous homework.]
2. (a) Prove that $A l t_{n} \subseteq S y m_{n}$ is a normal subgroup.
(b) There are seven conjugacy classes in $S_{y} m_{5}$. How many of them are contained in Alt $_{5}$?
3. Let G be a group and $H \subseteq G$ a subgroup. Define the right cosets of H in G as subsets of the form

$$
H g=\{h * g \mid h \in H\}
$$

Prove that H is normal if and only if $H g=g H$ for all $g \in G$. Using this or otherwise, prove that any subgroup of index two must be normal. (Hint: distinct left cosets are disjoint, and index 2 means there are exactly two left cosets. Same for right cosets.)
4. Let $n \in \mathbb{N}$ and $n>2$. Determine the number of conjugacy classes of the dihedral group D_{n}.
5. Determine all subgroups of D_{4}. Which ones are normal?
6. Let B denote the set of upper triangular real invertible 2×2 matrices, which is a subgroup of $G L_{2}(\mathbb{R})$. Consider the following subgroups of B :

$$
\begin{gathered}
T=\left\{\left.\begin{array}{ll}
a & 0 \\
0 & b
\end{array} \right\rvert\, a, b \in \mathbb{R}^{\times}\right\}, \\
U=\left\{\left.\begin{array}{ll}
1 & a \\
0 & 1
\end{array} \right\rvert\, a \in \mathbb{R}\right\}
\end{gathered}
$$

(a) Prove that U is normal in B.
(b) Prove that T is not normal in B.
(c) Prove that $f: T \rightarrow B / U$ sending $t \in T$ to the coset $t U$ is an isomorphism.
(d) Explain why B is not isomorphic to $T \times U$.

1 Extra Practice Problems

7. For $x \in \mathbb{R}^{2}$, let $\operatorname{Rot}(x) \subseteq \operatorname{Isom}\left(\mathbb{R}^{2}\right)$ denote the set of all rotations about x. Let $X \subseteq \mathbb{R}^{2}$ have the property that $\operatorname{Rot}(x) \subseteq \operatorname{Sym}(X)$ (in other words, X is symmetric around $x)$. Prove that $\operatorname{Sym}(X)$ contains a reflection. Is it true that $\operatorname{Sym}(\{x\})=\operatorname{Sym}(X)$?
8. Let \mathbb{Q} / \mathbb{Z} denote the quotient of $(\mathbb{Q},+)$ by its subgroup \mathbb{Z}. Find a subset $X \subseteq \mathbb{R}^{2}$ such that $\operatorname{Sym}(X) \cong \mathbb{Q} / \mathbb{Z}$. (Hint: \mathbb{R} / \mathbb{Z} is isomorphic to the group of rotational symmetries of the circle.)
9. Prove that if every subgroup of G is normal, then elements of coprime order commute. (Hint: $x, y \in G$ commute if and only if $x^{-1} y^{-1} x y=e$.)
10. Determine all possible orders of elements in $S y m_{5}$.
11. Prove that the intersection of two normal subgroups is normal.
