Math 113 Homework 5

David Corwin

March 3, 2019

There are four problems, due Wednesday, March 6.

1. Consider the quaternion group $Q=\{1,-1, i,-i, j,-j, k,-k\}$ with the operation discussed in class (also see the course homepage for links).
(a) For each element of Q, find its order.
(b) Find all subgroups of Q. [Hint: there are six of them.]
(c) Which of the subgroups in part (a) are isomorphic to each other?
2. Consider the group Sym_{3}. List all six of its subgroups.
3. Let $G=S y m_{3}$ and $S=\{1,2,3,4,5,6\}$. Define an action of G on S as follows. The action corresponds to a homomorphism $\phi: G \rightarrow \Sigma(S)$ sending $(12) \in G$ to $(12)(45) \in S y m_{6}=\Sigma(S)$ and $(123) \in G$ to $(123) \in \Sigma(S)$.
(a) Explain why ϕ is uniquely specified by what it does to (12) and (123) [Hint: use HW 3 Question 5].
(b) Find $\phi((23))$ and $\phi((132))$.
(c) For each element of S, find its stabilizer as a subgroup of G.
(d) List the orbits of the group action. How many orbits are there, and how many elements does each orbit have?
4. (a) How many elements of Sym $_{5}$ have order 2?
(b) How many have order 3?
