Math 113 Homework 4

David Corwin

February 20, 2019

There are five problems, due Wednesday, February 27.

1. Define an action of $S y m_{3}$ on \mathbb{R}^{3} as follows. For $\sigma \in S y m_{3}$ and $v=$ $\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}$, let

$$
\sigma(v)=\left(x_{\sigma(1)}, x_{\sigma(2)}, x_{\sigma(3)}\right)
$$

(a) Show that the subspace $V=\left\{\left(x_{1}, x_{2}, x_{3} \mid x_{1}+x_{2}+x_{3}=0\right\}\right.$ has the property that if $v \in V$, then $\sigma(v) \in V$.
(b) Can you find a one-dimensional vector subspace of \mathbb{R}^{3} that has this same property?
2. Let G be a finite group with 20 elements. Let S be a set with 15 elements. Does there exist a transitive action of G on S ?
3. For a positive integer n, let $\phi(n)$ denote the number of positive integers from 1 to n that are relatively prime to n. For example, $\phi(1)=\phi(2)=1$, $\phi(3)=\phi(4)=2, \phi(5)=4$, etc.
(a) Compute $\phi(10)$.
(b) Let $(\mathbb{Z} / n \mathbb{Z})^{\times}$denote the subset of elements of $\mathbb{Z} / n \mathbb{Z}$ that have a multiplicative inverse, where $n>1$. Show that $\left((\mathbb{Z} / n \mathbb{Z})^{\times}, \times\right)$is a group with $\phi(n)$ elements.
(c) Using the previous part, prove that if a is relatively prime to n, then $a^{\phi(n)}-1$ is divisible by n.
4. Let $n>1$. Find a faithful action of the group $\left(\mathbb{Z} / n \mathbb{Z}^{\times}, \times\right)$on the group $(\mathbb{Z} / n \mathbb{Z},+)$.
5. Is there a group homomorphism from $(\mathbb{Z} / 20 \mathbb{Z},+)$ to $(\mathbb{Z} / 21 \mathbb{Z},+)$? If so, how many are there?

