Math 113 Homework 2

David Corwin

February 14, 2019

There are five problems, due Wednesday, February 20.

1. Let (G, *) be a group. Define the center Z(G) to be the subset

$$Z(G) = \{g \in G \mid g \ast h = h \ast g \,\forall h \in G\}$$

Prove that Z(G) is a subgroup of G.

- 2. Let H, K be two subgroups of G such that $H \cup K$ is also a subgroup of G. Show that either $H \subseteq K$ or $K \subseteq H$.
- 3. Let $a \in \mathbb{Z}/n\mathbb{Z}$. Show that a generates $\mathbb{Z}/n\mathbb{Z}$ (under addition) if and only if a is coprime to n.
- 4. Let $\phi: G \to H$ be a homomorphism, and suppose $g \in G$ has order k. Show that the order of $\phi(g)$ divides k.
- 5. Let (G, *) and (H, \circ) be groups, and suppose that G is generated by the set $\{x_1, \dots, x_n\}$. Let ϕ and ψ be two group homomorphisms from (G, *) to (H, \circ) . Show that if $\phi(x_i) = \psi(x_i)$ for $i = 1, \dots, n$, then ϕ and ψ are the same homomorphism (i.e., $\phi(g) = \psi(g)$ for all $g \in G$).

Remark. This proves the important fact that a homomorphism is completely deter-mined by what it does to a generating set. [CAUTION: it does not follow, as in the case of linear algebra, that we can define a homomorphism simply byspecifying where to send the generators; one has to be careful about possible relations the generators may satisfy]