Math 113 Homework 11

David Corwin

April 28, 2019

There are six problems due Saturday, May 4.

For p prime, let \mathbb{F}_{p} denote $\mathbb{Z} / p \mathbb{Z}$. Remember that it is a field.

1. Let R be a UFD in which the units, together with 0 , form a subring $F \subseteq R$. Show that F is in fact a subfield of R and if $F \neq R$, then R contains infinitely many non-associated primes. (Hint: mimic the usual argument for proving there are infinitely many primes in \mathbb{Z}.)
2. Determine all irreducible polynomials of degrees 2 and 3 in $\mathbb{F}_{2}[x]$.
3. For each of the following ideals (written in the notation of HW 9 Question 4(a)), say whether they are prime, maximal (hence also prime), or neither:
(a) $\left(x^{2}+1\right) \subseteq \mathbb{C}[x]$
(b) $\left(x^{2}+1\right) \subseteq \mathbb{R}[x]$
(c) $(4,2 x-1) \subseteq \mathbb{Z}[x]$
4. Consider the ring $R=\mathbb{Z}[\sqrt{-5}]$.
(a) Find the group of units in R.
(b) Show that the element $2 \in \mathbb{Z}[\sqrt{-5}]$ is irreducible. [Hint: think about the absolute value of a general element $a+b \sqrt{-5}$ for $a, b \in \mathbb{Z}$, and remember that $|x y|=|x||y|$ for $x, y \in \mathbb{C}$.]
5. Show that every ideal in \mathbb{Z} is principal. [Hint: let I be an ideal, assume $I \neq\{0\}$, and let m be the smallest positive element of I. For every $n \in I$, use the Remainder Theorem to show that m divides n.]

6 . Let R be an integral domain.
(a) Let $a, b \in R$, and suppose that (a, b) is principal. Show that a and b have an HCF (in the sense of the definition on p. 64 of the notes). [Hint: let d be such that $d R=(d)=(a, b)$.]
(b) Show that the ideal $(2,1+\sqrt{-5}) \subseteq \mathbb{Z}[\sqrt{-5}]$ is prime but not principal.

Remark: 6(b) shows that in a PID, any two elements have an HCF. This is one step toward proving that PID's are UFD's.

