Math 113 Homework 9

David Corwin

November 22, 2019

There are six problems due Saturday, November 30.

1. Let R be a commutative ring. Recall that there is a unique homomorphism from \mathbb{Z} to R. For two rings A and B, let $\operatorname{Hom}(A, B)$ denote the set of ring homomorphisms from A to B.
(a) Give an example of R for which $\operatorname{Hom}(R, \mathbb{Z})$ is empty.
(b) Give an example of R for which $\operatorname{Hom}(R, \mathbb{Z})$ is infinite.
(c) Prove that the set $\operatorname{Hom}(\mathbb{Z}[x], R)$ can be naturally put into bijection with the set R [Hint: where does x go?]
2. Is there an integral domain containing exactly 10 elements?
3. Let R be an integral domain of characteristic p. Consider the map $\phi: R \rightarrow$ R sending x to x^{p}.
(a) Show that ϕ is a ring homomorphism.
(b) Show that ϕ is an automorphism if R is finite.
(c) Find the image of ϕ when $R=\mathbb{F}_{p}[x]$.
4. Show that $\mathbb{Q}[\sqrt{2}, \sqrt{3}]=\mathbb{Q}[\sqrt{2}+\sqrt{3}]$. $[$ Hint: show this by showing that if T is a subring of \mathbb{C} containing \mathbb{Q}, then T contains $\sqrt{2}$ and $\sqrt{3}$ iff it contains $\sqrt{2}+\sqrt{3}$.]
5. Determine whether the following elements are associate in the given ring:
(a) $a=2 x-14$ and $b=3 x-21$ in $R=\mathbb{Q}[x]$.
(b) $a=x-7$ and $b=3 x-21$ in $R=\mathbb{Z}[x]$.
(c) $a=8$ and $b=9$ in $R=\mathbb{Z}[1 / 6]$.
(d) $a=4$ and $b=9$ in $R=\mathbb{Z}[1 / 2]$.
(e) $a=x^{2}-2 x+3$ and $b=x^{2}+x-4$ in $R=\mathbb{C}[x]$.
6. Give examples of the following:
(a) A ring R where 1_{R} has infinite additive order (i.e., characteristic 0), and R has zero divisors.
(b) An ideal $I \subseteq \mathbb{C}[X]$ for which there exists $f(X) \in \mathbb{C}[X]$ such that $f(X)^{5} \in I$, but $f(X) \notin I$.
