Math 113 Homework 9

David Corwin

November 22, 2019

There are six problems due Saturday, November 30.

- 1. Let R be a commutative ring. Recall that there is a unique homomorphism from \mathbb{Z} to R. For two rings A and B, let $\operatorname{Hom}(A,B)$ denote the set of ring homomorphisms from A to B.
 - (a) Give an example of R for which $\text{Hom}(R,\mathbb{Z})$ is empty.
 - (b) Give an example of R for which $\operatorname{Hom}(R,\mathbb{Z})$ is infinite.
 - (c) Prove that the set $\text{Hom}(\mathbb{Z}[x], R)$ can be naturally put into bijection with the set R [Hint: where does x go?]
- 2. Is there an integral domain containing exactly 10 elements?
- 3. Let R be an integral domain of characteristic p. Consider the map $\phi \colon R \to R$ sending x to x^p .
 - (a) Show that ϕ is a ring homomorphism.
 - (b) Show that ϕ is an automorphism if R is finite.
 - (c) Find the image of ϕ when $R = \mathbb{F}_p[x]$.
- 4. Show that $\mathbb{Q}[\sqrt{2}, \sqrt{3}] = \mathbb{Q}[\sqrt{2} + \sqrt{3}]$. [Hint: show this by showing that if T is a subring of \mathbb{C} containing \mathbb{Q} , then T contains $\sqrt{2}$ and $\sqrt{3}$ iff it contains $\sqrt{2} + \sqrt{3}$.]
- 5. Determine whether the following elements are associate in the given ring:
 - (a) a = 2x 14 and b = 3x 21 in $R = \mathbb{Q}[x]$.
 - (b) a = x 7 and b = 3x 21 in $R = \mathbb{Z}[x]$.
 - (c) a = 8 and b = 9 in $R = \mathbb{Z}[1/6]$.

- (d) a = 4 and b = 9 in $R = \mathbb{Z}[1/2]$.
- (e) $a = x^2 2x + 3$ and $b = x^2 + x 4$ in $R = \mathbb{C}[x]$.
- 6. Give examples of the following:
 - (a) A ring R where 1_R has infinite additive order (i.e., characteristic 0), and R has zero divisors.
 - (b) An ideal $I\subseteq\mathbb{C}[X]$ for which there exists $f(X)\in\mathbb{C}[X]$ such that $f(X)^5\in I$, but $f(X)\notin I$.