Math 113 Homework 8

David Corwin

November 13, 2019

There are seven problems due Thursday, November 21.

1. Let I be an ideal in \mathbb{Z}.
(a) Suppose I has positive elements, and let a be the smallest positive element of I. Show that $I=a \mathbb{Z}$ using the Remainder Theorem.
(b) Using the previous part, show that every ideal of \mathbb{Z} is principal. [Hint: Note that if I is the zero ideal, then it is principal, so assume that I is not the zero ideal. Then note that I has positive elements, so let a be the smallest positive element of I.]
2. Let R be a non-trivial commutative ring.
(a) Prove that if $I \subseteq R$ is an ideal, then $1_{R} \in I$ if and only if $I=R$.
(b) Prove that R is a field if and only if its only ideals are $\{0\}$ and R.
(c) Let I be an ideal of $\mathbb{R}[x]$ that contains both $x+1$ and $x-1$. Show that $I=\mathbb{R}[x]$.
3. Let $\mathbb{Q}[\sqrt{2}]=\{a+b \sqrt{2} \mid a, b \in \mathbb{Q}\}$.
(a) Prove that $\mathbb{Q}[\sqrt{2}]$ is a subring of \mathbb{C}.
(b) Prove that it is in fact a field.
4. Let R be a ring. We say that $r \in R$ is idempotent if $r^{2}=r$. Show that if R is a ring in which every element is idempotent, then R is commutative, and $r+r=0_{R}$ for all $r \in R$. [Hint: this is the only problem on this list that's a little tricky.]
5. (a) Find a proper subring of \mathbb{Q} other than \mathbb{Z}.
(b) Show that if $\mathbb{R} \subseteq R$ and $R \subseteq \mathbb{C}$, then R is equal to either \mathbb{R} or \mathbb{C}.
6. Which of the following sets are ideals in the given ring?
(a) $\{p(x, y) \mid p(x, x)=0\} \subseteq \mathbb{C}[x, y]$
(b) $\{p(x, y) \mid p(x, y)=p(y, x)\} \subseteq \mathbb{C}[x, y]$
(c) $\{p(x) \mid p$ has no real roots $\} \subseteq \mathbb{C}[x]$
7. Let R be a commutative ring with unity.
(a) Let $X \subseteq R$ be an arbitrary subset. Prove that there exists an ideal $I \subseteq R$ containing X with the following property: if J is an ideal and $X \subseteq J$, then $I \subseteq J$. (We call I the ideal generated by X, and denote it $(X) \subseteq R$.) [Hint: define I to be the set of all finite linear combinations of elements of X with coefficients in R. Then it shouldn't be hard to show that I is an ideal, and show that any such J contains I.]
(b) If $m, n \in \mathbb{Z}$, when is the ideal generated by $\{m, n\}$ equal to all of \mathbb{Z} ?
