Math 113 Homework 7

David Corwin

November 1, 2019

There are five problems due Saturday, November 9.

1. Show that if m and n are relatively prime, then $\mathbb{Z} /(m n) \mathbb{Z} \cong \mathbb{Z} / m \mathbb{Z} \times \mathbb{Z} / n \mathbb{Z}$ (as groups under addition). [Hint: for which $a \in \mathbb{Z}$ is $([a],[a]) \in \mathbb{Z} / m \mathbb{Z} \times$ $\mathbb{Z} / n \mathbb{Z}$ the identity? You may use the fact that $\operatorname{LCM}(m, n)=m n$.]
2. Let G be an abelian group, and let G_{p} be the set of elements of order a power of p. Show that G_{p} is a subgroup of G.
3. Up to isomorphism, how many abelian groups of size 32 are there? [Hint: use Corollary 3.95 of the notes]
4. Let R be a commutative ring.
(a) If I and J are ideals of R, show that $I \cap J$ is an ideal.
(b) In the case that $R=\mathbb{Z}, I=n \mathbb{Z}$, and $J=m \mathbb{Z}$, what is $I \cap J$?
5. Let R be a commutative ring. We say that $r \in R$ is nilpotent if there is $n \in \mathbb{N}$ such that $r^{n}=0_{R}$.
(a) Show that the set of nilpotent elements of R forms an ideal [Hint: product is easy. For sums, use the binomial theorem.]
(b) Find the set of nilpotent elements of $R=\mathbb{Z} / 2700 \mathbb{Z}$.

Extra Practice Problems

6. Show that $0_{R} \times a=0_{R}$ for any $a \in R$.
7. Show that $-1_{R} \times a=-a$, where $-a$ denotes the additive inverse of a.
8. Show that if $(R,+, \times)$ satisfies all the axioms for a ring except possibly for the axiom of commutativity of addition, then addition is commutative. [Hint: Note that the last two problems don't require addition to be commutative, and show that the additive inverse of $a+b$ is $-a-b$.]
9. Let R be a ring. We say that $r \in R$ is idempotent if $r^{2}=r$. Show that if R is a ring in which every element is idempotent, then R is commutative, and $r+r=0_{R}$ for all $r \in R$.
