Math 113 Homework 5

David Corwin

October 4, 2019

There are four problems, due Thursday, October 10.

1. (a) Let $\sigma=(1234)$ and $\tau=(126)(354)$, both in Sym $_{6}$. Find $\tau \sigma \tau^{-1}$.
(b) Show that if τ is any element of $S y m_{6}$, and $\sigma=(1234)$, then $\tau \sigma \tau^{-1}$ is a 4 -cycle.
(c) Explain why, if S is any set, σ is a k-cycle in $\Sigma(S)$, and τ is any element of $\Sigma(S)$, then $\tau \sigma \tau^{-1}$ is a k-cycle. [Hint: suppose that $\sigma=$ $\left(a_{1} a_{2} \cdots a_{k}\right)$. Then show that $\tau \sigma \tau^{-1}=\left(\tau\left(a_{1}\right) \tau\left(a_{2}\right) \cdots \tau\left(a_{k}\right)\right)$.]
2. (a) How many elements of Sym_{5} have order 3?
(b) Determine all possible orders of elements in Sym_{5}.
3. Let $G=$ Sym $_{3}$ and $S=\{1,2,3,4,5,6\}$. Define an action of G on S as follows. The action corresponds to a homomorphism $\varphi: G \rightarrow \Sigma(S)$ sending $(12) \in G$ to $(12)(45) \in S y m_{6}=\Sigma(S)$ and $(123) \in G$ to $(123) \in$ $\Sigma(S)$. (Note that by Question 5 on HW 4, this uniquely specifies the action.)
(a) Find $\varphi((23))$ and $\varphi((132))$.
(b) For each element of S, find its stabilizer as a subgroup of G.
4. Define an action of $G=S y m_{3}$ on $S=\mathbb{R}^{3}$ as follows. For $\sigma \in S y m_{3}$ and $v=\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}$, set

$$
\phi(\sigma, v)=\left(x_{\sigma(1)}, x_{\sigma(2)}, x_{\sigma(3)}\right) .
$$

(a) Show that the subspace $V=\left\{\left(x_{1}, x_{2}, x_{3}\right) \mid x_{1}+x_{2}+x_{3}=0\right\}$ has the following property: if $v \in V$, then $\phi(\sigma, v)$ is also in V.
(b) Explain why the previous fact shows that Sym_{3} is isomorphic to a subgroup of $\mathrm{GL}_{2}(\mathbb{R})$.
(c) Can you find a line (one-dimensional subspace) that has the same property?

