Math 113 Homework 5

David Corwin

October 4, 2019

There are four problems, due Thursday, October 10.

- 1. (a) Let $\sigma = (1234)$ and $\tau = (126)(354)$, both in Sym_6 . Find $\tau \sigma \tau^{-1}$.
 - (b) Show that if τ is any element of Sym_6 , and $\sigma = (1234)$, then $\tau \sigma \tau^{-1}$ is a 4-cycle.
 - (c) Explain why, if S is any set, σ is a k-cycle in $\Sigma(S)$, and τ is any element of $\Sigma(S)$, then $\tau \sigma \tau^{-1}$ is a k-cycle. [Hint: suppose that $\sigma = (a_1 a_2 \cdots a_k)$. Then show that $\tau \sigma \tau^{-1} = (\tau(a_1)\tau(a_2)\cdots\tau(a_k))$.]
- 2. (a) How many elements of Sym_5 have order 3?
 - (b) Determine all possible orders of elements in Sym_5 .
- 3. Let $G = Sym_3$ and $S = \{1, 2, 3, 4, 5, 6\}$. Define an action of G on S as follows. The action corresponds to a homomorphism $\varphi \colon G \to \Sigma(S)$ sending $(12) \in G$ to $(12)(45) \in Sym_6 = \Sigma(S)$ and $(123) \in G$ to $(123) \in \Sigma(S)$. (Note that by Question 5 on HW 4, this uniquely specifies the action.)
 - (a) Find $\varphi((23))$ and $\varphi((132))$.
 - (b) For each element of S, find its stabilizer as a subgroup of G.
- 4. Define an action of $G = Sym_3$ on $S = \mathbb{R}^3$ as follows. For $\sigma \in Sym_3$ and $v = (x_1, x_2, x_3) \in \mathbb{R}^3$, set

$$\phi(\sigma, v) = (x_{\sigma(1)}, x_{\sigma(2)}, x_{\sigma(3)}).$$

- (a) Show that the subspace $V = \{(x_1, x_2, x_3) \mid x_1 + x_2 + x_3 = 0\}$ has the following property: if $v \in V$, then $\phi(\sigma, v)$ is also in V.
- (b) Explain why the previous fact shows that Sym_3 is isomorphic to a subgroup of $GL_2(\mathbb{R})$.
- (c) Can you find a line (one-dimensional subspace) that has the same property?