Math 113 Homework 3

David Corwin

September 18, 2019

There are five problems, due Tuesday, September 24.

1. Let $(G, *)$ be a group. Define the center $Z(G)$ to be the subset

$$
Z(G)=\{g \in G \mid g * h=h * g \forall h \in G\}
$$

(a) Prove that $Z(G)$ is a subgroup of G.
(b) What is the center of $\left(M_{n}(\mathbb{R}),+\right)$?
(c) What is the center of $\left(\mathrm{GL}_{2}(\mathbb{R}), \times\right)$?
2. Let

$$
\frac{1}{3} \mathbb{Z}:=\{r \in \mathbb{Q} \mid 3 r \in \mathbb{Z}\} .
$$

(a) Show that $\frac{1}{3} \mathbb{Z}$ is a subgroup of $(\mathbb{Q},+)$.
(b) What are the left cosets of $H=\mathbb{Z}$ in $G=\left(\frac{1}{3} \mathbb{Z},+\right)$? I.e., give a representative for each left coset, and state how many left cosets there are.
3. Let H, K be two subgroups of G such that $H \cup K$ is also a subgroup of G. Show that either $H \subseteq K$ or $K \subseteq H$. [Hint: Suppose that $H \nsubseteq K$, so that there exists $a \in H \backslash K$. Show that for any $b \in K$, we have $a * b \in H$. Use that to show that $K \subseteq H$.]
4. Let $a \in \mathbb{Z}$ and $n \in \mathbb{N}$.
(a) Let $a \mathbb{Z} / n \mathbb{Z}$ denote the set of equivalence classes modulo n that contain a multiple of a. Show that $a \mathbb{Z} / n \mathbb{Z}$ is a subgroup of $\mathbb{Z} / n \mathbb{Z}$.
(b) When is this subgroup the whole group?
5. Let $\phi: G \rightarrow H$ be a homomorphism, and suppose $g \in G$ has order k. [This means that $g^{k}=e$, and $g^{m} \neq e$ for any positive integer m less than k.]
(a) Show that the order of $\phi(g)$ divides k.
(b) Show that if ϕ is injective, then the order of $\phi(g)$ is k.

