Math 113 Homework 3

David Corwin

September 18, 2019

There are five problems, due Tuesday, September 24.

1. Let (G,*) be a group. Define the center Z(G) to be the subset

$$Z(G) = \{g \in G \mid g * h = h * g \, \forall h \in G\}$$

- (a) Prove that Z(G) is a subgroup of G.
- (b) What is the center of $(M_n(\mathbb{R}), +)$?
- (c) What is the center of $(GL_2(\mathbb{R}), \times)$?
- 2. Let

$$\frac{1}{3}\mathbb{Z} := \{ r \in \mathbb{Q} \mid 3r \in \mathbb{Z} \}.$$

- (a) Show that $\frac{1}{3}\mathbb{Z}$ is a subgroup of $(\mathbb{Q}, +)$.
- (b) What are the left cosets of $H = \mathbb{Z}$ in $G = (\frac{1}{3}\mathbb{Z}, +)$? I.e., give a representative for each left coset, and state how many left cosets there are.
- 3. Let H, K be two subgroups of G such that $H \cup K$ is also a subgroup of G. Show that either $H \subseteq K$ or $K \subseteq H$. [Hint: Suppose that $H \not\subseteq K$, so that there exists $a \in H \setminus K$. Show that for any $b \in K$, we have $a * b \in H$. Use that to show that $K \subseteq H$.]
- 4. Let $a \in \mathbb{Z}$ and $n \in \mathbb{N}$.
 - (a) Let $a\mathbb{Z}/n\mathbb{Z}$ denote the set of equivalence classes modulo n that contain a multiple of a. Show that $a\mathbb{Z}/n\mathbb{Z}$ is a subgroup of $\mathbb{Z}/n\mathbb{Z}$.
 - (b) When is this subgroup the whole group?

- 5. Let $\phi \colon G \to H$ be a homomorphism, and suppose $g \in G$ has order k. [This means that $g^k = e$, and $g^m \neq e$ for any positive integer m less than k.]
 - (a) Show that the order of $\phi(g)$ divides k.
 - (b) Show that if ϕ is injective, then the order of $\phi(g)$ is k.