Math 113 Homework 2

David Corwin

September 10, 2019

There are five problems, due Tuesday, September 17.

- 1. We say that the *cancellation law* holds in $\mathbb{Z}/m\mathbb{Z}$ if for any $a, b, c \in \mathbb{Z}/m\mathbb{Z}$ such that $c \neq 0 \mod m$, the equation ac = bc implies a = b.
 - (a) Does the cancellation law hold in $\mathbb{Z}/5\mathbb{Z}$?
 - (b) Does the cancellation law hold in $\mathbb{Z}/21\mathbb{Z}$?

In either case, explain why, or give a counterexample.

- 2. On p.14-15 of the course notes ([P]), there are eight properties of addition and multiplication on \mathbb{Z} (four for addition, three for multiplication, and one about distributivity). Prove the following statements using only these eight properties:
 - (a) For any $a \in \mathbb{Z}$, we have $0 \times a = 0$.
 - (b) For any $a \in \mathbb{Z}$, we have $(-1) \times a = -a$.
- 3. In each of the following problems, prove your answer. Note that if an inverse exists, you don't have to find it; you just have to explain why it exists.
 - (a) Does 38 have a multiplicative inverse modulo 82?
 - (b) Does 51 have a multiplicative inverse modulo 82? Prove your answer. [Hint: if it has an inverse, you]
- 4. Let $S = \{a, b, c\}$ be a set with three elements.
 - (a) How many binary operations are there on the set S? (Hint: recall, very carefully, what a binary operation is.)
 - (b) How many of these binary operations give S the structure of a group?

5. Let $G = \{a, b\}$, and define an operation $*\colon G \times G \to G$ by

$$a*a = a$$
$$a*b = b$$
$$b*a = b$$
$$b*b = b$$

Is G a group under this operation? Prove your answer.