Math 113 Homework 2

David Corwin

September 10, 2019

There are five problems, due Tuesday, September 17.

1. We say that the cancellation law holds in $\mathbb{Z} / m \mathbb{Z}$ if for any $a, b, c \in \mathbb{Z} / m \mathbb{Z}$ such that $c \neq 0 \bmod m$, the equation $a c=b c$ implies $a=b$.
(a) Does the cancellation law hold in $\mathbb{Z} / 5 \mathbb{Z}$?
(b) Does the cancellation law hold in $\mathbb{Z} / 21 \mathbb{Z}$?

In either case, explain why, or give a counterexample.
2. On p.14-15 of the course notes ($[\mathrm{P}])$, there are eight properties of addition and multiplication on \mathbb{Z} (four for addition, three for multiplication, and one about distributivity). Prove the following statements using only these eight properties:
(a) For any $a \in \mathbb{Z}$, we have $0 \times a=0$.
(b) For any $a \in \mathbb{Z}$, we have $(-1) \times a=-a$.
3. In each of the following problems, prove your answer. Note that if an inverse exists, you don't have to find it; you just have to explain why it exists.
(a) Does 38 have a multiplicative inverse modulo 82 ?
(b) Does 51 have a multiplicative inverse modulo 82? Prove your answer. [Hint: if it has an inverse, you]
4. Let $S=\{a, b, c\}$ be a set with three elements.
(a) How many binary operations are there on the set S ? (Hint: recall, very carefully, what a binary operation is.)
(b) How many of these binary operations give S the structure of a group?
5. Let $G=\{a, b\}$, and define an operation $*: G \times G \rightarrow G$ by

$$
\begin{array}{r}
a * a=a \\
a * b=b \\
b * a=b \\
b * b=b
\end{array}
$$

Is G a group under this operation? Prove your answer.

