Math 113 Homework 10

David Corwin

December 1, 2019

There are five problems due Saturday, December 7.

For p prime, let \mathbb{F}_{p} denote $\mathbb{Z} / p \mathbb{Z}$. Remember that it is a field.

1. Let R be a UFD in which the units, together with 0 , form a subring $F \subseteq R$. Show that F is in fact a subfield of R and if $F \neq R$, then R contains infinitely many non-associated primes. (Hint: mimic the usual argument for proving there are infinitely many primes in \mathbb{Z}.)
2. Determine all irreducible polynomials of degrees 2 and 3 in $R=\mathbb{F}_{2}[x]$. [Remark: when you take the quotient of R by these polynomials, you get finite fields of sizes 4 and 8 , respectively.]
3. For each of the following ideals (written in the notation of HW 8 Question $7(\mathrm{a})$), say whether they are prime, maximal (hence also prime), or neither:
(a) $\left(x^{2}+1\right) \subseteq \mathbb{C}[x]$
(b) $\left(x^{2}+1\right) \subseteq \mathbb{R}[x]$
(c) $(\{4,2 x-1\}) \subseteq \mathbb{Z}[x]$
(d) $(2 x-1) \subseteq \mathbb{Z}[x]$
4. Consider the ring $R=\mathbb{Z}[\sqrt{-5}]$.
(a) Find the group of units in R [Hint: if $z=a+b \sqrt{-5} \in R$, note that $|z|^{2}$ is an integer, and that $\left.\left|z_{1} z_{2}\right|=\left|z_{1}\right|\left|z_{2}\right| \cdot\right]$
(b) Show that the element $2 \in \mathbb{Z}[\sqrt{-5}]$ is irreducible. [Same hint.]

5 . Let R be an integral domain.
(a) Let $a, b \in R$, and suppose that (a, b) is principal. Show that a and b have an HCF/GCD (in the sense of the definition in Section 5.1.3 of the notes). [Hint: let d be such that $d R=(d)=(a, b)$.]
(b) Show that the ideal $(2,1+\sqrt{-5}) \subseteq \mathbb{Z}[\sqrt{-5}]$ is prime but not principal.

