Math 113 Homework 10

David Corwin

December 1, 2019

There are five problems due Saturday, December 7.

For p prime, let \mathbb{F}_p denote $\mathbb{Z}/p\mathbb{Z}$. Remember that it is a field.

- 1. Let R be a UFD in which the units, together with 0, form a subring $F \subseteq R$. Show that F is in fact a subfield of R and if $F \neq R$, then R contains infinitely many non-associated primes. (Hint: mimic the usual argument for proving there are infinitely many primes in \mathbb{Z} .)
- 2. Determine all irreducible polynomials of degrees 2 and 3 in $R = \mathbb{F}_2[x]$. [Remark: when you take the quotient of R by these polynomials, you get finite fields of sizes 4 and 8, respectively.]
- 3. For each of the following ideals (written in the notation of HW 8 Question 7(a)), say whether they are prime, maximal (hence also prime), or neither:
 - (a) $(x^2+1) \subseteq \mathbb{C}[x]$
 - (b) $(x^2 + 1) \subseteq \mathbb{R}[x]$
 - (c) $({4,2x-1}) \subseteq \mathbb{Z}[x]$
 - (d) $(2x-1) \subseteq \mathbb{Z}[x]$
- 4. Consider the ring $R = \mathbb{Z}[\sqrt{-5}]$.
 - (a) Find the group of units in R [Hint: if $z = a + b\sqrt{-5} \in R$, note that $|z|^2$ is an integer, and that $|z_1z_2| = |z_1||z_2|$.]
 - (b) Show that the element $2 \in \mathbb{Z}[\sqrt{-5}]$ is irreducible. [Same hint.]
- 5. Let R be an integral domain.

- (a) Let $a, b \in R$, and suppose that (a, b) is principal. Show that a and b have an HCF/GCD (in the sense of the definition in Section 5.1.3 of the notes). [Hint: let d be such that dR = (d) = (a, b).]
- (b) Show that the ideal $(2, 1+\sqrt{-5}) \subseteq \mathbb{Z}[\sqrt{-5}]$ is prime but not principal.