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In this talk I want to relate objects of classical chaotic

dynamics such as trapped sets and topological

pressure of hyperbolic flows to the distribution of

quantum resonances. The plan is to

• introduce quantum resonances using simple

one-dimensional models

• show how to compute them in that setting and

how their distribution is related to dynamics

• describe simple models of chaotic scattering in

dimension two

• relate the dimension of the trapped set to the

density of resonances

• relate the pressure to the quantum decay rate.
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Simplest model:

V (x) ∈ R , |V (x)| ≤ C , V (x) = 0 for |x| > L ,

and the corresponding Schrödinger operator,

HV = −∂2
x + V (x) .

Quantum resonances are the poles of the resolvent of

the meromorphic continuation of Green’s function of

HV − λ2 .
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This definition although very elegant is not very

intuitive. Resonances manifest themselves very

concretely in wave expansions, peaks of the scattering

cross sections, and phase shift transitions.

But first let us compute resonances in real time using

a MATLAB code (Bindel 2006).

www.cims.nyu.edu/∼dbindel/resonant1d
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The next movie shows the change of resonances of

−h2∆ + V (x) as we make h → 0 where

We went from h = 1 to h = 1/7 in 49 steps.

Please note that as h decreases the density of

resonances goes up.
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more familiar case of eigenvalues and eigenfuctions.

A vibrating string, is described using eigenvalues and

eigefunctions:

∞∑
j=0

cos(tλj)cjuj(x) +
∞∑

j=0

λ−1
j sin(tλj)djuj(x)

(for simplicity we assumed there are no negative

eigenvalues which holds, say, for V ≥ 0)

This decomposition in the basis of harmonic analysis,

signal processing, and many other things.
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On the whole line resonances and resonant states

replace eigenvalues and eigenfunctions:

∑
−A<Im λj≤0

e−itλjcjuj(x) + rA(t, x) , t → +∞ ,

(for simplicity we assumed there are no negative

eigenvalues which holds, say, for V ≥ 0, and more

seriously, that resonances are simple)

The error satisfies the following estimate for any

K > 0:

‖rA(t, •)‖H1([−K,K]) ≤ Ce−At(‖w0‖H1 + ‖w1‖L2) .

where w0 and w1 are the initial conditions of our wave.
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The waves “resonate” with frequencies given by

|Re λj| and decay rates given by | Im λj|.

This interpretation of resonances is quite common in

popular culture, especially in the context of “bells

sounding its last dying notes”

An example from a poem by Li Bai:

A thousand valleys’ rustling pines resound.

My heart was cleansed, as if in flowing water.

In bells of frost I heard the resonance die.

The word appearing in the original led

to this modern translation and can be interpreted as an

early (8th century) mention of resonances in literature.
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Here is an example from scattering of a soliton by a

double barrier constructed by two delta functions:

nonresonant v = 1

resonant v = 2.4

nonresonant v = 3.4

Note the fat, resonant tail in the second figure.
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A double barrier potential and the phase portrait for

the classical Hamiltonian ξ2 + V (x).
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The bound states and resonances for the same

potential. The colour coding gives an approximate

classical/quantum correspondence between the bound

states and energy level satisfying Bohr-Sommerfeld

quantization conditions.
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Shape resonances with imaginary parts −0.0004 (blue) and −0.0235 (red)

Resonances close to the real axis. The real part is

related to the bounded components of the energy

levels and the imaginary part is related to tunneling

between the bounded and unbounded energy levels.
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“Well in an island” potential and the plot of

(Re λ2
j ,− log(− Im λ2

j)) comparing the logarithms of

resonance width (imaginary parts) to

Agmon/tunneling distances (Helffer-Sjöstrand 1985):

S0(E) =

∫
R

(V (x)− E)
1
2
+dx , log(− Im λ2

j) ∼ −
S0(Re λ2

j)

h
.
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Barrier top resonances corresponding to two unstable

equilibria. The actual real parts are corrected due to

quantum effects.
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Regge resonances asymptotically lying on a logarithmic curve

Regge resonances generated by reflections by the

singularities at the end points of the support of the

potential and lying on logarithmic curves.
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These resonances dominate large energy asymptotics:

#{λj : |λj| ≤ r} =
2(b− a)

π
r(1 + o(1)) , r −→∞ ,

as was proved by Zworski 1987, Froese 1997,

and Simon 2000.
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Now to dimension two...

or in fact any dimension...

classically we consider

H = ξ2 + V (x) ,

and on the quantum level,

Ĥ = −h2∆ + V (x) .
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We assume that the flow is hyperbolic on the trapped

set:

KE = Γ+
E ∩ Γ−E

where Γ±E =

{(x, ξ) : ξ2 + V (x) = E , (x(t), ξ(t)) 6→ ∞ , t → ∓∞} ,

and the flow is defined by Newton 1687

x′(t) = 2ξ(t) , ξ′(t) = −∇V (x(t)) ,

x(0) = x , ξ(0) = ξ .
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In phase space they live on Γ+
E.

Theorem 1.(Nonnenmacher-Rubin 2006)

Let u(hk) be resonant states corresponding to z(hk).

with Re z(hk) = E + o(1) and Im z(h) ≥ −Ch.

Let µ be a semiclassical measure associated to u(hk):

Then

suppµ ⊂ Γ+
E ,

∃ λ > 0 , lim
k→∞

Im z(hk)/hk = −λ/2 ,

Lµ = λµ ,

where L is the Lie derivative along the flow.





A potential with a simple trapped set.





The “first” resonant function for h = 1/16.







FBI transform thanks to Laurent Demanet

www.math.stanford.edu/∼laurent
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This is actually a picture of a Julia set but the

similarity is more than formal and similar ideas apply

to zeros of Ruelle zeta functions.
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We say that the flow Φt(x, ξ) = (x(t), ξ(t)) is hyperbolic

on KE, if any ρ ∈ KE, the tangent space to H−1(E) at

ρ splits into the flow, unstable and stable directions:

• Tρ(H
−1(E)) = R〈2ξ(ρ),−∇V (x(ρ))〉⊕E+

ρ ⊕E−
ρ

• dΦt
ρ(E

±
ρ ) = E±

Φt(ρ)

• ∃ λ > 0 , ‖dΦt
ρ(v)‖ ≤ Ce−λ|t| ‖v‖

for all v ∈ E∓
ρ , and ±t ≥ 0.

Verification of this is not easy but in our setting it is

available thanks to the work of Sinai, Ikawa, Sjöstrand,

and Morita.
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The Poincaré section is given by a surface in H−1(E)

transversal to the flow:

We write the Hausdorff dimension of KE as

dim KE = 2dE + 1 .

Pesin-Sadovskaya 2001
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Ĥ = −h2∆ + V (x) .

Under the assumptions of hyperbolicity near energy E,

|R(h) ∩ [E − h, E + h]−i[0, Mh]| = O(h−dE) .
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Let R(h) denote the set of resonances of

Ĥ = −h2∆ + V (x) .

Under the assumptions of hyperbolicity near energy E,

|R(h) ∩ [E − h, E + h]−i[0, Mh]| = O(h−dE) .

This is the analogue of the counting law for

eigenvalues of a closed system. Classically everything

is trapped in a closed system, so dim KE = 3, dE = 1

and the number of eigenvalues is asymptotic to

CEh−1 .
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If u is a resonant state for

z = E −i Γ

then

exp(−itĤ/h)u = e−itE/h−tΓ/hu .

Hence states with Γ � h decay too fast to be visible.

Interpretation of the imaginary part as decay rate

brings us to the next theorem.
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Suppose that the dimension dE satisfies

dE <
1

2
.

Then there exists δ, γ > 0 such that

R(h) ∩ ([E0 − δ, E0 + δ]− i[0, hγ]) = ∅ .

What is γ?

It can be described using the topological pressure of

the flow on KE.



We can take any γ satisfying

0 < γ < min
|E0−E|≤δ

(−PE(1/2)) ,

PE(s) = pressure of the flow on KE.



We can take any γ satisfying

0 < γ < min
|E0−E|≤δ

(−PE(1/2)) ,

PE(s) = pressure of the flow on KE.

The existence of a resonance gap depends on the sign

of the pressure at s = 1/2, PE(1/2).



We can take any γ satisfying

0 < γ < min
|E0−E|≤δ

(−PE(1/2)) ,

PE(s) = pressure of the flow on KE.

The existence of a resonance gap depends on the sign

of the pressure at s = 1/2, PE(1/2).

The connection between the pressure and the quantum

decay rate first appeared in the physics/chemistry

literature in the work of Gaspard-Rice 1989.
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Quantum resonances for the three bumps potential.

This and also some quantum map rigorous models of

Nonnenmacher-Zworski 2005 suggest that Theorem 2

is optimal.
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The optimality of Theorem 3 is not clear even on the

heuristic or numerical grounds.

In the analogous case of scattering on convex

co-compact hyperbolic surfaces the results of

Dolgopyat, Naud, and Stoyanov show that the

resonance free strip is larger at high energies than the

strip predicted by the pressure.

That relies on delicate zeta function analysis following

the work of Dolgopyat: at zero energy there exists a

Patterson-Sullivan resonance with the imaginary part

(width) given by the pressure but all other resonances

have more negative imaginary parts.


