
BASIC SYMPLECTIC GEOMETRY

NOTATION.

Rn = n-dimensional Euclidean space

x, y denote typical points in Rn : x = (x1, . . . , xn), y = (y1, . . . , yn)

R2n = Rn × Rn

z = (x, ξ), w = (y, η) denote typical points in Rn × Rn :
z = (x1, . . . , xn, ξ1, . . . , ξn), w = (y1, . . . , yn, η1, . . . , ηn)

C = complex plane

Cn = n-dimensional complex space

〈x, y〉 =
∑n

i=1 xiȳi = inner product on Cn

Mm×n = m× n-matrices

AT = transpose of the matrix A

I denotes both the identity matrix and the identity mapping.

J =

(
O I
−I O

)
σ(z, w) = 〈Jz, w〉 = symplectic inner product

If ϕ : Rn → R, then we write

∂ϕ := (ϕx1 , . . . , ϕxn) = gradient,

and

∂2ϕ :=

ϕx1x1 . . . ϕx1xn
. . .

ϕxnx1 . . . ϕxnxn

 = Hessian matrix

If ϕ depends on both the variables x, y ∈ Rn, we put

∂2
xϕ :=

ϕx1x1 . . . ϕx1xn
. . .

ϕxnx1 . . . ϕxnxn
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and

∂2
x,yϕ :=

ϕx1y1 . . . ϕx1yn
. . .

ϕxny1 . . . ϕxnyn

 .

• Jacobians: Let
x 7→ y = y(x)

be a diffeomorphism, y = (y1, . . . , yn). The Jacobian matrix is

∂y = ∂xy :=


∂y1

∂x1
. . . ∂y1

∂xn
. . .

∂yn

∂x1
. . . ∂yn

∂xn


n×n

.
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1. DIFFERENTIAL FORMS

In this section we provide a minimalist review of differential forms on
RN . For more a detailed and fully rigorous description of differential
forms on manifolds we refer to [W, Chapter 2].

NOTATION.

(i) If x = (x1, . . . , xn), ξ = (ξ1, . . . , ξn), then dxj, dξj ∈ (R2n)∗ satisfy

dxj(u) = dxj(x, ξ) = xj

dξj(u) = dξj(x, ξ) = ξj.

(ii) If α, β ∈ (R2n)∗, then

(α ∧ β)(u, v) := α(u)β(v)− α(v)β(u)

for u, v ∈ R2n. More generally, for αj ∈ (R2n)∗, j = 1, · · · ,m ≤ 2n,
and u = (u1, · · · , um), an m-tuple of uk ∈ R2n,

(1.1) (α1 ∧ · · · ∧ αm)(u) = det([αj(uk)]1≤j,k≤2n).

(iii) If f : Rn → R, the differential of f , is the 1-form

df =
n∑
j=1

∂f

∂xi
dxi.

(iv) An m-form on Rn is given by

w =
∑

i1<i2<···<im

fi1···im(x)dxi1 ∧ · · · dxim , fi1···im ∈ C∞(Rn).

Its action at x on m-tuples of vectors is given using (ii).

(v) The differential of m-form is defined by induction using (iii) and
d(fg) = df ∧ g + fdg, where f is a function and g is an (m− 1)-form.
It satisfies d2 = 0.

THEOREM 1.1 (Alternative definition of d ). Suppose w is a
differential 2-form, and u ∈ C∞(Rn,R3), u = (u1, u3, u3) is a 3-tuple
of vectorfields. Then

dw(u) =u1 (w(u2, u3)) + u2 (w(u3, u1)) + u3 (w(u1, u2))

− w([u1, u2], u3)− w([u2, u3], u1)− w([u3, u1], u2).
(1.2)
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1. Both sides of (1.2) are linear in w and trilinear in u.

2. When, say, u1 is multiplied by f ∈ C∞(Rn), then

dw(fu1, u2, u3) = fdw(u),

and the right hand side of (1.2) is equal to

fu1 (w(u2, u3)) + u2 (fw(u3, u1)) + u3 (fw(u1, u2))

− w([fu1, u2], u3)− w([u2, u3], fu1)− w([u3, fu1], u2),

and this is equal to the right hand side of (1.2) multiplied by f . In
fact,

[fu1, u2] = f [u1, u2]− (u2f)u1, [u3, fu1] = f [u3, u1] + (u3f)u1,

and
u2 (fw(u3, u1)) = fu2 (w(u3, u1)) + (u2f)w(u3, u1),

u3 (fw(u1, u2)) = fu3 (w(u1, u2)) + (u3f)w(u1, u2).

3. Hence we only need to check this identity for u constant and for
w = w1dw2∧dw3, where w1 ∈ C∞, and w2, w3 are coordinate functions
(that is are among x1, · · ·xn). Then

dw(u) = det ([ujwi]1≤i,j≤n) ,

and the right hand side of (1.2) is given by (remember that now ujwi,
i = 2, 3 are constants) by the expansion of this determinant with re-
spect to the first row, (u1w1, u2w1, u3w1). �

DEFINITION. If η is a differential m-form and V a vector field, then
the contraction of η by V , denoted

V η,

is the (m− 1)-form defined by

(V η)(u) = η(V, u),

where u is an (m − 1)-tuple of vectorfields. We use the consistent
convention that for 0-forms, that is for functions, V f = 0.

We note the following property of contraction which can be deduced
from (1.1): if v is a k-form and w is an m-form, then

(1.3) V (v ∧ w) = (V v) ∧ w + (−1)kv ∧ (V w).

DEFINITIONS. Let κ : Rn → Rn be a smooth mapping.

(i) If V is a vector field on Rn, the push-forward is

κ∗V = ∂κ(V ).
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(ii) If η is a 1-form on Rn, the pull-back is

(κ∗η)(u) = η(κ∗u).

THEOREM 1.2 (Differentials and pull-backs). Let w be a dif-
ferential m-form. We have

(1.4) d(κ∗w) = κ∗(dw).

Proof. 1. We first prove this for functions: d(κ∗f) = d(κ(f)) =∑n
j=1

∂yi
∂xj

∂f
∂yi
dxj. Furthermore,

κ∗(df) = κ∗

(
n∑
i=1

∂f

∂yi
dyi

)
=

n∑
i=1

∂f

∂yi
κ∗(dyi).

2. The proof now follows by induction on the order of the differential
form: any m-form can be written as a linear combination of forms fdg
where f is a function, and g is (m− 1)-form. �

DEFINITION. If V is a vector field generating the flow ϕt, then the
Lie derivative of w is

LVw :=
d

dt
((ϕt)

∗w)|t=0.

Here w denotes a function, a vector field or a form. We recall that ϕt is
generated by a time independent vectorfield, V , ϕt = exp(tV ), means
that

(d/dt)ϕt(m) = V (ϕt(m)), ϕ0(m) = m.

EXAMPLE S. (i) If f is a function,

LV f = V (f).

(ii) If W is a vector field

LVW = [V,W ].

Since for differential forms, w, d(ϕt)
∗w = ϕ∗t (dw), we see that LV

commutes with d:

(1.5) d(LVw) = LV (dw).

We also note that LV is a derivation: for a function f ∈ C∞ and a
differential form w,

(1.6) LV (fw) = (LV f)w + fLVw.
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THEOREM 1.3 (Cartan’s formula). If w is a differential form,

(1.7) LVw = d(V w) + (V dw).

Proof. 1. We proceed by induction on the order of differential forms.
For 0-forms, that is for functions, we have

LV f = V f = V df = d(V f) + (V df),

since by our convention V f = 0.

2. Any m-form is a linear combinations of forms fdg where f is a
function and g in an (m − 1)-form. Then, using (1.5), (1.6), d2 = 0,
and the induction hypothesis,

LV (fdg) = (LV f)dg + fLV dg
= (V f)dg + fd(LV g)

= (V f)dg + fd(d(V g) + V dg)

= (V f)dg + fd(V dg).

(1.8)

3. The right hand side of (1.7) for w = fdg is equal to

d(V (fdg)) + V (d(fdg)) =

f(V dg) + df ∧ (V dg) + V (df ∧ dg).
(1.9)

Now we can use (1.3) with w = df , v = dg, k = 1, to obtain

V (df ∧ dg) = (V f)dg − df ∧ (V dg).

Inserting this in (1.9) and the comparison with (1.8) gives (1.7) for
w = fdg and hence for all differential m-forms. �

THEOREM 1.4 (Poincaré’s Lemma). If α is a k-form defined in
the open ball U = B0(0, R) and if

dα = 0,

then there exists a (k − 1) form ω in U such that

dω = α.

Proof. 1. Let Ωk(U) denote the space of k-forms on U . We will build
a linear mapping

H : Ωk(U)→ Ωk−1(U)

such that

(1.10) d ◦H +H ◦ d = I.
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Then

d(Hα) +Hdα = α

and so dω = α for ω := Hα.

2. Define A : Ωk(U)→ Ωk(U) by

A(fdxi1 ∧ · · · ∧ dxik) =

(∫ 1

0

tk−1f(tp) dt

)
dxi1 ∧ · · · ∧ dxik .

Set

X := 〈x, ∂x〉 =
n∑
j=1

xj
∂

∂xj
.

We claim

(1.11) ALX = I on Ωk(U).

and

(1.12) d ◦ A = A ◦ d.

Assuming these assertions, define

H := A ◦X .

By Cartan’s formula, Theorem 1.3,

LX = d ◦ (X ) +X ◦d.

Thus

I = ALX = A ◦ d ◦ (X ) + A ◦X ◦d
= d(A ◦X ) + (A ◦X ) ◦ d
= d ◦H +H ◦ d;

and this proves (1.10).
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3. To prove (1.11), we compute

ALX(fdxi1 ∧ · · · ∧ dxi2)

= A

[(
kf +

n∑
j=1

xj
∂f

∂xj

)
(dxi1 ∧ · · · ∧ dxik)

]

=

∫ 1

0

ktk−1f(tp) +
n∑
j=1

tk−1xj
∂f

∂xj
(tp)

dtdxi1 ∧ · · · ∧ dxik

=

∫ 1

0

d

dt
(tkf(tp)) dtdxi1 ∧ · · · ∧ dxik

= fdxi1 ∧ · · · ∧ dxik .

4. To verify (1.12), note

A ◦ d(fdxi1 ∧ · · · ∧ dxik)

= A

(
n∑
j=1

∂f

∂xj
dxj ∧ dxi1 ∧ · · · ∧ dxik

)

=

(∫ 1

0

tk−1

n∑
j=1

∂f

∂xj
(tp)dxjdt

)
dxi1 ∧ · · · ∧ dxik

= d

((∫ 1

0

tk−1f(tp)dt

)
dxi1 ∧ · · · ∧ dxik

)
= d ◦ A(fdxi1 ∧ · · · ∧ dxik).

�

2. FLOWS

Let V : RN → RN denote a smooth vector field. Fix a point z ∈ RN

and solve the ODE

(2.1)

{
ż(t) = V (z(t)) (t ∈ R)

z(0) = z.

We assume that the solution of the flow (2.1) exists and is unique for
all times t ∈ R.

NOTATION. We define

ϕtz := z(t)
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and sometimes also write

ϕt =: exp(tV ).

We call {ϕt}t∈R the exponential map.

The following lemma records some standard assertions from theory
of ordinary differential equations:

LEMMA 2.1 (Properties of flow map).
(i) ϕ0z = z.
(ii) ϕt+s = ϕt ◦ ϕs for all s, t ∈ R.
(iii) For each time t ∈ R, the mapping ϕt : RN → RN is a diffeomor-
phism, with

(ϕt)
−1 = ϕ−t.

3. SYMPLECTIC STRUCTURE ON R2n

We henceforth specialize to the even-dimensional space RN = R2n =
Rn × Rn.

NOTATION. We refine our previous notation and henceforth denote
an element of R2n as

z = (x, ξ),

and interpret x ∈ Rn as denoting position, ξ ∈ Rn as momentum.
Alternatively, we can think of ξ as belonging to T ∗xRn, the cotangent
space of Rn at x. We will likewise write

w = (y, η)

for another typical point of R2n.

We let 〈·, ·〉 denote the usual inner product on Rn, and then define
this pairing on R2n:

DEFINITION. Given z = (x, ξ), w = (y, η) on R2n = Rn×Rn, define
their symplectic product

(3.1) σ(z, w) := 〈ξ, y〉 − 〈x, η〉.
Note that

(3.2) σ(z, w) = 〈Jz, w〉
for the 2n× 2n matrix

(3.3) J :=

(
0 I
−I 0

)
.
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Observe
J2 = −I, JT = −J.

LEMMA 3.1 (Properties of σ). The bilinear form σ is antisym-
metric:

σ(z, w) = −σ(w, z)

and nondegenerate:

if σ(z, w) = 0 for all w, then z = 0.

These assertions are straightforward to check.

NOTATION. We now bring in the terminology of differential forms,
reviewed in Section 1. Using the notation discussed above, we introduce
for x = (x1, . . . , xn) and ξ = (ξ1, . . . , ξn) the 1-forms dxj and dξj for
j = 1, . . . , n. We then can write

(3.4) σ = dξ ∧ dx =
n∑
j=1

dξj ∧ dxj.

Observe also

(3.5) σ = dω for ω := ξdx =
n∑
j=1

ξjdxj.

It follows that

(3.6) dσ = 0.

4. CHANGING VARIABLES.

Suppose next that U, V ⊆ R2n are open sets and

κ : U → V

is a smooth mapping. We will write

κ(x, ξ) = (y, η) = (y(x, ξ), η(x, ξ)).

DEFINITION. We call κ a symplectic mapping, or a symplectomor-
phism, provided

(4.1) κ∗σ = σ.

Here the pull-back κ∗σ of the symplectic product σ is defined by

(κ∗σ)(z, w) := σ(κ∗(z), κ∗(w)),

κ∗ denoting the push-forward of vectors: see Section 1.
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NOTATION. We will usually write (4.1) in the more suggestive no-
tation

(4.2) dη ∧ dy = dξ ∧ dx.

EXAMPLE 1: Linear symplectic mappings. Suppose κ : R2n →
R2n is linear:

κ(x, ξ) =

(
A B
C D

)(
x
ξ

)
= (Ax+Bξ,Cx+Dξ) = (y, η),

where A,B,C,D are n× n matrices.

THEOREM 4.1 (Symplectic matrices). The linear mapping κ is
symplectic if and only if the matrix

M :=

(
A B
C D

)
satisfies

(4.3) MTJM = J.

DEFINITION. We call a 2n×2n matrix M symplectic if (4.3) holds.

In particular the linear mapping (x, ξ) 7→ (ξ,−x) determined by J
is symplectic.

Proof of Theorem 4.1. Let us compute

dη ∧ dy = (Cdx+Ddξ) ∧ (Adx+Bdξ)

= ATCdx ∧ dx+BTDdξ ∧ dξ + (ATD − CTB)dξ ∧ dx
= dξ ∧ dx

if and only if

(4.4) ATC and BTD are symmetric, ATD − CTB = I.

Then

MTJM =

(
AT CT

BT DT

)(
O I
−I O

)(
A B
C D

)
=

(
ATC − CTA ATD − CTB
BTC −DTA BTD −DTB

)
= J

if and only if (4.4) holds. �
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EXAMPLE 2: Nonlinear symplectic mappings. Assume next
that κ : R2n → R2n is nonlinear:

κ(x, ξ) = (y, η)

for smooth functions y = y(x, ξ), η = η(x, ξ). Its linearization is the
2n× 2n matrix

∂κ = ∂x,ξκ =

(
∂xy ∂ξy
∂xη ∂ξη

)
.

THEOREM 4.2 (Symplectic transformations). The mapping κ
is symplectic if and only if the matrix ∂κ is symplectic at each point.

Proof. We have

dη ∧ dy = (Cdx+Ddξ) ∧ (Adx+Bdξ)

for

A := ∂xy,B := ∂ξy, C := ∂xη,D := ∂ξη.

Consequently, as in the previous proof, we have dη∧dy = dξ∧dx if and
only if (4.4) is valid, which in turn is so if and only if ∂κ is a symplectic
matrix. �

EXAMPLE 3: Lifting diffeomorphisms. Let

γ : Rn → Rn

be a diffeomorphism on Rn, with nondegenerate Jacobian matrix ∂xγ.
We propose to extend γ to a symplectomorphism

κ : R2n → R2n

having the form

(4.5) κ(x, ξ) = (γ(x), η(x, ξ)) = (y, η),

by lifting γ to the momentum variables.

THEOREM 4.3 (Extending to a symplectic mapping). The
transformation (4.5) is symplectic for

(4.6) η(x, ξ) :=
[
∂xγ(x)−1

]T
ξ.
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Proof. As the statement of the theorem suggests it is easier to look for
ξ as a function of x and η. We compute

dy = A dx, dξ = E dx+ F dη,

for
A := ∂xy, E := ∂xξ, F := ∂ηξ.

Therefore
dη ∧ dy = dη ∧ (A dx)

and

dξ ∧ dx = (Edx ∧ Fdη) ∧ dx = Edx ∧ dx+ dη ∧ F Tdx.

We would like to construct ξ = ξ(x, η) so that

A = F T and E is symmetric,

the latter condition implying that Edx∧dx = 0. To do so, let us define

ξ(x, η) := (∂xγ)T η.

Then clearly F T = A, and E = ET = ((γxixj)), as required. �

EXAMPLE 4: Generating functions. Our last example demon-
strates that we can, locally at least, build a symplectic transformation
from a real-valued generating function.

Suppose ϕ : Rn×Rn → R, ϕ = ϕ(x, y), is smooth. Assume also that

(4.7) det(∂2
xyϕ(x0, y0)) 6= 0.

Define

(4.8) ξ = ∂xϕ, η = −∂yϕ,
and observe that the Implicit Function Theorem implies (y, η) is a
smooth function of (x, ξ) near (x0, ∂xϕ(x0, y0)).

THEOREM 4.4 (Generating functions and symplectic maps).
The mapping γ defined by

(4.9) (x, ∂xϕ(x, y)) 7→ (y,−∂yϕ(x, y))

is a symplectomorphism near (x0, ξ0).

Proof. We compute

dη ∧ dy = d(−∂yϕ) ∧ dy
= [(−∂2

yϕdy) ∧ dy] + [(−∂2
xyϕdx) ∧ dy]

= −(∂2
xyϕ)dx ∧ dy,
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since ∂2
yϕ is symmetric. Likewise,

dξ ∧ dx = d(∂xϕ) ∧ dx
= [(∂2

xϕ dx) ∧ dx] + [(∂2
xyϕ dy) ∧ dx]

= −(∂2
xyϕ)dx ∧ dy = dη ∧ dy.

�

TERMINOLOGY. In Greek, the word “symplectic” means “inter-
twined”, This is consistent with Example 4, since the generating func-
tion ϕ = ϕ(x, y) is a function of a mixture of half of the original
variables (x, ξ) and half of the new variables (y, η). “Symplectic” can
also be interpreted as “complex”, mathematical usage due to Hermann
Weyl who renamed “line complex group” the “symplectic group”: see
Cannas da Silva [CdS].

APPLICATION: Lagrangian submanifolds. A Lagrangian sub-
manifold Λ is an n-dimensional submanifold of R2n for which

σ|Λ = 0.

Then

dω|Λ = σ|Λ = 0;

and so according to Poincaré’s Theorem 1.4, we locally have

ω|Λ = dϕ,

for some smooth function ϕ on Λ. �

5. HAMILTONIAN VECTOR FIELDS

DEFINITION. Given f ∈ C∞(R2n), we define the corresponding
Hamiltonian vector field by requiring

(5.1) σ(z,Hf ) = df(z) for all z = (x, ξ).

This is well defined, since σ is nondegenerate. We can write explicitly
that

(5.2) Hf = 〈∂ξf, ∂x〉 − 〈∂xf, ∂ξ〉 =
n∑
j=1

fξj∂xj −
n∑
j=1

fxj∂ξj .

Another way to write the definition of Hf is by using the contraction
defined in Section 1:

(5.3) df = −(Hf σ) ,
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which follows directly from the definition: we calculate for each z that

(Hf σ)(z) = σ(Hf , z) = −σ(z,Hf ) = −df(z).

�

DEFINITION. If f, g ∈ C∞(R2n), we define their Poisson bracket

(5.4) {f, g} := Hfg = σ(∂f, ∂g).

That is,

(5.5) {f, g} = 〈∂ξf, ∂xg〉 − 〈∂xf, ∂ξg〉 =
n∑
j=1

(
fξjgxj − fxjgξj

)
.

LEMMA 5.1 (Brackets, commutators).

(i) We have Jacobi’s identity

(5.6) {f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0

for all functions f, g, h ∈ C∞(R2n).

(ii) Furthermore,

(5.7) H{f,g} = [Hf , Hg].

Proof. 1. A direct calculation verifies assertion (i). For an alternative
proof, showing that the essential property is dσ = 0, note that Lemma
1.1 provides the identity

0 = dσ(Hf , Hg, Hh)

= Hfσ(Hg, Hh) +Hgσ(Hh, Hf ) +Hhσ(Hf , Hg)

− σ([Hf , Hg], Hh)− σ([Hg, Hh], Hf )− σ([Hh, Hf ], Hg) .

(5.8)

Now (5.4) implies

Hfσ(Hg, Hh) = {f, {g, h}}
and

σ([Hf , Hg], Hh) = [Hf , Hg]h = HfHgh−HgHfh

= {f, {g, h}} − {g, {f, h}}.

Similar identities hold for other terms. Substituting into (5.8) gives
Jacobi’s identity.

2. We observe that

H{f,g}h = [Hf , Hg]h
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is a rewriting of (5.6). �

THEOREM 5.2 (Jacobi’s Theorem). If κ is a symplectomorphism,
then

(5.9) Hf = κ∗(Hκ∗f ).

In other words, the pull-back of a Hamiltonian vector field generated
by f ,

(5.10) κ∗Hf := (κ−1)∗Hf ,

is the Hamiltonian vector field generated by the pull-back of f .

Proof. Using the notation of (5.10),

κ∗(Hf ) σ = κ∗(Hf ) κ∗σ = κ∗(Hf σ)

= −κ∗(df) = −d(κ∗f)

= Hκ∗f σ.

Since σ is nondegenerate, (5.9) follows. �

EXAMPLE. Define κ = J , so that κ(x, ξ) = (ξ,−x); and recall κ is
a symplectomorphism. We have κ∗f(x, ξ) = f(ξ,−x), and therefore

Hκ∗f = 〈∂xf(ξ,−x), ∂x〉+ 〈∂ξf(ξ,−x), ∂ξ〉.
Then

κ∗Hf = 〈∂ξf(ξ,−x), ∂ξ〉 − 〈∂xf(ξ,−x), ∂−x〉 = Hκ∗f .

�

THEOREM 5.3 (Hamiltonian flows as symplectomorphisms).
If f is smooth, then for each time t, the mapping

(x, ξ) 7→ ϕt(x, ξ) = exp(tHf )

is a symplectomorphism.

Proof. According to Cartan’s formula (Theorem 1.3), we have

d

dt
((ϕt)

∗σ) = LHf
σ = d(Hf σ) + (Hf dσ).

Since dσ = 0, it follows that

d

dt
((ϕt)

∗σ) = d(−df) = −d2f = 0.

Thus (ϕt)
∗σ = σ for all times t. �
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The next result shows that locally all nondegenerate closed two forms
are equivalent to the standard symplectic form on R2n, σ.

THEOREM 5.4 (Darboux’s Theorem). Let U be a neighborhood
of (x0, ξ0) and suppose η is a nondegenerate 2-form defined on U , sat-
isfying

dη = 0.

Then near (x0, ξ0) there exists a diffeomorphism κ such that

(5.11) κ∗η = σ.

A symplectic structure is the existence of a form η. Darboux’s theorem
states that all symplectic structures are identical locally, in the sense
that all are equivalent to that given by σ. This is dramatic contrast
to Riemannian geometry: there are no local invariants in symplectic
geometry.

Proof. 1. Let us assume (x0, ξ0) = (0, 0). We first find a linear mapping
L so that

L∗η(0, 0) = σ(0, 0).

This means that we find a basis {ek, fk}nk=1 of R2n such that
η(fl, ek) = δkl
η(ek, el) = 0

η(fk, fl) = 0

for all 1 ≤ k, l ≤ n. Then if u =
∑n

i=1 xiei + ξifi, v =
∑n

j=1 yjej + ηjfj,
we have

η(u, v) =
n∑

i,j=1

xiyjη(ei, ej) + ξiηjη(fi, fj) + xiηjσ(ei, fj) + ξiyjσ(fi, ej)

= 〈ξ, y〉 − 〈x, η〉 = σ((x, ξ), (y, η)).

We leave finding L as a linear algebra exercise.

2. Next, define ηt := tη + (1− t)σ for 0 ≤ t ≤ 1. Our intention is to
find κt so that κ∗tηt = σ near (0, 0); then κ := κ1 solves our problem.
We will construct κt by solving the flow

(5.12)

{
ż(t) = Vt(z(t)) (0 ≤ t ≤ 1)

z(0) = z,

and setting κt := ϕt.
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For this to work, we must design the vector fields Vt in (5.12) so that

d

dt
(κ∗tηt) = 0 .

Let us therefore calculate

d

dt
(κ∗tηt) = κ∗t

(
d

dt
ηt

)
+ κ∗tLVtηt

= κ∗t [(η − σ) + d(Vt ηt) + Vt dηt] ,

where we used Cartan’s formula, Theorem 1.3. Note that dηt = tdη +
(1− t)dσ. Hence (d/dt)(κ∗tηt) = 0 provided

(5.13) (η − σ) + d(Vt ηt) = 0.

According to Poincaré’s Theorem 1.4, we can write

η − σ = dα near (0, 0).

So (5.13) will hold, provided

(5.14) Vt ηt = −α (0 ≤ t ≤ 1).

Since η = σ at (0, 0), ηt = σ at (0, 0). In particular, ηt is nondegenerate
for 0 ≤ t ≤ 1 in a neighbourhood of (0, 0), and hence we can solve (5.13)
for the vector field Vt. �
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