BASIC SYMPLECTIC GEOMETRY

NOTATION.

R"™ = n-dimensional Euclidean space

x,y denote typical points in R" : =z = (x1,...,2,), ¥y = (Y1, -, Yn)
R?" = R" x R"

z = (z,§),w = (y,n) denote typical points in R™ x R™ :

= (xla"'7xn7§17"'7§n>7 w = (y17"'7yna7717"‘777n)

C = complex plane

C™ = n-dimensional complex space

(x,y) = > x;j; = inner product on C"

M™*"™ = m x n-matrices

AT = transpose of the matrix A

I denotes both the identity matrix and the identity mapping.

O I
=% o)
o(z,w) = (Jz,w) = symplectic inner product

If o : R" — R, then we write

00 = (Quys- -, Pz, ) = gradient,

and
Prizw -+ Paiz,
82g0 = = Hessian matrix

spmnml Tt (Ipﬂc'nxn
If o depends on both the variables x,y € R", we put

Prizr -+ Prizy,
02 = g

Prpzr -+ Prpay
1
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and
Priyr - Priyn
2 _
0y P
gpxnyl ct gpxnyn
e Jacobians: Let
r =y =y(x)
be a diffeomorphism, y = (y',...,y"). The Jacobian matrix is
oy '
o1 T OTn
E9y = Eiry = ..
oy oy"

albl e an nxn
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1. DIFFERENTIAL FORMS

In this section we provide a minimalist review of differential forms on
RY. For more a detailed and fully rigorous description of differential
forms on manifolds we refer to [W, Chapter 2].

NOTATION.
() o= (21,...,2,), £ = (&, ..,&), then duj, dE; € (R?™)* satisfy
drj(u) = dr;(z,€) =
d§;(u) = dg;(z,§) =&

(i) If o, B € (R*™)*, then
(@A B)(u,v) := au)(v) — a(v)5(u)

for u,v € R?*". More generally, for a; € (R*)*, j =1,--- ,m < 2n,
and u = (uy, -+ ,Un), an m-tuple of u;, € R*",
(1.1) (a1 A= Ao ) (u) = det([a(ur)]1<jp<2n)-

(iii) If f: R™ — R, the differential of f, is the 1-form

j=1

(9:1:'2-

(iv) An m-form on R™ is given by
w = Z fil---im (Qi)dﬁh A--edx fi1---im c COO(]RR)
11 <t <<t
Its action at x on m-tuples of vectors is given using (ii).
(v) The differential of m-form is defined by induction using (iii) and

d(fg) =df N g+ fdg, where f is a function and ¢ is an (m — 1)-form.
It satisfies d® = 0.

THEOREM 1.1 (Alternative definition of d ). Suppose w is a
differential 2-form, and v € C°(R™,R?), u = (uy,us, u3) is a 3-tuple
of vectorfields. Then

dw(u) =uy (w(ug, uz)) + us (w(uz, uy)) + ug (w(ug, ug))

(12) — w([ug, ug], uz) — w([ug, us), ur) — w([us, ui], uz).
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1. Both sides of (1.2) are linear in w and trilinear in u.
2. When, say, u; is multiplied by f € C*°(R"), then
dw(fuy,ug,uz) = fdw(u),
and the right hand side of (1.2) is equal to
fur (w(ug, us)) + uz (fw(us, ur)) + us (fw(ug, us))
— w(lfur, ual, us) — wlluz, us), fur) — wllus, fu], up),

and this is equal to the right hand side of (1.2) multiplied by f. In
fact,

[fur,ug] = fluy, ug] — (upf)ur, [us, fui] = flus,ui] + (usf)us,
and
ug (fw(uz, ur)) = fug (w(us, ur)) + (uaflw(us, ur),
ug (fw(ur, uz)) = fuz (w(uy, uz)) + (usf)w(ur, ug).

3. Hence we only need to check this identity for u constant and for
w = widwy A dws, where w; € C*°, and ws, w3 are coordinate functions
(that is are among 1, - - - z,). Then

dw(u) = det ([ujw;i]i<ij<n) ,

and the right hand side of (1.2) is given by (remember that now w;w;,
i = 2,3 are constants) by the expansion of this determinant with re-
spect to the first row, (ujwy, uswy, ugwy). O

DEFINITION. If n is a differential m-form and V' a vector field, then
the contraction of n by V, denoted

V n,
is the (m — 1)-form defined by
(Van)(u) = n(V,u),

where u is an (m — 1)-tuple of vectorfields. We use the consistent
convention that for 0-forms, that is for functions, V I f = 0.

We note the following property of contraction which can be deduced
from (1.1): if v is a k-form and w is an m-form, then

(1.3) ViwAw) = (Vi) Aw+ (=D A (V Jw).

DEFINITIONS. Let x : R — R"™ be a smooth mapping.
(i) If V' is a vector field on R™, the push-forward is

kV = 0k(V).
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(ii) If n is a 1-form on R", the pull-back is
(k") (u) = (k).

THEOREM 1.2 (Differentials and pull-backs). Let w be a dif-
ferential m-form. We have

(1.4) d(k*w) = K*(dw).

Proof. 1. We first prove this for functions: d(x*f) = d(k(f)) =
S 20 07 g Furthermore,

j:1 axj 8yi
K*(df) = k" dy; | =
(df) ( 01 y) ;—1 0

K" (dy;).

2. The proof now follows by induction on the order of the differential
form: any m-form can be written as a linear combination of forms fdg
where f is a function, and ¢ is (m — 1)-form. O

DEFINITION. If V is a vector field generating the flow ¢;, then the
Lie derivative of w is

d )
= a((%) w)|i=o-
Here w denotes a function, a vector field or a form. We recall that ¢, is
generated by a time independent vectorfield, V', ¢, = exp(tV'), means
that

,va .

(d/dt)pi(m) = V(pi(m)), po(m) =m.

EXAMPLE S. (i) If f is a function,
Ly f=V(f)
(ii) If W is a vector field
LyW = [V, W].

Since for differential forms, w, d(¢:)*w = ¢;(dw), we see that Ly
commutes with d:

We also note that Ly is a derivation: for a function f € C* and a
differential form w,
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THEOREM 1.3 (Cartan’s formula). If w is a differential form,
(1.7) Lyw =d(V Jw) + (V Jdw).
Proof. 1. We proceed by induction on the order of differential forms.
For O-forms, that is for functions, we have
Lyf=Vf=Vlidf =d(VIf)+ (Vdf),
since by our convention V _I f = 0.
2. Any m-form is a linear combinations of forms fdg where f is a

function and ¢ in an (m — 1)-form. Then, using (1.5), (1.6), d* = 0,
and the induction hypothesis,

Ly (fdg) = (Lv f)dg + fLyvdg
= (Vf)dg + fd(Lvg)
= (Vf)dg + fd(d(V 1g) +V dg)
= (Vf)dg + fd(V Jdg).

(1.8)

3. The right hand side of (1.7) for w = fdg is equal to
d(V J(fdg)) +V J(d(fdg))
f(V 1dg) +df A (V dg) + V I(df A dg).

(1.9)

Now we can use (1.3) with w = df, v = dg, k = 1, to obtain
V (df Adg) = (VF)dg — df A (V Jdg).

Inserting this in (1.9) and the comparison with (1.8) gives (1.7) for
w = fdg and hence for all differential m-forms. O

THEOREM 1.4 (Poincaré’s Lemma). If « is a k-form defined in
the open ball U = B°(0, R) and if

da =0,
then there exists a (k — 1) form w in U such that
dw = a.

Proof. 1. Let QF(U) denote the space of k-forms on U. We will build
a linear mapping

H:Q"U) — Q1(U)
such that

(1.10) doH+Hod=1.



BASIC SYMPLECTIC GEOMETRY

Then
d(Ha) + Hdo = «

and so dw = « for w := Ha.

2. Define A : QF(U) — QF(U) by

1
A(fdxy, N--- Ndxy,) = (/ =1 f(tp) dt) dxy, N Ndz,.
0

Set
X = (x,0,) iaz 9
- yVYao/ — : ]81']
7=1
We claim
(1.11) ALx =1 on Q).
and
(1.12) doA=Aod.

Assuming these assertions, define
H:=AoX_l.
By Cartan’s formula, Theorem 1.3,
Lx =do(X_)+ X Jod.
Thus

I=ALy = Aodo(X_ )+ AoX Jod
d(Ao X )+ (Ao X J)od
doH+ Hod;

and this proves (1.10).
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3. To prove (1.11), we compute

k 2L (das, A A da,
<f+jzzl$3$j)<x A x)]

= /1 k" f (tp) + Zn:t“x-a—f(tp)
0 =1 JaLL’j

=A

d

1
= / E(t’“ f(tp)) dtdzs, A--- A da;,
0

4. To verify (1.12), note

=A (Z ﬁalmj A dx;, /\---/\dxik)
j

— ax]’

1 - n a]c
= (/0 th=1 Z T(tp)dgdt) dai, N+ Ndx;,

a
j=1 "

=d ((/01 tklf(tp)dt> dzy A A d:rz-k)

2. FLOWS

Let V : RY — RY denote a smooth vector field. Fix a point z € RV
and solve the ODE

(2.1) {Z(U =V(z(t)) (teR)
2(0) = 2.

We assume that the solution of the flow (2.1) exists and is unique for
all times ¢ € R.

NOTATION. We define
oz = 2(t)
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and sometimes also write
or =: exp(tV).
We call {¢;}ier the exponential map.

The following lemma records some standard assertions from theory
of ordinary differential equations:

LEMMA 2.1 (Properties of flow map).

(i) poz = 2.

(1) pirs = @1 0 s for all s,t € R.

(iii) For each time t € R, the mapping ¢; : RN — RY is a diffeomor-
phism, with

(%)71 = Pt

3. SYMPLECTIC STRUCTURE ON R?"

We henceforth specialize to the even-dimensional space RY = R?" =
R™ x R™.

NOTATION. We refine our previous notation and henceforth denote
an element of R?*" as

2= (2,8),

and interpret x € R"™ as denoting position, & € R™ as momentum.
Alternatively, we can think of ¢ as belonging to T;R", the cotangent
space of R™ at x. We will likewise write

w = (y,n)
for another typical point of R?".

We let (-,-) denote the usual inner product on R", and then define
this pairing on R*":

DEFINITION. Given z = (z,£), w = (y,n) on R* = R" X R", define
their symplectic product

(31) O'(Z,w) = <§7y> - <l‘ﬂ7>
Note that
(3.2) o(z,w) = (Jz,w)

for the 2n x 2n matrix

(3.3) J = (_(} é) |
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Observe
J?=—1I, J'=—1J.

LEMMA 3.1 (Properties of o). The bilinear form o is antisym-
metric:

o(z,w) = —o(w, 2)
and nondegenerate:

if o(z,w) =0 for all w, then z = 0.
These assertions are straightforward to check.

NOTATION. We now bring in the terminology of differential forms,
reviewed in Section 1. Using the notation discussed above, we introduce
for x = (z1,...,2,) and £ = (&,...,&,) the 1-forms dz; and d¢; for
j=1,...,n. We then can write

(3.4) o=d{Ndx = i dé; N\ dzx;.
=1
Observe also J
(3.5) o=dw for w:=¢&dx= znzfjdxj.
It follows that "
(3.6) do = 0.

4. CHANGING VARIABLES.

Suppose next that U,V C R?" are open sets and
k:U—=V

is a smooth mapping. We will write

’%(‘%5) = (%77) = (y(%f)an(%f))

DEFINITION. We call k a symplectic mapping, or a symplectomor-
phism, provided

(4.1) K'o=o0.
Here the pull-back k*o of the symplectic product o is defined by
(1) (2, w) 1= 0k (2), K (w)),

ks« denoting the push-forward of vectors: see Section 1.
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NOTATION. We will usually write (4.1) in the more suggestive no-
tation

(4.2) dn A dy = d€ N dex.

EXAMPLE 1: Linear symplectic mappings. Suppose « : R*" —
R?" is linear:

de.)= (7 p) (§) = o+ BE.Co 4 DO = ),

where A, B, C, D are n X n matrices.

THEOREM 4.1 (Symplectic matrices). The linear mapping k is
symplectic if and only if the matriz

A B
e (2 9)
satisfies

(4.3) MTJIM = J.
DEFINITION. We call a 2n x 2n matrix M symplectic if (4.3) holds.

In particular the linear mapping (z,£) — (£, —z) determined by J
is symplectic.

Proof of Theorem 4.1. Let us compute
dnpANdy = (Cdx+ DdE) A (Adx + BdE)
= A'Cdx Adx + BT Dd¢ A d€ 4 (ATD — CTB)dé A dx
= déNdx
if and only if
(4.4) ATC and BT D are symmetric, ATD —CTB =1.

Then
wrat = (e ) (5 0) (6 D)
(ATC —CTA ATD — CTB)
BTC -DTA BTD- DB
= J
if and only if (4.4) holds. O
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EXAMPLE 2: Nonlinear symplectic mappings. Assume next
that x : R?® — R?" is nonlinear:

R, €) = (y,m)
for smooth functions y = y(z,€),n = n(z,§). Its linearization is the

2n X 2n matrix
Oy 0 y)
Ok = Opek = | £
£ (@ﬂ] 857]

THEOREM 4.2 (Symplectic transformations). The mapping k
s symplectic if and only if the matrixz Ok is symplectic at each point.

Proof. We have
dn A dy = (Cdx 4+ Dd€) N (Adx + BdE)

for
A:=0,y,B =0y, C = 0,n, D := 0en.

Consequently, as in the previous proof, we have dnAdy = d¢ Adx if and
only if (4.4) is valid, which in turn is so if and only if Ok is a symplectic
matrix. 0

EXAMPLE 3: Lifting diffeomorphisms. Let
~v:R" = R"

be a diffeomorphism on R”, with nondegenerate Jacobian matrix 0,7.
We propose to extend v to a symplectomorphism

K R — R?"
having the form

(4.5) r(z,8) = (v(2),n(z,£)) = (y,n),

by lifting v to the momentum variables.

THEOREM 4.3 (Extending to a symplectic mapping). The
transformation (4.5) is symplectic for

T

(4.6) n(w,€) = [Oy(2) '] &
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Proof. As the statement of the theorem suggests it is easier to look for
¢ as a function of x and 1. We compute

dy=Adr, dé=EFEdv+F dn,

for
A:=0y, E:=0¢ F:=0,.
Therefore
dn N dy = dn A (A dx)
and

dé ANdx = (BEdx A Fdn) A dv = Edx A dx +dnp A Fldx.
We would like to construct £ = £(x,n) so that

A=FT and F is symmetric,
the latter condition implying that Edx Adx = 0. To do so, let us define

E(x,m) = (9:7)" 1.
Then clearly F* = A, and E = E" = ((V4,4,)), as required. O

EXAMPLE 4: Generating functions. Our last example demon-
strates that we can, locally at least, build a symplectic transformation
from a real-valued generating function.

Suppose ¢ : R" xR" = R, ¢ = ¢(x,y), is smooth. Assume also that

(4.7) det(ﬁgy@(mo, Y)) # 0.
Define
(4.8) £ =0up, N =0y,

and observe that the Implicit Function Theorem implies (y,n) is a
smooth function of (x,&) near (xq, 0x(xo, Yo)).

THEOREM 4.4 (Generating functions and symplectic maps).
The mapping v defined by

(49) (l’, ach(x7 y)) = (yu —@gp(m, y))

is a symplectomorphism near (zo,&p).

Proof. We compute
dpNdy = d(—0yp) Ndy
[(—05dy) A dy] + [(=0z,pdx) A dy]
—(03,)dz A dy,
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since 02 is symmetric. Likewise,
d¢ Ndx = d(0:p) Ndx
= [(07¢ dx) A da] + [(05,¢ dy) A da]
= ((92yg0)dac Ndy = dn A dy.
0

TERMINOLOGY. In Greek, the word “symplectic” means “inter-
twined”, This is consistent with Example 4, since the generating func-
tion ¢ = p(z,y) is a function of a mixture of half of the original
variables (x,&) and half of the new variables (y,n). “Symplectic” can
also be interpreted as “complex”, mathematical usage due to Hermann

Weyl who renamed “line complex group” the “symplectic group”: see
Cannas da Silva [CdS].

APPLICATION: Lagrangian submanifolds. A Lagrangian sub-
manifold A is an n-dimensional submanifold of R?" for which

O"A = 0.
Then
dw|y = |y =0;
and so according to Poincaré’s Theorem 1.4, we locally have
wly = de,

for some smooth function ¢ on A. O

5. HAMILTONIAN VECTOR FIELDS
DEFINITION. Given f € C*(R®"), we define the corresponding

Hamiltonian vector field by requiring
(5.1) o(z,Hy) = df (2) for all z = (z, ).

This is well defined, since ¢ is nondegenerate. We can write explicitly
that

(5.2)  Hy={(0cf.0.) — (0:].0) = ngj by = 2 fuiDs,

Another way to write the definition of H is by using the contraction
_I defined in Section 1:

(5.3) df = —(Hy o),
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which follows directly from the definition: we calculate for each z that
(Hy10)(2) = o(Hy, 2) = —o(z, Hy) = —df (2).
O

DEFINITION. If f,g € C*(R?"), we define their Poisson bracket

(5.4) {f,9} == Hyg=0(0f,09).
That is,

n

(55) {fﬂg} = <a§fv accg> - <axf> a€g> = Z (ffjg:cj - fa:jgfj) ’

J=1

LEMMA 5.1 (Brackets, commutators).

(i) We have Jacobi’s identity
(5.6) {f g n}} +{g9.{h, f}} +{n.{f. 93} =0
for all functions f,g,h € C®(R?").

(ii) Furthermore,
(5.7) Hyggy = [Hy, Hy).

Proof. 1. A direct calculation verifies assertion (i). For an alternative
proof, showing that the essential property is do = 0, note that Lemma
1.1 provides the identity

0 = do(H;, H,, Hy,)
(5.8) = Hyo(H,, Hy) + Hyo(Hp, Hf) + Hyo(Hy, Hy)
— o([Hy, Hy], Hy) — o([Hy, Hp], Hy) — o([Hpn, Hy], Hy) .
Now (5.4) implies
Hyo(Hy, Hy) = {f,{g,h}}
e o([Hy,Hy|,Hy) = [Hy, Hylh = HyH,h — HyHh
= {f g, 13} = {9, {f, h}}-

Similar identities hold for other terms. Substituting into (5.8) gives
Jacobi’s identity.

2. We observe that
Hpgph = [Hy, Hylh
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is a rewriting of (5.6). O

THEOREM 5.2 (Jacobi’s Theorem). If k is a symplectomorphism,
then

(59) Hf = K*(H,{*f).

In other words, the pull-back of a Hamiltonian vector field generated
by f,

(5.10) K*Hp = (k). Hy,
is the Hamiltonian vector field generated by the pull-back of f.

Proof. Using the notation of (5.10),
K'(Hy)do = rk"(Hy)dKk'o=r"(H; o)
= —r"(df) = —d(x"[)
= H,««fJO’.

Since ¢ is nondegenerate, (5.9) follows. O

EXAMPLE. Define £ = J, so that x(z,§) = (£, —z); and recall & is
a symplectomorphism. We have x*f(x, &) = f(§, —x), and therefore

Hm*f = <8:ch(£7 _x>7aﬂc> + <a§f<§7 —l’),&g).
Then
'L{'*Hf = <a€f(€a —l‘),@g) - <axf(€a _x)>8—:c> = H/@*ﬁ
U

THEOREM 5.3 (Hamiltonian flows as symplectomorphisms).
If f is smooth, then for each time t, the mapping

(2,8) = ¢i(x, §) = exp(tHy)
15 a symplectomorphism.

Proof. According to Cartan’s formula (Theorem 1.3), we have
d
E((got)*a) = Ly,0=d(H; o)+ (Hy Jdo).
Since do = 0, it follows that
d *
(o) = d(~df) = ~f =0.

Thus (p;)*o = o for all times ¢. O
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The next result shows that locally all nondegenerate closed two forms
are equivalent to the standard symplectic form on R?", o.

THEOREM 5.4 (Darboux’s Theorem). Let U be a neighborhood

of (xg, &) and suppose n is a nondegenerate 2-form defined on U, sal-
1sfying

dn = 0.
Then near (xo,&o) there ezists a diffeomorphism k such that
(5.11) K'n=o.

A symplectic structure is the existence of a form 7. Darboux’s theorem
states that all symplectic structures are identical locally, in the sense
that all are equivalent to that given by ¢. This is dramatic contrast
to Riemannian geometry: there are no local invariants in symplectic
geometry.

Proof. 1. Let us assume (g, &y) = (0,0). We first find a linear mapping
L so that

L*n(0,0) = 0(0,0).
This means that we find a basis {eg, fx}7_, of R*" such that

n(f1,ex) = O
n(elwel) =0
n(fr, fi) =0

forall 1 <kl <n. Thenifu=73"", ze;+&ifi, v=">2""_, yje; +n;fj,
we have

n(u, v) = Z ziym(ei, e5) + & fi, f3) + zmjo(ei, f3) + Gyio(fis e5)

ij=1
- <§7 y> - <J],7]> = O-((x7§)7 <y777))
We leave finding L as a linear algebra exercise.
2. Next, define 7, :=tn+ (1 —t)o for 0 <t < 1. Our intention is to

find x; so that k;n; = o near (0,0); then k := k; solves our problem.
We will construct ; by solving the flow

) =Vi(z(t)) (0<t<1)
(5.12) {2(0) .

and setting k; := ¢y.
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For this to work, we must design the vector fields V; in (5.12) so that
d

Eg(ﬁfﬁﬁ =0.

Let us therefore calculate
d, , L[ d »
E(’{tnt) = Ky (Ent) + Ky Ly,

= kK [(n—0o)+d(Vidn) + Viddn,],

where we used Cartan’s formula, Theorem 1.3. Note that dn, = tdn +
(1 —t)do. Hence (d/dt)(kin:) = 0 provided

(5.13) (n—o)+d(Vidn) = 0.
According to Poincaré’s Theorem 1.4, we can write
n—o=da near (0,0).
So (5.13) will hold, provided
(5.14) Vidny = —« 0<t<1).

Since n = o at (0,0), 7, = o at (0,0). In particular, n; is nondegenerate
for 0 <t < 1in a neighbourhood of (0, 0), and hence we can solve (5.13)
for the vector field V. O
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