
COMMENTARY ON “DIFFERENTIABLE DYNAMICAL SYSTEMS”
BY STEPHEN SMALE

MACIEJ ZWORSKI

Immediately following the commentary below, this previously published

article is reprinted in its entirety: Stephen Smale, Differentiable dynam-

ical systems, Bull. Amer. Math. Soc. 73(1967), no.6, 747–817.

It would be difficult, and impossible for me, to describe the full impact of Smale’s ar-

ticle on differentiable dynamical systems. I will concentrate on one topic from Part II of

the paper: dynamical zeta functions for flows. There has been significant improvement

in our understanding of these zeta functions in the last few years and many advances

culminated in Dyatlov–Guillarmou’s [DyGu18] resolution of Smale’s conjecture about

their meromorphic continuation.

To set things up, a flow on a compact smooth manifoldM is a one parameter group

of diffeomorphisms: ϕt : M → M, ϕ0 = id, ϕt+s = ϕt ◦ ϕs. It is generated by a

smooth vector field X(x) := dϕt(x)/dt|t=0. Let Γ denote the set of closed orbits of the

flow and for γ ∈ Γ let `(γ) be the minimal period of γ, that is the first t > 0 such that

ϕt(x) = x for some x ∈ γ.

A dynamical zeta function for flows is defined by Smale in §II.4 as follows:

Z(s) :=
∏
γ∈Γ

∞∏
k=0

(1− e−(s+k)`(γ)). (1)

This is a generalization of a zeta function defined by Selberg when the flow is the

geodesic flow on a Riemann surface but in this generality Smale considered a zeta

function as “a wild idea”.

A closely related zeta function was later introduced by Ruelle [Ru76]:

ζ(s) :=
∏
γ∈Γ

(1− e−s`(γ)), ζ(s) =
Z(s)

Z(s+ 1)
. (2)

If convergence of the product in the definition of Z(s) is known for Re s � 1 then

meromorphic continuation of one zeta function follows from that of the other.

Needless to say some assumptions are required to make sense of (1), discreteness

of the set of `(γ) being the first requirement. Convergence for Re s � 1 follows from

knowing that |{γ : `(γ) ≤ T}| ≤ CeCT . Refining such estimates to obtain prime
1



2 MACIEJ ZWORSKI

geodesic theorems is one of the applications of dynamical zeta functions – see [GLP13]

and references given there.

A class of flows discussed by Smale is given by suspensions of diffeomorphisms, that

is flows obtained from discrete dynamical systems defined by iterating diffeomorphisms.

For diffeomorphisms, dynamical zeta function was first defined by Artin and Mazur

and §I.4 is devoted to that better developed subject. (For a modern analytic approach

and for references to the literature see the recent book [Ba18].)

The zeta function of a diffeomorphism f is rational when f is an Anosov diffeomor-

phism. In Theorem 4.1 Smale and Narasimhan show that for suspensions of Anosov

diffeomorphisms the zeta function Z(s) is meromorphic in C. Smale asks if Z(s) is

meromorphic for flows which are Axiom A suspensions. He then adds “I must admit

a positive answer would be a little shocking!”.

Axiom A flows, also introduced by Smale, are a generalization of flows which are

close to suspensions of Anosov diffeomorphisms. To define them we need to present

several concepts from dynamical systems.

Definition 1 (§II.2 of Smale’s paper). A fixed point x ∈ M, X(x) = 0, is called

hyperbolic if the linear map T ∗xM 3 df(x) 7→ d(Xf)(x) ∈ T ∗xM, f ∈ C∞(M), has no

eigenvalues on the imaginary axis. Hyperbolic fixed points are nondegenerate and thus

isolated.

Definition 2 (§II.3 of Smale’s paper). Let K ⊂M be a compact ϕt-invariant set. We

say that K is hyperbolic for the flow ϕt, if the generator X of the flow does not vanish

on K and each tangent space TxM, x ∈ K, admits a continuous decomposition

TxM = E0(x)⊕ Es(x)⊕ Eu(x), E0(x) := X(x)R, x ∈ K,

dϕt(E•(x)) = E•(ϕt(x)) for all x ∈ K, t ∈ R, and for some continuous norm | • | on

the fibers of TM, there exist constants C, θ > 0 such that for all x ∈ K,

|dϕt(x)v| ≤ Ce−θ|t||v| when

{
t ≥ 0, v ∈ Es(x);

t ≤ 0, v ∈ Eu(x).

We say ϕt is an Anosov flow if the whole of M is hyperbolic.

Perhaps the most widely known example of an Anosov flow is the geodesic flow on

negatively curved manifolds. In that case M is the sphere bundle of the manifold.

We also define the nonwandering set :

Definition 3 (p. 796 of Smale’s paper). We call x ∈ M a nonwandering point if for

every neighborhood V of x and every T > 0 there exists t ∈ R such that |t| ≥ T and

ϕt(V ) ∩ V 6= ∅. The set of all nonwandering points is called the nonwandering set.

We now give the definition of Axiom A flows:
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Definition 4 (§II.5, (5.1) in Smale’s paper). The flow ϕt is Axiom A if:

(1) the nonwandering set is the disjoint union of the set F of fixed points and the

closure K of the union of all closed orbits;

(2) all fixed points of ϕt are hyperbolic;

(3) the set K is hyperbolic for the flow ϕt.

Smale’s conjecture was answered in the affirmative in the generality of Axiom A

flows:

Theorem 1 (Dyatlov–Guillarmou [DyGu16],[DyGu18]). Assume that ϕt is an Axiom

A flow with orientable stable/unstable foliations x 7→ E•(x), • = s, u. Then Z(s) and

ζ(s) given in (1) and (2) continue meromorphically to C.

The orientability hypothesis holds in many natural cases (such as geodesic flows on

orientable negatively curved manifolds) and can be removed under certain topological

assumptions by using twisted zeta functions, see [GLP13, Appendix B].

We also remark that for applications one typically needs meromorphic continuation

to a finite strip Re s > −a. However, continuation to large strips does not at the

moment appear to be simpler. When instead of C∞ regularity, Ck regularity, k � 1,

is assumed, the continuation is valid for Re s > −k/C.

Theorem 1 was preceded by earlier results and I will only mention a few highlights

in the case of flows. But I would like to stress that the development of zeta function

for hyperbolic maps was an essential component of the progress on flows – see the

book of Baladi [Ba18], herself a key contributor to this story. As Smale stressed on the

first page of his paper, “the same phenomena and problems of the qualitative theory of

ordinary differential equations are present in their simplest form in the diffeomorphism

problem.”

Selberg proved the meromorphy of (1) for Riemann surfaces using his trace for-

mula. Ruelle [Ru76] represented ζ(s) in (2) using Grothendieck’s theory of Fredholm

determinants of nuclear operators. That lead to meromorphic continuation under the

strong assumption that the foliations defined by x 7→ E•(x), • = s, u are real analytic.

Eventually that turned out to imply that such geodesic flows have to flows on locally

symmetric spaces but the method has had broader applications. Rugh [Ru96] found

a new approach to the determinant method for flows in which M and ϕt, but not the

foliations, were real analytic (but not the foliations). That breakthrough allowed the

first treatment of a large class of manifolds of non-constant curvature. It was devel-

oped further by Fried [Fr95] and led to the formulation of a conjecture I will mention

below. One big difference between the results of Fried and Rugh and Theorem 1 is the

order estimate on the zeta function in the analytic case.
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The case of smooth manifolds and flows was resolved in the Anosov case (see the end

of Definition 2) by Giulietti, Liverani and Pollicott [GLP13]. That paper can also be

consulted for more about history and applications. One of the crucial new components

were the anisotropic Sobolev spaces first developed for maps by Kitaev, Blank-Keller–

Liverani, Gouezel–Liverani and Baladi–Tsujii. Roughly speaking, in these spaces func-

tions are smoother in the stable directions and rougher in the unstable ones. Since

the flow moves from stable to unstable, we “move” smoother functions into spaces of

rougher functions and that results in compactness or trace class properties. This notion

is fundamentally microlocal, that is, it involves phase space (position and momentum)

properties of functions.

A clear microlocal description of anisotropic spaces was given by Faure–Sjöstrand

[FaSj11] and that was the starting point of my joint work with Dyatlov in which we gave

a simple proof of the theorem of Giulietti–Liverani–Pollicott [DyZw16]. As in previous

works the connection with spectral methods is given by the Atiyah–Bott–Guillemin

trace formula:

trϕ∗t =
∑
γ∈Γ

∞∑
k=1

`(γ)δ(t− k`(γ))

| det(I − P k
γ )|

, t > 0, Pγ := dϕ`(γ)(x)|Eu(x)⊕Es(x), x ∈ γ. (3)

Here ϕ∗tf(x) := f(ϕt(x)) is the pull back operator and the trace is defined by inte-

grating the operator kernel (roughly, δ(ϕt(x)− y)) on the diagonal. That operation is

allowed under some analytic “wave front set” conditions and makes the above formula

valid in the sense of distributions.

Thinking of X as a differential operator acting on C∞(M) we have ϕ∗tf = exp(tX)f .

One can then easily imagine that by various manipulations, one of them the Laplace

transform, (3) can be expressed using zeta functions related to (2). It then turns

out that the meromorphy of the zeta function is related to the properties of tr(X −
s)−1. Here the trace is meant in the above distributional sense and the inverse is

defined on the anisotropic spaces. To obtain the needed wave front set conditions,

the new component was an adaptation of Melrose’s radial estimates [Me94] developed

for scattering theory on asymptotically Euclidean spaces. These estimates have been

extensively used in scattering theory and mathematical general relativity (where they

give a microlocal explanation of the red shift effect at the event horizon), notably in

the work of Vasy [Va13]. Here, the stable and unstable bundles in phase space play

a role of radial sources and sinks and, unlike sources and sinks of [Me94],[Va13], are

highly irregular. The estimates are however robust enough to handle that.

The situation becomes more complicated when one moves from Anosov flows to

Axiom A flows. Construction of the resolvent (X − s)−1 requires new estimates as

now “escape” is possible both in space (away from hyperbolic sets) and momentum (to

infinite frequencies). For a class of open systems related to Axiom A flows Dyatlov and
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Guillarmou [DyGu16] constructed the resolvent and applied it to prove meromorphy

of the corresponding zeta function. Using ideas from §II.5 of Smale’s paper, the work

of Conley–Easton and more recent contributions by Guillarmou–Mazzucchelli–Tzou,

[DyGu18] used the results of [DyGu16] to give Theorem 1.

One of interesting questions about zeta functions is the Fried conjecture [Fr95, P.181].

Consider a “twisted” generalization of (2) in the case of (Σ, g), negatively curved

oriented compact Riemannian manifold of odd dimension n ≥ 3,

ζα(λ) :=
∏
γ∈Γ

det(I − α(γ)eiλ`γ ), (4)

for a representation α : π1(S∗Σ) → GL(N,C). (The meromorphy of ζα for smooth

Anosov flows follows from the proof in [DyZw16].) Referring to [Fr95] for precise

definitions, Fried conjectured that when α is an acyclic unitary representation of π1(Σ),

then

|ζα(0)|(−1)n−1

= Tα(Σ)2, (5)

where Tα(Σ) is the analytic torsion of Σ. The analytic torsion Tα(Σ) was defined by

Ray and Singer using eigenvalues of an α-twisted Hodge Laplacian. Their conjecture

that Tα(Σ) is equal to the Reidemeister torsion, a topological invariant, was proved

independently by Cheeger and Müller. Hence (5) would link dynamical, spectral and

topological quantities. In the case of locally symmetric manifolds a more precise version

of the conjecture was recently proved by Shen [Sh18] following earlier contributions by

Fried and Moskovici–Stanton.

In the case of smooth manifolds of variable negative curvature (5) remains completely

open. Here however is a small, and easy to understand, contribution towards it:

Theorem 2 (Dyatlov–Zworski [DyZw17]). Suppose that (Σ, g) is an orientable Rie-

mannian surface of genus g. Then,

ζ(s) = cs2g−2(1 +O(s)), c 6= 0.

In particular, the length spectrum, {`(γ)}γ∈Γ, determines the genus.

Recently Hadfield [Ha18] generalized this result to Riemannian surfaces with bound-

ary. This required replacing the tools from [DyZw16] by the more subtle tools of

[DyGu16].

There have been other interesting developments and I would like to mention two of

them. Faure and Tsujii [FaTs17] proved meromorphic continuation of “semiclassical”

Gutzwiller–Voros zeta functions and provided information about the distribution of

their singularities. Dang and Rivière [DaRi18] as part of their programme of microlocal

understanding of Morse–Smale flows (a special case of Axiom A flows) related the

singularities of zeta functions in that case to limits of eigenvalues of Witten Laplacian.
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I believe that every section of Smale’s seminal paper would merit a commentary of

even greater length. It remains readable and interesting after 50 years.

Acknowledgments. I would like to thank Semyon Dyatlov and John Lott for read-

ing the first version of this note and for their helpful suggestions.
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Henri Poincaré 17(2016), 3089–3146.

[DyGu18] Semyon Dyatlov and Colin Guillarmou, Dynamical zeta functions for Axiom A flows,

arXiv:1801.00348

[DyZw16] Semyon Dyatlov and Maciej Zworski, Dynamical zeta functions for Anosov flows via mi-

crolocal analysis, Ann. Sci. Ec. Norm. Supér. 49(2016), 543–577.

[DyZw17] Semyon Dyatlov and Maciej Zworski, Ruelle zeta function at zero for surfaces. Invent.

Math. 210, (2017), 211–229.
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