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We present a few simplifications of the presentation of the quantum monodromy operator in [1]
and [2].

We first repeat the comment made in [1, §4]: the trace formula of [2] is formulated in terms of
a general Hamiltonian, P (z) (for instance an effective Hamiltonian with a non-linear dependence
on z). However, the proof can be reduced to the case of P − z. In fact, the assumptions of [2,
Theorem 2], the implicit function theorem, and the usual symbolic iteration, imply that

P (z) = A(z)∗(P − z)A(z) ,

with A(z) ∈ Ψ0,k/2
h (X) elliptic near γ(0), and P ∈ Ψ0,0

h (X) self-adjoint. Replacing P (z) by P −z
in [2, Theorem 2] changes the trace by O(h∞).

In the special case of P (z) = P − z the monodromy operator can be written quite simply
(though we still believe that it is interesting to consider M(z) for the non-linear P (z) as done
in [2]). Let us recall that at a point on an integral curve of P − z, γ(z), m0(z) ∈ γ, we can
define the microlocal kernel of P − z at m0(z), to be the set of families u(h), such that u(h) are
microlocally defined near m0 and

(P − z)u(h) = O(h∞) near m0.

We denote it by kerm0(z)(P − z). Since microlocally, near a given point, the operator P − z can
be reduced to hDx1 any solution can be continued microlocally along γ(z) and we denote the
corresponding forward and backward continuations by I±(z). We can also define the propagator
exp(−it(P − z)/h) and we see that

exp(−it(P − z)/h) : kerm0(z)(P − z) −→ kerexp(tHp)m0(z)(P − z) .

This follows from the fact that (P −z) exp(−it(P −z)/h) = exp(−it(P −z)/h)(P −z), and prop-
agation of semi-classical wave fronts: WFh(exp(−it(P −z)/h)u) is contained in a neighbourhood
of exp(tHp)m0(z) if WFh(u) is contained in a neighbourhood of m0(z). Hence we have

(1) I±(z) = exp(∓it(P − z)/h)

microlocally near (m0(z), exp(tHp)(m0(z)).
To define the quantum monodromy we take m1(z) 6= m0(z) be another point on γ(z) and put

I−(z)M(z) = I+(z) , near m1,

M(z) : kerm0(z)(P − z) −→ kerm0(z)(P − z) .
(2)

In view of (1) we now have

(3) M(z) = exp(−iT (z)(P − z)/h) : kerm0(z)(P − z) −→ kerm0(z)(P − z) ,

where T (z) is the period of γ(z) but for z small we can replace it by a fixed period, T (0).
The operator P (z) is assumed to be self-adjoint with respect to some inner product 〈•, •〉,

and we define the quantum flux norm on kerm0(z)(P − z) as follows: let χ be a microlocal cut-off
function supported near γ and equal to one near the part of γ between m0 and m1, in the positive
direction determined by Hp. We denote by [P, χ]+ the part of the commutator supported near
m0, or more generally, near the left end point (using the orientation determined by Hp) of the
support of χ|γ . We then put

〈u, v〉QF
def= 〈[(i/h)P, χ]+u, v〉 , u, v ∈ kerm0(z)(P − z) .
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It is easy to check that this norm is independent of the choice of χ: if χ̃ agrees with χ near m1

we see that [P, χ̃− χ]+ = [P, χ̃− χ] and clearly 〈[P, χ̃− χ]u, v〉 = 0 (see [2, Lemma 4.4] for more
details). This independence leads to the unitarity of M(z):

〈M(z)u,M(z)u〉QF = 〈(i/h)[P, χ]+e−iT (z)(P−z)/hu, e−iT (z)(P−z)/hv〉

= 〈(i/h)[P, eiT (z)(P−z)/hχe−iT (z)(P−z)/h]+u, v〉
= 〈(i/h)[P, χ]+u, v〉 = 〈u, v〉QF

(4)

As already recalled above the operator P − z can be reduced to hDx1 we can identify
kerm0(z)(P − z) with D′(Rn). This is done microlocally near (0, 0), and we can choose the
identification, K(z), so that

K∗(z)(i/h)[P, χ]+K(z) = Id .

This guarantees that the corresponding monodromy operator,

M(z) def= K(z)−1M(z)K(z)−1 : D′(Rn) −→ D′(Rn) ,

microlocally defined near (0, 0), is unitary (microlocally near (0, 0). Here (0, 0) corresponds to
the closed orbit intersecting a transversal identified with T ∗Rn. We easily see that M(z) is a
semi-classical Fourier integral operator which quantizes the Poincaré map of γ(z).

Using (3),

(5) M(z) = K(z)−1 ◦ exp(−iT (0)(P − z)/h) ◦K(z) .

This expression trivializes the proof of [2, Lemma 6.2] in the case P (z) = P − z. For P = hDx1 ,
K(z)u(x) = eizx1/hu(x′), x = (x1, x

′), x′ ∈ Rn, and hence the complexification of z in K(z)
produces growth of size O(eε| Im z|/h). Then (5) shows that (for z close to 0)

‖M(z)‖ ≤ e−(T (0)−ε) Im z/h , 0 < Im z ,

‖M(z)−1‖ ≤ e(T (0)−ε) Im z/h , Im z < 0 .
(6)

The rather subtle [2, Lemma 6.1] is altogether unnecessary (unless we want the results for the
general P (z); they are however not needed for the trace formula). The estimates (6) also give
a slight improvement in [2, Theorem 1]: we can make the conditions on the support of f̂ there
optimal: f̂ ∈ C∞c (R), supp f̂ ⊂ (−NT, NT ) \ {0},

For a discussion of the quantum monodromy operator in a concrete setting and a relation of
the quantum flux norm to the more standard objects, see the appendix to [1].
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[1] A. Iantchenko, J. Sjöstrand, and M. Zworski, Birkhoff normal forms in semi-classical inverse problems, to
appear in Math. Res. Lett. http://arXiv.org/abs/math.SP/0201190
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