Quantum Monodromy revisited
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We present a few simplifications of the presentation of the quantum monodromy operator in [1]
and [2].

We first repeat the comment made in [1, §4]: the trace formula of [2] is formulated in terms of
a general Hamiltonian, P(z) (for instance an effective Hamiltonian with a non-linear dependence
on z). However, the proof can be reduced to the case of P — z. In fact, the assumptions of [2,
Theorem 2], the implicit function theorem, and the usual symbolic iteration, imply that

P(z) = A(2)"(P — 2)A(2),,

with A(z) € \I/%km(X) elliptic near 4(0), and P € W)°(X) self-adjoint. Replacing P(z) by P— =z
in [2, Theorem 2] changes the trace by O(h*).

In the special case of P(z) = P — z the monodromy operator can be written quite simply
(though we still believe that it is interesting to consider M (z) for the non-linear P(z) as done
in [2]). Let us recall that at a point on an integral curve of P — z, v(z), mo(z) € ~, we can
define the microlocal kernel of P — z at mg(2), to be the set of families u(h), such that u(h) are
microlocally defined near mg and

(P — 2)u(h) = O(h®°) near my.
We denote it by ker,,,(.)(P — 2). Since microlocally, near a given point, the operator P — z can
be reduced to hD,, any solution can be continued microlocally along v(z) and we denote the
corresponding forward and backward continuations by I (z). We can also define the propagator
exp(—it(P — z)/h) and we see that
exp(—it(P — z)/h) : kerp, ) (P —2) — keTexp(tr,)ymo(z) (P — 2) -

This follows from the fact that (P —z) exp(—it(P — z)/h) = exp(—it(P —2)/h)(P — z), and prop-
agation of semi-classical wave fronts: W Fy, (exp(—it(P —z)/h)u) is contained in a neighbourhood
of exp(tH,)mo(z) if WE},(u) is contained in a neighbourhood of mg(z). Hence we have

(1) I+(z) = exp(Fit(P — z)/h)

microlocally near (mg(z), exp(tH,)(mo(z)).
To define the quantum monodromy we take m1(z) # mg(z) be another point on ~(z) and put

I_(z)M(z) =14(2), near mq,

2
@ M(z) : kerp, (o) (P —2) — kery, ;)(P —2).
In view of (1) we now have
(3) M(z) = exp(—iT(2)(P — 2z)/h) : kery, ) (P — 2) — kerp, ()(P — 2),

where T'(z) is the period of v(z) but for z small we can replace it by a fixed period, T'(0).

The operator P(z) is assumed to be self-adjoint with respect to some inner product (e, e),
and we define the quantum flux norm on ker,,.)(P — z) as follows: let x be a microlocal cut-off
function supported near v and equal to one near the part of v between my and m, in the positive
direction determined by H,. We denote by [P, x|; the part of the commutator supported near
my, or more generally, near the left end point (using the orientation determined by H,) of the
support of x|,. We then put

(u, ) qr = ([(i/B)P, x|+, v) , 1,0 € ket oy (P — 2).
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It is easy to check that this norm is independent of the choice of x: if x¥ agrees with x near m;
we see that [P, x — x]+ = [P, x — x] and clearly ([P, X — x]u,v) = 0 (see [2, Lemma 4.4] for more
details). This independence leads to the unitarity of M(z):

(M(2)u, M(2)uyqr = ((i/h)[P,x] e~ T2y o= T EE=2)hy)
(4) — ((i/R)[P, TG (P=2)/hy (=T (P=2)/] )

= <(Z/h)[P7 X]+uvv> = <U7U>QF
As already recalled above the operator P — z can be reduced to hD,, we can identify
ker,, (- (P — z) with D'(R™). This is done microlocally near (0,0), and we can choose the
identification, K (z), so that
K (2)(i/B)P, x|+ K (2) = Id.
This guarantees that the corresponding monodromy operator,
M(z) € K(2) ' M(2)E ()" : D'R") — D'(R"),
microlocally defined near (0,0), is unitary (microlocally near (0,0). Here (0,0) corresponds to
the closed orbit intersecting a transversal identified with T*R"™. We easily see that M(z) is a
semi-classical Fourier integral operator which quantizes the Poincaré map of v(z).
Using (3),
(5) M(2) = K(2)™ o exp(—iT(0)(P — 2)/h) o K(2)..
This expression trivializes the proof of [2, Lemma 6.2] in the case P(z) = P — z. For P = hD,,,
K(2)u(z) = e /hy(z’), x = (21,2'), ©’ € R™, and hence the complexification of z in K(z)
produces growth of size O(e/™ /7). Then (5) shows that (for z close to 0)

1M (2)| < e~ (TO)=)Imz/h = « Tpy 2,
|M(2)7Y| < e(TO)=e)Imz/h = 1 > <.

(6)

The rather subtle [2, Lemma 6.1] is altogether unnecessary (unless we want the results for the
general P(z); they are however not needed for the trace formula). The estimates (6) also give
a slight improvement in [2, Theorem 1]: we can make the conditions on the support of f there
optimal: f € C2°(R), supp f C (=NT,NT)\ {0},

For a discussion of the quantum monodromy operator in a concrete setting and a relation of
the quantum flux norm to the more standard objects, see the appendix to [1].
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