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ABSTRACT. It was observed long ago that the obstruction to the accurate computation of eigenvalues of
large non-self-adjoint matrices is inherent in the problem. The basic idea is that the resolvent of a highly
non-normal operator can be very large far away from the spectrum. This leads to an easily observable fact
that algorithms for locating eigenvalues will typically find some ‘false eigenvalues’.

These false eigenvalues also explain one of the most surprising phenomena in linear PDEs, namely
the fact (discovered by Hans Lewy in 1957, in Berkeley) that one cannot always locally solve the PDE
Pu = f. Almost immediately after that discovery, Hormander provided an explanation of Lewy’s example
showing that almost all operators with non-constanct complex valued coefficients are not locally solvable. In
modern language, that was done by considering the essentially dual problem of existence of non-propagating
singularities.

The purpose of this article is to review this work in the context of “almost eigenvalues” and from the
point of view of semi-classical analysis.

The purpose of this article 1s to describe a connection between the following seemingly unrelated issues:

o Let A € Mp(C) be an n by n matrix with complex entries. Tts eigenvalues, A1, -, A,, which are the
solutions of the characteristic equation det(A — A) = 0, are well defined mathematical objects. Their
numerical computation is a delicate problem which in the case when A is not normal (AA* # A*A)
may be very unstable. In fact, in many situations it is practically impossible.

e Let V be a non-vanishing vector field in three variables, V' = 2?21 aj(2)0;;. Can the equation

Vu = f, f € C®(R3), be locally solved somewhere? That is, does there exist Q C R3, open, and

u € C'(Q) such that Vu = f in Q7 When the coefficients a; are real valued, that can be done,

as by a change of variables V' can be locally transformed to dy,. When a;’s are allowed to be

complex valued, but both a@;’s and f are real analytic then local solvability follows from the classical

Cauchy-Kovalevskaya theorem.

It came as a great surprise to everybody when Hans Lewy [13] discovered a simple vectorfield

V =0y, + 10, +i(z1 + 122)0;, ,

for which there exist many functions f € C*(R?), such that Vu = f cannot be locally solved
anywhere.

As we will see, some of the difficulties in finding eigenvalues for highly non-selfadjoint problems result from
the phenomena which also cause the lack of solvability of most partial differential operators with complex
coefficients. I take the point of view of semi-classical analysis, with the “Planck constant” A being small. It
should be stressed however that the same methods are applicable in many settings of asymptotic analysis,
where h can be replaced by the wave length, step size in discretization of PDEs, the reciprocals of the Péclet
number, or the Reynolds number, and even the reciprocal of the size of the matrix.

This article is written from the point of view of a “press-the-button” user of numerical analysis. What
I found fascinating was the fact that things which have been standard in microlocal analysis can be easily
seen in numerical experiments. I learned this because of the work of Brian Davies and Nick Trefethen.
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Spectrum

The simplest operator for which the eigenvalues are interesting and well understood is the quantum
harmonic oscillator:
10
r — ;6_1‘ ’

where we follow the notational convention which is useful when dealing with Fourier transforms: ljx\f(é’) =

(1) P=D?4+z* D

E’f(é’) This is also motivated by quantum mechanics as the operator D, is the quantization of the classical
momentum &. The classical object corresponding to the quantum harmonic oscillator i1s the energy,

(2) E=¢24 22,
of the classical harmonic oscillator.
The spectrum, that is the set of eigenvalues of P, can be analyzed using the creation and annihilation
operators
Ay =Dy +ix, A_ :A:_:Dx—ix,
which satisfy
P:A+A_+1:A_A+—1.
A calculation, which also captures the essence of the uncertainty principle, shows that the lowest eigenvalue
s 1:
[ull* = K[De, 2]u, u)] = 2| Im{a Dy, w)| < 2||zul| Dpull < [leull? + || Doull* = (Pu, u)

Pug =wug, up(z) = exp(—x2/2) .
By applying the creation operator A4 to ug, we obtain the eigenfunctions corresponding to higher energies:

tp, = AYug, Pup = (2n+ Lu, .

The operator P is self-adjoint on L#(IR) and the time evolution of a state preserves the energy, and can be
described using the eigenfunctions:

(3) ||exp(—itP)u||rz = ||u|lpz, exp(—itP)u, = exp(—it(2n + 1))u, .

Here the norm which defines the Hilbert space L*(R) is given by ||ul|3. = Jr |u(z)|?dz , and by “evolution”
we mean solving the Schrodinger equation,
zau = Pu.

Although the operator P is very special, many quantum systems are modeled by ensembles of harmonic
oscillators. In general, when the energy of a system is conserved, we have propagation which can be described
in terms of oscillations coming from various real modes of the system. These modes are the eigenvalues of a
self-adjoint operator

(4) P=-A4V(z), A= Z 3; , V(z) real valued.
j=1

For instance we can be in the situation shown in Fig.la, where we impose Dirichlet boundary conditions,

u(0) = u(mr) = 0.

Non-selfadjoint Operators

There are many ways in which non-selfadjoint operator occur in real life problems. Roughly speaking,
any phenomenon in which dissipation or escape are possible (consequently, practically any phenomenon)
will be governed by a non-selfadjoint operator. We will consider here an example motivated by quantum
chemistry and illustrated in a simplified form in Fig.1b. The situation is still described by a self-adjoint
operator of the form (4) but the possible escape to infinity, in the now open system, will cause local decay
of states.
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FIGURE 1. (a) A potential well on a finite interval. The spectrum is real and the hard wall
causes reflections. (b) A potential on R: same classical picture but a very different quantum
picture. The absorbing potential —iW(z) is added to absorb the states escaping from the
well (no reflection).

In a concrete example studied in [7], the bottom of the well in the figure corresponds to an unstable
molecule of oxirene and the open regions on the left and the right to 1somers of ketene. To study the reaction
rates in isomerization of ketene it is useful to isolate the unstable system and the simplest way to do so is
through the introduction of a complex absorbing potential —iW(x). Here, W(z) > 0 is zero, or nearly zero,
in [0, 7] and becomes very large outside of that interval [7]. The new operator,

(5) P=—A+ V() - W),
is now non-self-adjoint. The difference between a hard barrier in Fig.la (which could also be modeled by
adding the real potential W(x)), is that the complex absorbing potential produces no reflection and we model

an escaping state. The eigenvalues of P are now complex and lie in the lower half-plane: z = £ — ¢I". The
evolution of a pure state is as in (3):

Pu = (F—il)u, exp(—itﬁ)u =exp(—itE —tT)u,
where we now see decay at the rate given by —Imz = T'. As in [7] the complex absorbing potential method
can be used to compute reaction rates and the location of the Breit-Wigner peaks.

Finer description is given in terms of resonances (see [20] for an introduction and pointers to references)
and the relation between the two methods is going to be described elsewhere.

A Simple Model

Instead of considering a complicated system such as (5) we follow Davies [1] and study the rotated
harmonic oscillator:

(6) Pyo=D2+e%? 0<a<m.

The spectrum of this operator is easily computed by making a change of variables y = **/4z, so that

P, = eioc/Z(Dj + yZ) — eioc/ZP’
where P is the harmonic oscillator (1). With a minimal amount of justification, we can see from this that
the spectrum of P, is given by
2 +1), n=0,1,--,

where spectrum is the set of z € C for which there exists u € L?(IR) such that Pu = zu.

We can now try to find the same eigenvalues numerically. Although better accounts of this are availablein
[1] and [19, Chapter 9], out of curiosity, I proceeded directly using Mathematica,© and a simple discretization
based on taking as a basis of L? eigenfunctions, {¢; };OZO, of a different harmonic oscillator (D2 + 22?%). For a
truncated basis of 200 elements, and the discretization ({Py;, 1/)j>)097j3200, the results of the computation
are shown in Fig.2. What we see is a very regular bifurcation, with the correct angle «/2 at first, and then
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FIGURE 2. Computation of eigenvalues of the discretized rotated harmonic oscillator with

a=m/3.

with one arm of the bifurcation going up at the angle av. The computation is in fact very accurate up to the
bifurcation point as seen in the magnified picture shown in Fig.3. The same basis works very well for the
normal operator eio‘/z(Dg + y?), which is shown as the “control” result in the same figure.

This example is typical. As emphasized by Trefethen, computations of eigenvalues of highly non-normal
operators, will show “pseudo-eigenvalues” and that set will exhibit structure of its own.

Pseudospectrum

We will now follow Trefethen’s review article [18], and recall the definition of the pseudospectrum for
matrices. Thus let A € My« (C) be a matrix. A well known consequence of the spectral theorem says that

A= A" = [[(A= A7 = d(, spec(A)) "

where spec(A) is the set of eigenvalues of A, and d(e, ) the usual distance in C.

Nothing of this sort remains valid for non-self-adjoint operators (or strictly speaking, non-normal oper-
ators, AA* # A*A). The resolvent (A — A)~! can be very large for points very far from the spectrum. This
leads to the definition of the e-pseudospectrum:

Ac(A)={AeC: A=A >l
={AeC : Aespec(A+dA) for some §A with ||§A]| < €},

where we used the fact that A is a matrix for the second equality.

If the resolvent is large for points away from the spectrum, false eigenvalues will appear. They come
from inevitable perturbations originating for instance from the round-off errors, and from the discretization
(such as the finite difference, finite element, or spectral method employed in a specific code). That explains,
at least roughly, the regularity of the bifurcation in Fig.2. Due to the specifics of the our disretization, and
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F1GURE 3. Results near the bifurcation point: the eigenvalues of a normal operator with
the same spectrum are computed as control data.

computer code! used by Mathematica®, at some stage of the computation, points on the level sets of the
norm of the resolvent, A.(A), with € small, will be chosen over the actual eigenvalues. The computational
results presented in Fig.2 and 3 constituted a heuristic experiment, though one that a user of a numerical
package is likely to encounter. A proper approach involves the computation of the pseudospectra and for
the rotated harmonic oscillator than can be seen in [19, Output 24].

The importance of the size of the resolvent in computational problems was stressed early on by Kreiss
[12]. Many systems in science and engineering are described using some form of linearized propagation

exp(tA),
not unlike the quantum mechanical propagation (3). The following intuitive statement is quite standard:
(7) Stability <= max ReA<0.
XEspec(A)

This is correct in the asymptotic sense as for a matrix A, we always have
|| exp(tA)]| <exp< max Re/\+(5)t, t>1(d)>0.
- XEspec(A) -

If however sup{|z| : z € Ac(A)} > 0, the linearized propagator, exptA, can be very large for very long
times — see [18, Theorem 5], and references there. What matters in specific problems is far from clear and,
in some cases, somewhat controversial.

LThe choice of this particular code was motivated only by easy availability.
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Semi-classical Explanation

The problem of finding eigenvalues for the operator P, defined by (6), is the same as that of solving the
equation (P, — A)u = 0. We will rephrase it semi-classically by putting y = h%x, so that

Py —XA=D? 422 — )
= h7t ((hDy)? + €@y — b))
= h_l(P(h) —z), z=hA\.

Since we are interested in the behaviour of the resolvent as A gets larger, we can work with z in a fixed
region, and let A — 0.

As was observed by Davies [1], [2], and discussed further in [21], the resolvent becomes very large inside
of the open set given by the values of the symbol of the operator P(h): £2 + ei®z?:

(8) YN |(P(h)—2)"Y > Cn(@Qh™, 2€Qe{w: 0<argw <a}, h<hy(Q).

In fact, as will be discussed later, the ‘super-polynomial’ lower bound could be replaced by an exponential
bound exp(1/C(Q2)h). Rescaling back to A shows that the level sets of the resolvent are close to lines
homothetic to the boundary of the range of the symbol (a more precise description will be given later). The
two arms of the bifurcation in Fig.2 are getting close to these level sets.

In general, the symbol 1s defined by substituting ¢ for hD, in a differential operator, and we think of
the differential operator as the quantization of its classical symbol, just as (1) was the quantization of (2).
The principal symbol comes from neglecting the terms which depend on £ (none in this case). Conversely,
if we think of (z,£) as an element of the classical configuration space, T*R (or more generally 7*X where
X is our physical space), then any function p(z,¢) satisfying

(9) 10207 p(x, )] < Cap(L+ €)™, for some m

can be quantized to give an operator P(k) = p(z, kD). Differential operators are obtained from polynomials
in £ — see [3] for a comprehensive introduction to semi-classical analysis.

The estimate (8) follows from the existence of ‘almost eigenvalues’ or what in mathematical physics
would be called quasi-modes:

(10) (P (h) = 2)u(h)l[Lz = O(™), |lu(h)|lLz =1.

In addition, the states w(h) are highly localized, which in the semi-classical/microlocal language means
that they are non-propagating. Normally, we expect states to propagate according to the rules of classical
mechanics, just as light, governed by the Helmholtz equation, (—h*A — 1)u = 0, propagates. Consequently,
to construct approximate solutions, global properties of the classical flow, such as existence of invariant sets,
need to be considered, leading to Bohr-Sommerfeld quantization conditions (see [14] and references given
there). Different mechanisms take over in the case of complex coefficients.

To describe them we need some elementary symplectic geometry. The configuration space T*X is
a symplectic manifold, that is, a manifold equipped with non-degenerate closed differential two-form w.
By the classical theorem of Darboux (which will be essential below), any symplectic form can be locally
transformed to the standard one: wy = 2?21 d&; N dx;. Classical evolution is described by flows which
preserve the symplectic form, and a natural object which arises is the Poisson bracket:

_N~0f 39 99 Of

The Poisson bracket is essential in quantization theories, through the following fundamental relation:
h
[f(z,hD), g(x,hD)] = 7{f,g}(l‘, hD) + O(hz) )

Zsee the remark after the proof of the main theorem for an explanation
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FicURE 4. Computation of the eigenvalues of a convection-diffusion operator with a qua-
dratic potential

where in the roughest form O(h?) may mean an operator bound in L%, provided that f and g satisfy (9)
with m = 0.

With this definition, we can state a semi-classical generalization of Hérmander’s theorem [8], which is
an immediate adaptation of the results of Duistermaat and Sjostrand [4]:

Theorem. Suppose that p(x,&) satisfies (9) and that

p(l‘0,€0) :Oa {Rep,lmp}(xo,go) <0

Then for any P(h) = p(x,hD) + hpi(x, hD, h), there exist u(h) such that

an 1P(A)ulh)llL2 = O(hT), |lu(h)llL2 =1,
llg(z, RD)u(h)||r2 = O(R™) for any q(x, &) which vanishes in a neighbourhood of (xg,&).

The last statement in (11) says that u(h) is localized in space (x) and momentum (£). A moment’s
reflection also shows that the ((h°°) smallness of the L2 norms implies smallness of norms including deriva-
tives. When p(x,&) is real analytic (for instance, when we are dealing with differential operator with real
analytic coefficients), then using the work of Kashiwara-Kawai [11] (which provided partial motivation for
[4]), the estimates can be improved to exponential ones, that is, O(h®) can be replaced by exp(—1/Ch).
The level sets of the norm of the resolvent are also related to the level sets of {Rep, Imp}.

In the simple example discussed above we take

P(h) = (hD.)? + e “¢? — 2
so that p(z,€) = 2 + e* 2% — 2, and
{Rep,Imp}(z,&) = 2zlsina.

For any z in the interior of {w : 0 < arg w < a} we can find (zg, £y) such that the assumptions of the theorem
are satisfied. That produces the complex quasi-modes; and results in the blow-up of the resolvent as h — 0.
The estimates are uniform on compact sets in which the Poisson bracket is uniformly bounded away from 0.
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We conclude this section with another numerical experiment motivated by [18, Example 5]. Let us put

P(h) = (hDy)? +ihD, +V(z), V() >0,

where V (z) grows very fast outside of a finite interval (faster than z?, we can take V(x) = 2 for simplicity).

This is a form of a convection-diffusion operator where the small constant A can be interpreted as the inverse
of the Péclet number, rather than as the Planck constant.

If we conjugate the operator by the exponential exp(—x/2h) we see that the spectrum is real and bounded
from below by 1/4:

e="/2h (hDy)? + ihDy) e/" = (hDy)? +

=

On the other hand, if p(x,&) = €2 4 i€ + V(z), then
{Rep,lmp}(l‘,&’) = _Vx/(x) )

and that is negative for sufficiently large # (the potential is supposed to grow). This will produce complex
quasi-modes concentrated where V'(z) > 0 (for V(z) = 2?, at points xq, with zg > 0).
A naive numerical experiment confirms that the resolvent gets large inside the set of values of p(z,&):

{z : Rez> (Im2)*}.

This is shown in Fig.4, where the computations are done for V(z) = 22 with 100 basis vectors used in the
previous computation. We take h = 107%, k = 1,2,3. What is strange is the fact that in principle the
number of basis vectors for A = 1073 should be too small: in one dimension we ordinarily need ~ h~! basis
vectors. Yet, we already see the semi-classically determined pattern of a parabola.

Finally, let us point out that if we put A = 1/8— P(h), we obtain a simple example in which the criterion
for stability (7) is not accurate for a very long time: the eigenvalues lie left of —1/8 but the resolvent is very

large (for small k) for Rez ~ 1/8.

Lack of Solvability

Hormander’s theorem quoted in the previous section was motivated by a very different problem. It was
a tool to explain Lewy’s example mentioned in the very beginning, and to provide a general condition for
the lack of solvability. The idea used in [8] can be roughly described as follows. Suppose we want to solve

(12) Pu=f.
If one succeeds in constructing a family of u(h) such that

Pu(h) = O(h), lim (u(h), f) = oo,

then (12) is clearly impossible:
O(h™) = (Pu(h), u) = (u(h), Pu) = (u(h), f) — oo,

a contradiction.

The implementation of this idea for f € C* and u € D’ (the space of distributions) involves an elegant
use of functional analysis (Banach’s applications of Baire’s Category Theorem). The main point is the
construction of approximate solutions for the adjoint P*, and that is in essence the theorem of the previous
section. Its translation to the classical differential operator gives the celebrated commutator condition.

Suppose that P(z, D) = Elalﬁm aq () DY, p(x, &) = ZIQIZW aq(2)€%, and that
p(l‘0,€0) == Oa {Rep,lmp}(xo,go) ;é Oa €0 ;é Oa

Then for a large class (generic) of f € C*, the equation (12) cannot be solved in any neighbourhood of .
For differential operators, the sign of the Poisson bracket is irrelevant as the sign can be changed by changing
the sign of £ (it is a polynomial of degree 2m — 1). Hence the vanishing of the symbol of the commutator of
P and P* is a necessary condition for solvability (the commutator condition). The commutator condition
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appeared already in Hormander’s thesis before Lewy’s example. In a stronger form it was used to guarantee
solvability for some operators with complex coefficients (see [9] and references given there).

In Lewy’s example we have p(z,€) = & + i€y + i(x1 + i22)&s, so that at any ¢ € R3 we can find
E(x) = (—w1€3, —2€3,&3) # 0 such that

p(#,&(x)) =0, {Rep,Imp}(z,&(x)) =285 # 0,

which shows lack of solvability anywhere.

Let us also use this example to indicate the relation to the semi-classical discussion before. If we take
the Fourier transform in @3, put h = 1/&3, £&3 — 400, and multiply P by h, then we obtain a semi-classical
operator,

P(h) = thl + Zth2 + il‘l — I9.
The smoothness properties are now translated to decay properties as h — 0. The adjoint of P(h) has the
symbol &; —i€s —ix1 — 22 which satisfies the assumptions needed for (11) (with P(k) replaced by P(h)*). The
approximate solutions used to prove lack of solvability can be obtained from the quasi-modes constructed
there.

Since the early papers [8],[13], the question of solvability of differential and pseudodifferential equations
was studied by the leading analysts — see [10], and also [9] for an excellent survey.

Proof of Theorem

Replacing technical arguments by heuristics, we can present an outline of the modern proof of the main
theorem. Tt essentially follows [10, Sect.26.2] with simplifications in the semi-classical setting.
Let P(h) be a semi-classical operator with a principal symbol p(z, &):

P(h) = p(z, hDy) + hpi(z,hD;, h) .
Suppose that the commutator condition holds in a stronger form,

{Rep,Imp}(x,&) = -1,

in a neighbourhood of a point (zg, &), such that p(zg,&) = 0% The classical theorem of Darboux shows
that there exists a symplectic change of variables (that is, a change of variables preserving the symplectic
form, or in other words, classical mechanics)

r(y,m) = (z,§),
defined near (0,0), and such that

k(0,0) = (xo0,&0), Rep(k(y,n) =m, Imp(k(y,n) = -y
In other words,
&p(y,m) =m — iy,
which is the symbol of the annihilation operator A_ = hDy, — iy; which appeared in the discussion of the

quantum harmonic oscillator. This operator has a highly localized solution given by the ground state of the
harmonic oscillator, and we can localize it trivially to (0,0) in all variables:

uo(h,y) = exp(=|y|*/2h), (hDy, —iy1)uo(h,y) = 0.
The question now lies in transplanting ug to the (z,£) coordinates so that we obtain an approximate solution
of P(h)u =0.
The point of semi-classical analysis, and of its reflection in the theory of partial differential equations,
microlocal analysis, is that the symplectic transformation x can also be quantized (just as we quantized
functions to obtain generalized differential operators, or pseudo-differential operators). That gives the theory

3As shown by Duistermaat and Sjdstrand [4],[10, Lemma 21.3.4], this can always be arranged by multiplying p by a non-
vanishing function.
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of Fourier Integral Operators (see [10, Chapter XXV], and also [17] for a self-contained discussion of local
theory in the semi-classical setting). More precisely, we can associate to « a family of operators

Us(h) © L*(R™) — L*(R"),
uniformly bounded, invertible for small h, such that for any function ¢(x,£) satisfying (9) we have
(13) Un(x)"tq(z, hDy)Us (k) = £*q(y, hDy) + Or2_12(h).

This relations is called the Egorov Theorem and for simplicity we assumed here that & is globally defined.
There are many operators which satisfy (13) and with care, one can choose Uy (&), and ¢(x,&, k), so that

Un(8)" P(h)Un (k) = q(y, RDy, R)(RDy, — iy1) + Orz_12(h>),

is valid for functions localized near (0,0) (in the sense given in (11)). This concludes the proof of the theorem
as by putting u(h) = Up(x)ug(h) we obtain a family of quasi-modes satisfying (11).

In the case when we have analyticity, similar results can be obtained, but now, with exponentially small
errors. That involves the geometric result from [11] (existence of an analytic symplectic transformation) and
the theory of the theory of Fourier Integral Operators in complex domains [15].

Remark. We should briefly mention what happens for operators, P(k), with real symbols satisfying the
principal type condition:

p(m) =0 = dp(m) #0.
In that case, we can proceed as before, obtaining £*p(y, ) = 11, and then
Un(8) "L P(h)Up (k) = hDy, + Op212(h>).

If we consider solutions of hD,, u = 0, we see that in solving (11) the condition on ¢ has to be modified: the
support of ¢ has to be invariant under the flow of the Hamilton vector field of p (8, in the (y, ) coordinates;
the Hamilton vectorfield is defined by H,f = {p, f}). In the actual construction of approximate solutions
(quasi-modes) global properties of the flow are important and “matching conditions” will allow only for a
discrete set of z’s. An easy way to see it is to consider the problem (hD, —z)u(h) = O(h*), r € S' = R /27Z.
A complex analogue is obtained when we consider the case where {Rep,Imp} = 0 but d Rep and dImp are
independent — see [10, Sect.26.2] and [14].

Annihilation Operator in Linear Algebra

The annihilation operator A_ = hDy, — iy; has spectrum equal to C and it satisfies the commutator
condition globally:

[A_, A*]=2Id,

a property which we already used in in deriving the lower bound for the quantum harmonic oscillator. As
discussed in the previous section this i1s also the microlocal model for an operator with a non-propagating
semi-classical singularity (quasi-mode). From the point of view of linear algebra the simplest model exhibiting
“almost eigenvalues” , or more precisely pseudospectrum away from the actual eigenvalues, is the Jordan block
matrix:

10 0

0 1 ©0

o O

o O
O =
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F1GURE 5. Eigenvalues of perturbations of 200 x 200 Jordan matrices: 107> put in the lower
left hand corner, and a random perturbation with entries bounded by 107°.

It is a truncation of the shift operator ;{_’ which can also be interpreted as an annihilation operator
(A—ttn41 = tn, n > 0). The spectrum of A_ is the unit disc and [A_, A*] > 0. We have J, = I, A_TI,,
where II,, is the truncation to the first n basis vectors. The resolvent is given by
I Ja Jn-t

A—J V=422, n

( ”) A by + + An
and although the spectrum of J, is equal to {0} (with multiplicity n), the norm of the resolvent grows
exponentially with n for |A] < 1 -4, 6 > 0. Hence for any ¢ > 0, the e-pseudospectrum will approach the
the disc of radius 1 + € as the size of the matrix goes to infinity.

. From the spectral point of view, the most dramatic perturbation of J, comes from adding to it the

matrix

0 ... 0

x ... 0
with the resulting matrix denoted by jn(x) Its characteristic polynomial is given by A\? — z. Hence, for an
arbitrarily small x, the spectrum will be very close to the boundary of the pseudospectrum, |x|1/” — 1, as
n — co. This is the phenomenon which we have seen in our numerical experiments: in Figures 2 and 4 the
“false eigenvalues” were computed near the boundary of the semi-classically determined pseudospectrum.

In fact, this can be used to explain the effect of the pseudospectra on some numerical computations.
The proximity to Jordan block-like matrices will cause small perturbations (caused in turn by the properties
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of the discretization used, and by round-off errors) to push the computed eigenvalues, which are the actual
eigenvalues of A + J A, for § A small, to the boundary of the pseudospectrum.

We refer to [5] for a discussion of related issues and content ourselves with another naive experiment.
Fig.b shows the eigenvalues of J~200(10_5) and the eigenvalues of a matrix obtained by adding to Jsgp a
random matrix with entries of size bounded by 107°. The eigenvalues of the random perturbation are
certainly closer to the unit circle than to zero.

Other Directions

There are at least two natural directions for further investigation of the connection described here:

e The commutator condition and the role of the annihilation operator can be understood in a more
abstract framework. Classes of large matrices can be understood in terms of quantization of compact
symplectic manifolds with the Planck constant corresponding to the inverse of the size of the matrix.
In other words, the phenomena described here can be seen directly on the level of large matrices,
and not only in discretization of differential operators.

e Better estimates are expected to hold in the regions where {Rep,Imp} = 0, and those regions are
often most interesting physically. The estimates on the resolvent are expected to be better there,
and consequently numerical computations should be more stable.

We motivate the second item above by the example from chemistry, schematically illustrated by Fig.1.
The complex eigenvalues which are of interest (that is, the ones which model the unstable states) are expected
to have imaginary parts, T', of size much smaller than A (since the factor T'/h will appear as the decay rate).
Also, the artificial potential —iW (z), will produce its own irrelevant eigenvalues in a region with Im z < —A.
Hence, any eigenvalues there are “false” — either due to —iWW (x) or to numerical problems, and in any case of
no interest. Consequently all interest lies in an h-dependent neighbourhood of the boundary “semi-classical
pseudospectrum”. The Poisson bracket vanishes there and consequently the general results do not apply.

For more subtle objects, namely resonances (see [20] and references given there), a similar statement is
true. Of various recently studied cases, the furthest that one ever gets from the real axis is in the case of
scattering by convex obstacles [16]?, and a similar distance is Ch*/®. In computing resonances one also has
a lot of freedom in choosing the non-selfadjoint operator of which they are eigenvalues. Deforming so that
{Rep,Imp} = 0 holds in a relevant region was recently exploited by Melin and Sjostrand [14]. To get an
heuristic understanding of such deformations,; we refer to the example shown in Fig. 4: the operator became
normal after a conjugation by exp(—x/2h), and that could be considered as a deformation of our operator.
In the case shown in 3, the conjugation involves a differential operator in the exponential weight, and has a
geometric interpretation as a deformation into the complex domain, which is in fact what we used.

Consequently one arrives again at an issue similar to the one which arises in the study of solvability:
{Rep,Imp} = 0 is necessary for solvability, but what other condition would make it sufficient as well? We
refer to Hormander’s review [9] for a discussion of that. The relation of solvability to quantum mechanics
and semi-classics was emphasized by Fefferman [6] but the relation to practical problems described here
remains unclear.
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4That is in fact also the oldest case, as the resonances for the sphere appear in the Watson transform used to study the
behaviour of a diffracted wave in the deep shadow, a real but subtle thing.
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