Soliton Home Movies

K Datchev, J Holmer, J Marzuola, and M Zworski

UC Berkeley

March 18, 2008
PDE experts might tell you that they are interested in
PDE experts might tell you that they are interested in Strichartz estimates, second microlocalization, Pohozhaev identities, homogenization...
PDE experts might tell you that they are interested in Strichartz estimates, second microlocalization, Pohozhaev identities, homogenization...
PDE experts might tell you that they are interested in Strichartz estimates, second microlocalization, Pohozhaev identities, homogenization...

But the truth is that PDE experts are really interested in solutions to PDEs...
PDE experts might tell you that they are interested in Strichartz estimates, second microlocalization, Pohozaev identities, homogenization...

But the truth is that PDE experts are really interested in solutions to PDEs...
Apologies to my colleagues who may not quite agree...
This is just like the number theorists might tell you that they are interested in \textit{p}-adic Langlands programme, Drinfeld shtukas, Shimura varieties...
This is just like the number theorists might tell you that they are interested in \textit{p-adic} Langlands programme, Drinfeld shtukas, Shimura varieties...

But in fact they are interested in \textit{numbers}.
This is just like the number theorists might tell you that they are interested in \textit{p-adic Langlands programme}, Drinfeld shtukas, Shimura varieties...

But in fact they are interested in \textit{numbers}.
Here is one equation for which we know a lot

\[i \frac{\partial u}{\partial t} + \frac{1}{2} \frac{\partial^2 u}{\partial x^2} + u|u|^2 = 0, \]
Here is one equation for which we know a lot (but of course we want to know more)

\[
\text{Nonlinear Schrödinger Equation:} \quad i \frac{\partial}{\partial t} u + \frac{1}{2} \frac{\partial^2}{\partial x^2} u + u |u|^2 = 0
\]
Here is one equation for which we know a lot (but of course we want to know more)

Nonlinear Schrödinger Equation

\[i \partial_t u + \frac{1}{2} \partial_x^2 u + |u|^2 u = 0, \]
Here is one equation for which we know a lot (but of course we want to know more)

Nonlinear Schrödinger Equation

\[
i \partial_t u + \frac{1}{2} \partial_x^2 u + u |u|^2 = 0,
\]
\[i\partial_t u + \frac{1}{2} \partial^2_x u + |u|^2 = 0, \]

This equation has traveling wave solutions:

\[u(x, t) = e^{i(\gamma(t)x - \alpha - vt)} \mu \text{sech}\left(\mu(x - a - vt)\right), \quad \mu > 0, \quad v, a, \gamma \in \mathbb{R}, \]

\[\gamma(t) = \gamma + vx + \left(\mu^2 - v^2\right)\frac{t}{2}. \]
$i \partial_t u + \frac{1}{2} \partial_x^2 u + u|u|^2 = 0$,

This equation has **traveling wave solutions**:

$$u(x, t) = e^{i\gamma(t)} \mu \text{sech} \left(\mu(x - a - vt) \right),$$

$\mu > 0$, $v, a, \gamma \in \mathbb{R}$,

$$\gamma(t) = \gamma + vx + (\mu^2 - v^2)t/2.$$
\[\mu = 1, \quad v = 1, \quad a = -7. \]
One of the amazing features in the stability of solitary waves in interaction.
One of the amazing features in the stability of solitary waves in interaction. Collision of $\mu = 1$ and $\mu = 0.75$:
\[iu_t = -\frac{u_{xx}}{2} - |u|^2 u, \quad u(x, 0) = 2\text{sech}x. \]

\[u(x, t) = 2e^{it/2}\text{sech}x \left((4 + 3\text{sech}^2(e^{4it} - 1))/(4 - 3\text{sech}^4x \sin^2 2t) \right) \]

This solution is obtained using the inverse scattering method.
Suppose now that we consider a perturbed NLS, that is, the Gross-Pitaevskii equation, by adding an external potential:

\[i \frac{\partial}{\partial t} u + \frac{1}{2} \frac{\partial^2}{\partial x^2} u - q \delta_0(x) u + u |u|^2 = 0 \]

Here \(\delta_0 \) is the famous Dirac delta function:

\[\delta_0(x) = \begin{cases} \infty & x = 0 \\ 0 & x \neq 0 \end{cases}, \quad \int_{-\infty}^{\infty} \delta_0(x) \, dx = 1. \]
Suppose now that we consider a perturbed NLS, that is, the Gross-Pitaevskii equation, by adding an external potential:

\[
\begin{aligned}
 i \partial_t u + \frac{1}{2} \partial_x^2 u - q \delta_0(x) u + u|u|^2 &= 0 \\
 u(x, 0) &= u_0(x)
\end{aligned}
\]
Suppose now that we consider a perturbed NLS, that is, the Gross-Pitaevskii equation, by adding an external potential:

\[
\begin{cases}
 i \partial_t u + \frac{1}{2} \partial_x^2 u - q \delta_0(x) u + u|u|^2 = 0 \\
 u(x, 0) = u_0(x)
\end{cases}
\]

Here \(\delta_0 \) is the famous Dirac delta function:
Suppose now that we consider a perturbed NLS, that is, the Gross-Pitaevskii equation, by adding an external potential:

\[
\begin{cases}
 i\partial_t u + \frac{1}{2}\partial_x^2 u - q\delta_0(x)u + u|u|^2 = 0 \\
u(x, 0) = u_0(x)
\end{cases}
\]

Here δ_0 is the famous Dirac delta function:

\[
\delta_0(x) = \begin{cases}
 \infty & x = 0 \\
 0 & x \neq 0
\end{cases}, \quad \int_{-\infty}^{\infty} \delta_0(x)\,dx = 1.
\]
\(q = 3, \ v = 3, \ x_0 = -3. \)
\(q = -0.02, \ v_0 = 0, \ a_0 = -3. \)
\[V(x) = -\text{sech}^2\left(\frac{x}{5}\right), \quad u_0(x) = \text{sech}(x + 3). \]
\[V(x) = -\text{sech}^2\left(\frac{x + 5}{4}\right) - \text{sech}^2\left(\frac{x - 5}{4}\right) - 0.1\text{sech}^2\left(\frac{x}{4}\right), \]

\[u_0(x) = e^{ix/10}\text{sech}(x + 8). \]
Conclusions

The NLS models many phenomena such as the Bose-Einstein condensate, fiberoptics, impurities in DNA...

Many phenomena hard to see numerically can be explained analytically

And vice versa, many things easy to see numerically are hard analytically

There are many open problems: long time behaviour, radiation and "breathing" patterns, multiple solitons interacting with impurities...
Conclusions

- The NLS models many phenomena such as the Bose-Einstein condensate, fiberoptics, impurities in DNA...
- Many phenomena hard to see numerically can be explained analytically
- And vice versa, many things easy to see numerically are hard analytically
- There are many open problems: long time behaviour, radiation and “breathing” patterns, multiple solitons interacting with impurities...