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Abstract

We present a result relating the density of resonances for an open
chaotic system to the dimension of the classical fractal repeller of the sys-
tem. The result is supported by numerical computation of the resonances
of the system of n disks on a plane. The result generalizes the Weyl law
for the density of states of a closed system to chaotic open systems.
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1 Introduction

The celebrated Weyl law concerning
the density of eigenvalues of bound
states is a central result in the spec-
troscopy of quantum systems [1]. The
Weyl formula states that the asymp-
totic level number N(k), defined as
the number of levels with kn < k
(where k → ∞) is given after smooth-
ing by N(k) def= #{kn : kn ≤
k} = V kD/(D/2)!(4π)D/2 + · · · , for
a quantum system bounded in a re-
gion R of D-dimensional space whose
volume is V . For closed systems with
smooth boundaries, the Weyl formula
is well-established, and although pri-
marily valid in the semi-classical limit,
nevertheless can be applied with as-
tonishing accuracy to very low en-
ergies extending almost down to the
ground state of integrable and chaotic
closed systems. Generalizations of the
Weyl law to other situations have long
been sought. The most notable exam-
ple is the conjecture by Berry [2] for
the density of states of closed systems
with fractal boundaries, i.e. “fractal
drums”.

Open systems are characterized
by resonances defined by complex
wavevector kn = Re(kn) + iIm(kn),
corresponding to states with finite life
times arising from escape to infinity.
Open chaotic systems, which occur in
a variety of physical situations, are
generically characterized by a classical
phase space repeller that is fractal. In
this letter we present a result relating
the density of resonances for an open
chaotic system to the fractal dimen-
sion of the associated classical repeller.
The central result of the present work
can be stated as:

Nγ(k) def=

# {kn : Imkn > −γ, Rekn ≤ k} ∼ k1+dH

(1)

where dH is the partial Hausdorff di-
mension of the repeller [8, §4.4]. This
relation generalizes the Weyl law for
the density of states of a closed system
to chaotic open systems. The notation
f(k) ∼ g(k) means that for some con-
stants C > c > 0, cg(k) ≤ f(k) ≤
Cg(k) for k large. The constants de-
pend on γ but not on k.

The repeller is defined as the set of
points in phase space which do not
escape to infinity at both positive or
negative times. The dimension of the
repeller is given by 2dH + 2, where
we did not restrict ourselves to an en-
ergy surface. It may be that in finer
analysis a different notion of dimension
may have to be used, perhaps distin-
guishing between the upper and lower
bounds. In mathematical works [3] the
upper bounds are given in terms of the
Minkowski dimension, which in sym-
metric examples coincides with Haus-
dorff dimension. For closed two dimen-
sional systems, such as compact sur-
faces of constant negative curvature,
we have real zeros only and N(k) =
#{kn : kn ≤ k} ∼ k2 ,which is consis-
tent with (1) as dH = 1 then: every-
thing is trapped.

Our motivation comes from rigorous
work on quantum resonances and in
particular from the work of Sjöstrand
[3] on geometric upper bounds on their
density. The optimal nature of that
bound was recently shown by a numer-
ical experiment [4] involving a compu-
tation of quantum resonances for semi-
classical Schrödinger operators with
chaotic classical dynamics.
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Here we consider a different but re-
lated problem. Suppose that Z(k)
is the semi-classical Selberg-Ruelle
zeta function, with k the wave num-
ber. In some situations the zeros of
its meromorphic continuation approxi-
mate semi-classically the quantum res-
onances of the quantized system – see
[5] for an early study, and [6] for a re-
view of recent theoretical and experi-
mental results. Because of the exact
Selberg trace formula, this is rigorously
known for surfaces of constant negative
curvature [7]

We then claim (see §4) that for zeta
functions associated to configurations
of hard discs in the plane, eq.(1) holds.
The result is demonstrated by numer-
ical computations of resonances of n-
disks on a plane obtained from the
poles of a semi-classical Ruelle zeta
function calculated using a cycle ex-
pansion.

2 Semiclassical zeta
functions and reso-
nances

The trace formulæ of Selberg,
Gutzwiller, and Balian-Bloch (see
for instance [9] for a survey and
references) provide one of the most
elegant and useful ways of expressing
the classical quantum correspondence.
To formulate it in terms of the semi-
classical zeta function we consider
a semi-classical quantization Ĥ of a
classical Hamiltonian H: for instance
H = p2 +V (q) and Ĥ = −~2∆+V (x).

The contribution of periodic orbits
to the trace of the resolvent is is given

by

tr
1

E − Ĥ

∣∣
p.o.

=

(log Z)′(E)(1 + ~a1(E) + ~2a2(E) + · · · ) ,

(2)

where Z(E) is the semiclassical zeta
function:

exp

(
−
∑

γ

∞∑
n=1

− 1
n

eiνγ,n+in
Sγ (E)

~

|I − Pn
γ |

1
2

)
.

(3)
Here γ’s are primitive periodic orbits,
Tγ ’s their periods, νγ,n, the Maslov
indices at n iterations, Sγ ’s classical
actions, and Pγ ’s the linear Poincaré
maps. The formula (2) is somewhat
formal but can be made rigorous –
see [10] for a recent presentation in
a generalized setting. We also note
that, suitably modified, an exact for-
mula for a class of constant curvature
open chaotic systems is given in [7].

For open systems, the quantum res-
onances are defined as the poles of the
meromorphic continuation of the resol-
vent (or Green’s function) (E − Ĥ)−1.
Neglecting higher higher order terms in
(2) suggests that in the semi-classical
limit the resonances should be approx-
imated by the complex zeros of the an-
alytic continuation of Z(E). There ex-
ists enough evidence now that this is
the case [5],[6].

Since a resonance corresponding to
E = E0 − iΓ propagates as

exp(−itE/h) = exp(−itE0/~− tΓ/~)

(hence E0 is interpreted as the rest
energy, and Γ as the rate of decay),
the “visible” resonances should satisfy
Γ < C~: if Γ � ~ the state decays too
fast to be seen. As a density of reso-
nance states near a given energy level,
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E0, it is thus natural to consider

N~(E0, δ) =
#{E − iΓ : |E − E0| < δ , Γ < Ch} .

From [3],[4] we expect that for hyper-
bolic classical flows

N~(E0, δ) ∼h−d(E0,δ) ,

d(E0, δ) =
1
2

dim {(q, p) :

|H(q, p)− E0| < δ ,

Φt(q, p) 6→ ∞ , t → ±∞}
(4)

The set appearing in the definition of
d(E0, δ) is the trapped set or the re-
peller of the classical flow. It is not
clear at this point what notion of the
dimension should be used. The upper
bounds [3] are given in terms of the
Minkowski dimension.

In view of the semi-classical connec-
tion between the zeros of Z(E) and the
resonances, it is natural to consider the
analogue of (4) for those zeros.

3 Hard disc scattering

In the case of hard disc scattering in
two dimensions (see [6] and references
given there) the quantum Hamiltonian
is given by −~2∆D where ∆D is the
Dirichlet Laplacian. It is then nat-
ural to introduce a new variable k,
k2 = E/~2. Semiclassical asymptotics
correspond to the limit k → ∞, and
the semiclassical density of resonances
considered above should be replaced by

Nγ(k) = # {kn : Imkn > −γ, Rekn ≤ k} .

The Hausdorff dimension of the re-
peller in (4) is now independent of the
energy level and we will denote it by
DH .

The Zeta function can be considered
as a function of k and it takes a some-
what simpler form: Z(k) =

exp

(
−
∑

γ

∞∑
n=1

(−1)nmγ einkTγ

n

1
|I − Pn

γ |
1
2

)

=
∞∏

j=1

∏
γ

(1− (−1)jmγ eijTγ Λ−j− 1
2

γ ) ,

(5)

where Λγ > 1 is the larger of the two
eigenvalues of Pγ , and mγ is the num-
ber of reflections of γ. As was ex-
plained in §2 we want to find the den-
sity of zeros of Z(k).

4 Computational re-
sults

Effective ways of evaluating the an-
alytic continuations of semi-classical
(and dynamical) zeta functions have
been developed by several authors.
The cycle expansion method [11] has
proved itself to be particularly succes-
ful. We used it following the earlier
computations performed for the pur-
pose of comparisons with experimental
data [12]. We also chose configurations
for which the dimensions of the re-
pellers were readily available [8]: three
symmetrically spaced discs of radii a =
1, with centers r = 6 apart, and four
discs with radii a = 1 placed at the
vertices of the square of side r = 6.
The Hausdorff dimension, DH is given
in terms of the partial dimension, dH ,
DH = 2dH + 2 and in the examples
above

dH '
{

0.28952 three discs
0.42607 four discs
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The priciple (4) applied to the density
Nγ(k) defined in §3 suggests the law

log Nγ(k)
log k

' DH/2 = 1+dH , k →∞ .

(6)
The numerical results are shown in
Fig.1 and Fig.2: they confirm the va-
lidity of (6) for the symmetric three
and four disc configurations.

5 Conclusions

The computational results presented
here produce convincing evidence for
the connection between the density of
resonant states and the fractal dimen-
sion of the repeller on which they con-
centrate. It is not clear yet what no-
tion of dimension should be used and it
is quite possible that different dimen-
sions might occur in lower and upper
bounds once less symmetric examples
are considered. Since zeta functions
were used in the computation, we have
also provided evidence that the den-
sity of zeros of zeta functions is related
to the dimension of the repeller. That
this might occur has already been sug-
gested [3].

It is worth noting that while fractal-
ity arises from R or its boundary ∂R in
[2],[13], in the present work both R and
∂R are smooth and instead the classi-
cal phase space is fractal.

One might ask if the results depend
on the choice of the width γ of the
counting strip – see (1) and the ex-
planation of the ∼ notation following
it. The answer is that the width af-
fects the prefactor but does not affect
the k−dependence that is the focus of
the present work. It is known from
previous computations of both quan-
tum resonances and the semi-classical

approximations given by Zeta function
[4],[5] that for γ small we may have
Nγ(k) ≡ 0. Hence we expect (6) to
hold for γ large enough but with the
right hand side independent of γ.

The connections described here
between quantum spectral properties
and classical fractal properties of the
associated repeller of open chaotic
systems parallels a similar connection
established earlier between the quan-
tum spectral autocorrelation and the
classical decay rate. The microwave
spectra T (k) of n-disk billiards was an-
alyzed in terms of the autocorrelation
CT (κ) = 〈T (k − (κ/2))T (k + (κ/2))〉k
where 〈〉 represents a suitable
average[12]. Experimentally it has
been shown that the autocorrelation
can be well-described by CT (κ) =∑∞
±,n=1 bnγ′n/γ′2n + (κ ± γ′′n)2,with

γ′n ± iγ′′n the classical Ruelle-Pollicott
(RP) resonances in wave vector space.
Semiclassical arguments support-
ing the experimental results were
presented in [6]. The leading RP
resonance γ′0 ( γ′′0 = 0) represents the
classical decay rate and is related to
the information dimension dI of the
repeller by γ′0 = λ(1 − dI), where λ
is the average Lyapunov exponent.
The higher RP resonances γ̃n{n > 0}
represent fine structure properties of
the fractal repeller comprised of the
manifold of trapped orbits.
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