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Abstract

Numerous linearizations of mechanical systems feature non-normal operators. This
is particularly the case in follower force systems, gyroscopic systems and models
for squealing brakes. In this paper, it is shown that a pseudospectral analysis can
illuminate features of these systems including dissipation-induced destabilization
and high eigenvalue sensitivity to parameter variation.
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1 Introduction

A practical mechanic attempting to subdue an energetic and unstable device
will immediately think of using dissipation to remove excess energy. In many
cases, this strategy is entirely successful, and so it is one of the most surprising
results in engineering that dissipation can actually cause instability in some
machines. Dissipation-induced destabilization occurs in a wide class of mecha-
nisms including follower force and gyroscopic systems [1–3]. One of the results
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we will show in this paper is that it also occurs in certain models for brakes,
where instability is used as an indicator of brake squeal.

Our goal in this paper is to use the pseudospectral perspective [4,5] to shed
light on dissipation-induced destabilization. We put particular emphasis on
a variant of the pseudospectrum which we call a structured pseudospectrum,
that ends up being useful in the analysis of mechanical systems. Generally,
the pseudospectral perspective is well-suited to systems such as brake models,
where high sensitivity to parameter variations can make squeal prediction and
suppression difficult (see for example references [6,7]). The work presented in
this paper also complements existing works on eigenvalue sensitivity in follower
force systems and brake models, see for example [1,6,8].

In Section 2 we provide background on pseudospectra, and in Section 3, we
introduce structured pseudospectra. These concepts can arise from questions
about the behavior of the linear system

ẋ = Ax, (1)

which are usually answered by considering the eigenvalues of A. The set of
these eigenvalues is called the spectrum of A and is denoted Spec(A). Unfor-
tunately there are cases for which Spec(A) does a poor job of describing the
behavior of (1). These cases motivate the ε-pseudospectrum of A, which is
denoted Λε(A), and defined by

Λε(A) = {λ ∈ Spec(A + δA) where ||δA|| < ε}. (2)

In this definition, δA can be any perturbation to A, provided its norm 1 is
less than ε. Although consideration of all possible perturbations often is use-
ful, there are many problems in which the perturbations to A are naturally
restricted. For instance when A corresponds to a mechanical system, the only
possible perturbations may correspond to variations of specific parameters
such as damping coefficients in follower force systems, and lining stiffness co-
efficients in models for brakes. In this paper we restrict the structure of δA in
(2) and we study the corresponding subset of Λε(A), which we refer to as a
structured ε-pseudospectrum. We show that the structured ε-pseudospectrum
illuminates existing results on dissipation-induced destabilization and brake
squeal prediction.

In Section 4 we demonstrate the advantages of the pseudospectral perspec-
tive by analyzing the Ziegler pendulum (see Figure 1). Several classical phe-
nomena associated with this system are easy to see using a structured ε-
pseudospectrum in which the perturbations δA in (2) are restricted so that
they correspond to changes in the viscous damping of the pendulum joints.

1 In this paper norm will always indicate the standard 2-norm.
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Fig. 1. The Ziegler pendulum consists of two masses connected by rigid links and
viscoelastic hinges. The links are oriented by the angles φ1 and φ2, and a follower
force P acting on the second mass is oriented by the angle αφ2. The viscoelastic
hinges are characterized by stiffness values k1 and k2 and damping values b1 and
b2. A complete description of this system and its equations of motion is given in
Appendix A and also in [2]. In the remainder of the paper we frequently refer to
the nondimensionalization of P , given by F = PL2

k2
.

The linearization of the Ziegler pendulum about the trivial equilibrium state
has a canonical form that encompasses a large family of mechanical systems,
including brake models 2 used in the study of brake squeal. As a result, brake
models and follower force systems have similar pseudospectral properties, as
we discuss in Section 5.

The phenomenon of dissipation-induced destabilization in mechanical systems
has a long history- for references and comments, we refer the reader to [2,10–
12]. Relevant background material on brake squeal can be found in the reviews
[9,13]. Material on pseudospectra can be found in Trefethen et al. [4,5], and
material on structured pseudospectra can be found in references [14–16].

2 Background on Pseudospectra

The pseudospectrum of an operator A can be motivated by questions about
the behavior of the associated differential equation ẋ = Ax. We say that the
equilibrium x = 0 of the linear system ẋ = Ax is asymptotically stable if all
the eigenvalues λ of A satisfy Re (λ) < 0. It is indeed true that

|x(t)| ≤ C exp

(
t max
λ∈Spec(A)

Re(λ)

)
(3)

2 These models date to North [9] (see, for example, [8]).
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as t → ∞, with an additional prefactor of tk in some cases of multiple eigenval-
ues. However, if A is non-normal, (that is, if ATA �=AAT ), then it is well-known
that this asymptotic estimate can be highly non-uniform, especially if the di-
mension of A is large. Non-uniformity means that C may have to be extremely
large for the inequality to hold, clearly decreasing the usefulness of the esti-
mate. This fact encourages further consideration of non-uniformity; we note
that non-uniformity is closely related to the behavior of the resolvent R(z) of
the matrix A.

a) b)F = 0.2

λ = 1.7722i
r ≈ 0.0013

λ = 0.3990i
r ≈ 0.0017

F = 2.0

λ = 1.0000i
r ≈ 0.0032

λ = 0.7071i
r ≈ 0.0034

Fig. 2. These images show ε-pseudospectra (with ε=0.001) corresponding to the
Ziegler pendulum with the dimensionless force F = 0.2 in a) and F = 2.0 in b).
In both a) and b), there are four purely imaginary eigenvalues related by reflective
symmetry about the real axis, and so we only show the two that are positive.
Each eigenvalue (labeled λ) is at the center of a roughly circular region (with radius
labeled r). The ε-pseudospectrum in a) and b) consists of the union of these circular
regions. In both a) and b), a section of the imaginary axis is removed to improve
the display. These figures were obtained with the help of EigTool [19].

The resolvent 3 of A is a matrix valued function defined by

R(z) = (zI − A)−1 . (4)

If A is normal, then the norm of the resolvent is inversely proportional to the
distance between z ∈ C and the spectrum of A,

||R(z)|| = dist(z, Spec(A))−1. (5)

3 It is useful to note that the resolvent R(s) is the Laplace transform of the matrix
exponential etA, and can be expressed as a polynomial function of A using the
Fadeev-Fadeeva formulae [17,18].
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The situation is dramatically different however when A is non-normal. In this
case, the norm of the resolvent of A may be totally unrelated to the distance
between z and the eigenvalues of A. This motivates the following definition of
the ε-pseudospectrum of A:

Λε(A) = {λ ∈ C such that ||R(λ)|| > 1/ε}. (6)

This definition is in fact equivalent to (2). The definition in (2) highlights the
relation between Λε(A) and spectral instability.

Having defined the ε-pseudospectrum, we now present an example. In Figure 2
we show ε-pseudospectra of non-normal operators corresponding to the Ziegler
pendulum for different values of F . As F increases, the ε-pseudopectrum grows
larger, reflecting an increase in the sensitivity of the system spectrum to per-
turbations. Furthermore, as F increases, the operator associated with the
Ziegler pendulum becomes increasingly non-normal. We recall that sensitivity
to perturbations is characteristic of non-normal systems.

Many of the perturbations δA used to create Figure 2 are not physically realis-
tic (or realizable). To find perturbations that are realistic, we need to examine
the structure of A. For a wide class of mechanical systems including the two
considered in this paper, A has the following canonical form:

A =

⎡
⎢⎣ 0 I

−M−1K −M−1D

⎤
⎥⎦ . (7)

Here, K is a matrix with a symmetric part that corresponds to conservative
forces, and with an asymmetric part that contains contributions from either
the follower forces or, in the case of brake models, from friction forces. M
is a symmetric positive-definite matrix called the “mass” matrix, and D is
a matrix that represents linear viscous damping. In the absence of damping,
(7) corresponds to a reversible dynamical system, but because K �=KT , this
system is not Hamiltonian [2]. Loosely speaking, as K becomes increasingly
asymmetric, the matrix A becomes increasingly non-normal and pseudospec-
tral effects manifest. In follower force systems, this occurs when the magnitude
of the follower force increases. In many brake models, this occurs when the
friction forces or coefficients of friction increase 4 .

4 See Section 8 of [13] where lumped parameter models for disk brakes are discussed.
A detailed discussion of the case of a large degree-of-freedom finite element model
can be found in the Appendix of [8].
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3 Structured Pseudospectra

Motivated by (2), we define a structured ε-pseudospectrum of the linear op-
erator A to be

Σε(A) = {λ ∈ Spec(A + δA) such that ‖δA‖ < ε and s(δA) > 0} , (8)

where s(δA) > 0 indicates that δA satisfies some structural condition. To
study the effects of damping and other parameter variations on the mechanical
systems (7) of interest, we will examine Σε(A) where

A =

⎡
⎢⎣ 0 I

−M−1K 0

⎤
⎥⎦ , (9)

and where s(δA) > 0 indicates that δA has the following structure

δA =

⎡
⎢⎣ 0 0

−M−1H −M−1D

⎤
⎥⎦ , (10)

with M and D positive definite. Here H represents variations in the applied
forces and stiffnesses. We note that (9) is non-normal when K �=KT .

4 Example of a Follower Force System

The Ziegler pendulum shown in Figure 1 is a follower force system that expe-
riences dissipation-induced destabilization. This phenomenon is illustrated in
Figure 3 where the pendulum position as a function of time is determined by
numerically integrating the nonlinear equations given in Appendix A. From
this figure we see that for the smaller value of F , the equilibrium is stable both
in the absence and presence of damping. For the larger value of F , the equi-
librium is stable in the absence of damping, but can become unstable when
damping is added.

It turns out that dissipation-induced destabilization also occurs in the lin-
earized equations of motion for the Ziegler pendulum, given by Mz̈ + Dż +
Kz = 0 where

M =

⎡
⎢⎣m+2 1

1 1

⎤
⎥⎦ , D =

⎡
⎢⎣c1+c2 −c2

−c2 c2

⎤
⎥⎦ , K =

⎡
⎢⎣1+κ−F F−1

−1 1

⎤
⎥⎦ . (11)

The nondimensional mass, damping, stiffness, and follower force terms m, ci,
κ, and F that we use here are defined in Appendix A. The linearized Ziegler
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Fig. 3. Simulations showing dissipation-induced destabilization in the Ziegler pen-
dulum when the dimensionless force F = 2.0. In both a) and b), F takes on the
values 0.2, 1.2 and 2.0, and the logarithm of the normalized total energy E is plotted
as a function of a dimensionless time τ . In a), damping is absent, whereas in b),
the elements of the damping matrix (11) are c1 = c2 = 0.1. (These nondimensional
coefficients are defined in Appendix A.)

equations can be written as ẋ = Ax where A is the matrix in (7), with M ,
D, and K as given above. When D and F are zero, A has a pair of purely
imaginary eigenvalues. As F increases, these eigenvalues move towards each
other along the imaginary axis, merging in a reversible Hopf bifurcation 5

when F is approximately 2.086. In the presence of damping however, the
eigenvalues of A can move into the right half plane for F as low as 1.2. This
is the dissipation-induced destabilization that interests us.

5 This event is also known as a binary flutter instability.
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When D = 0, the operator A associated with the Ziegler pendulum is given by
(9). The ε-pseudopsectrum of this A doesn’t reveal anything about dissipation-
induced destabilization (see Figure 2), although it does show that larger values
of F (which cause A to be increasingly non-normal) make A more sensitive to
perturbations. We illuminate the system response to dissipation by construct-
ing a structured ε-pseudospectrum Σε(A) for the system with A and δA as
given in (9) and (10) respectively, with H in (10) set equal to 0. We generate
each δA by constructing a random positive definite D with unit magnitude,
and by then setting

δA =

⎡
⎢⎣ 0 0

0 βM−1D

⎤
⎥⎦ , (12)

with β = ε̃
‖M−1D‖ for some ε̃ ∈ [0, ε). The random positive definite D is given

by

D =

⎡
⎢⎣ cos θ sin θ

− sin θ cos θ

⎤
⎥⎦

⎡
⎢⎣ 1 0

0 d1

⎤
⎥⎦

⎡
⎢⎣ cos θ − sin θ

sin θ cos θ

⎤
⎥⎦ , (13)

where θ and d1 are random numbers on [0, 2π] and (0, 1] respectively.

a) b)F = 0.2

λ = 1.7722i
r ≈ 0.0013

λ = 0.3990i
r ≈ 0.0017

F = 2.0

λ = 1.0000i
r ≈ 0.0032

λ = 0.7071i
r ≈ 0.0034

Fig. 4. Here we superpose the structured ε-pseudospectrum Σε(A) on an exact copy
of the ε-pseudospectrum from Figure 2. In this case, Σε(A) is generated by restricting
the perturbations δA to the form (10). This restriction causes the ε-pseudospectra
from Figure 2 to collapse down to the much smaller horizontally-oriented regions at
the circle centers. When these smaller regions have a part in the right half plane,
(such as when F = 2.0), it is possible for the Ziegler pendulum to experience
dissipation-induced destabilization. We examine these smaller regions in greater
detail in Figures 5 and 6.

In Figure 4 we superpose the structured ε-pseudospectrum Σε(A) on the reg-
ular ε-pseudospectrum Λε(A) from Figure 2. In Figures 5 and 6, we offer more
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images of Σε(A), in greater detail. It is evident from the first image in Figure
5 that for small F , dissipation stabilizes the equilibrium. However, as F gets
larger, the non-normality of A increases and dissipation can induce instability.
As is evident from the results for F ≥ 2.08, the destabilization can occur in
either pair of eigenvalues.

F = 0.2 F = 1.2 F = 1.4 F = 1.6 F = 1.7

Fig. 5. These images show structured ε-pseudospectra (with ε = 0.001) for the
Ziegler pendulum as F increases through the values 0.2, 1.2, 1.4, 1.6, and 1.7.
The structured ε-pseudospectra are the regions outlined in small dots, the system
eigenvalues are the larger dots, and the vertical line in each image is the iR axis.
As F increases, the eigenvalues move towards each other along the iR axis, and for
some F between 0.2 and 1.2, the structured ε-pseudospectrum moves into the right
half plane. The regions surrounding each eigenvalue are scaled and translated, and
data below the real axis is omitted. Actual parameters for these regions are given
in Appendix B.

F = 1.8 F = 2.0 F = 2.08 F = 2.08575 F = 2.0859 F = 2.087

Fig. 6. These images continue the progression from Figure 5, with F values of 1.8, 2,
2.08, 2.08575, 2.0859, and 2.087. Somewhere between F = 2.08575 and F = 2.0859,
the system eigenvalues coalesce and move off the iR axis.

5 Brake Squeal

We now consider the usefulness of structured ε-pseudospectra in predicting
brake squeal. As may be surmized from the vast literature on this topic, brake
squeal is a fugitive phenomenon for which complete supression is difficult. Here
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we consider a simple brake model (see Figure 7) with a linearization A that
becomes increasingly non-normal as the onset of squeal is approached. As a
consequence of this non-normality, the spectrum of A becomes more sensitive
to perturbations, and small changes to the system parameters greatly affect
the onset of squeal. Our comments here are in accord with the independent
observations on this sensitivity that have appeared in references [6,7]. If we
add large amounts of dissipation to the system, then the eigenvalues develop
negative real parts, and the pseudospectral effects are reduced. This is in agree-
ment with the common practice of using dissipation as a squeal suppression
mechanism. 6 Small amounts of damping however may give rise to instability.

P1

N1

N2

P2 k r

k t y

q

d

Fig. 7. Schematic of North’s two degree-of-freedom model for a disk brake. The brake
rotor is represented by the tilted beam, which has a length 2L and a thickness of
2h, while the action of the pads on the rotor is represented by the friction forces F1

and F2 and the torsional and linear springs of stiffness kr and kt, respectively. This
figure has been adapted from [9] with some changes in notation.

Our brake model is a discrete two degree-of-freedom system first described
by North in [9], (see Figure 7). In this model, the brake rotor is represented
by a rigid rod of mass m, moment of inertia I, length L and thickness 2h.
The brake pads in contact with the rotor are incorporated into the model by
the normal forces N1 and N2, and by the frictional forces P1 and P2. The
translational and rotational degrees of freedom of the rod are denoted by y
and θ, respectively. To model the stiffness of the rotor, we subject the rod to a
torsional spring of stiffness kr and a linear spring of stiffness kt. The flexibility
of the brake pads is included in the model by a linear spring of stiffness kp

2
for

each pad. The normal forces are assumed to be

N1 =
kp

2
(y + dθ) + N0, N2 = −kp

2
(y + dθ) + N0, (14)

where N0 accounts for a static preload between the brake pads and the rotor,
and where d is the dimension shown in Figure 7. The corresponding expressions

6 For additional background on squeal suppression mechanisms, see Kinkaid et al.
[13].
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for the frictional forces are

P1 = µN1, P2 = µN2, (15)

where µ is a coefficient of friction. The (dimensionless) linearized equations of
motion for this model are given by Mz̈ + Dż + Kz = 0 where

z =

⎡
⎢⎣

y
d

θ

⎤
⎥⎦ , M =

⎡
⎢⎣ 1 0

0 1
md2

⎤
⎥⎦ ,

K =

⎡
⎢⎣ 1 + κp −η + κp

(1 + σ) κp (1 + σ) κp + κr

⎤
⎥⎦ , (16)

and where D is a positive definite matrix representing the effects of damping.
The dimensionless parameters in these matrices are

κp =
kp

kt

, κr =
kr

d2kt

, σ =
µh

d
, η =

2µN0

ktd
, (17)

where the frequency
√

kt

m
is used to nondimensionalize time. The system equa-

tions of motion can be written as ẋ = Ax where A is given by the canonical
form (7), just as it was for the Ziegler pendulum. Recall that A is non-normal
when K �=KT , which in our system occurs when

µ + σκp �= 0 ←→ µ

(
kp

kt

h

d
+ 1

)
�= 0 (18)

This condition always holds because the friction coefficient µ never is zero. The
structured ε-pseudospectra for this system are qualitatively similar to those
of the Ziegler pendulum, with the friction coefficient µ in the brake model
analagous to the follower force F in the Ziegler pendulum. The introduction
of small amounts of damping can cause the system eigenvalues to move into
the right half plane, for lesser friction coefficient values than those needed to
reach the reversible Hopf bifurcation in the case when no damping is present.

6 Concluding Remarks

We have used structured pseudospectra to illustrate the presence of dissipation-
induced destabilization in follower force systems and brake models. Related
results also apply for gyroscopic systems, but are so similar that we don’t
present them here. 7 We point out that non-normal matrices which have a

7 A good system to explore these results is Example 4.6.1 in [12].
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more general structure than (7) can be found in the literature (see, e.g., refer-
ence [7]), and that a structured pseudospectral analysis can also be performed
for them.
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A Equations of Motion for the Ziegler Pendulum

The pendulum system shown in Figure 1 consists of a mass m1 attached by
a link L1 to a fixed base, and a mass m2 attached by a link L2 to the mass
m1. The links L1 and L2 make angles φ1 and φ2 respectively with a fixed line
of reference. The points of attachment are viscoelastic hinges, endowed with
torsional stiffness and damping. We quantify the torsional stiffness at the first
and second hinges by the coefficients k1 and k2 respectively. These coefficients
have units of [force]x[distance]. The damping coefficients associated with the
first and second hinges are denoted b1 and b2 respectively, and have units of
[force]x[distance]x[time]. A follower force of magnitude F acts on m2 at an
angle αφ2 with respect to the line of reference from before. For good measure
we include gravity g acting on both masses in the direction of the line of
reference.

We first use the frequency ν =
√

k2

L2
2m2

to establish the following nondimen-

sional values:

F =
PL2

k2

, κ =
k1

k2

, l =
L1

L2

, m =
m1

m2

− 1,

γ =
g

ν2
, c1 =

b1ν

k2

, c2 =
b2ν

k2

, τ = tν. (A.1)

With the understanding that a superposed dot indicates differentiation with
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respect to τ , the Ziegler Pendulum equations of motion are given by

⎡
⎢⎣ l2(m + 2) l cos(φ1 − φ2)

l cos(φ1 − φ2) 1

⎤
⎥⎦

⎡
⎢⎣φ̈1

φ̈2

⎤
⎥⎦ =

l sin(φ1 − φ2)

⎡
⎢⎣−φ̇2

2

φ̇2
1

⎤
⎥⎦ +

⎡
⎢⎣−(κ + 1) 1

1 −1

⎤
⎥⎦

⎡
⎢⎣φ1

φ2

⎤
⎥⎦ + F

⎡
⎢⎣ sin(φ1 − αφ2)

l−1 sin((1 − α)φ2)

⎤
⎥⎦

+

⎡
⎢⎣−(c1 + c2) c2

c2 −c2

⎤
⎥⎦

⎡
⎢⎣φ̇1

φ̇2

⎤
⎥⎦ − γ

⎡
⎢⎣l(m + 2) sin φ1

sin φ2

⎤
⎥⎦ . (A.2)

The nondimensional kinetic, spring potential, and gravitational potential en-
ergies of the system are

KE =
1

2
l2(m + 2)φ̇2

1 +
1

2
φ̇2

2 + lφ̇1φ̇2 cos(φ1 − φ2),

PEs =
1

2
(κφ2

1 + (φ2 − φ1)
2),

PEg = − γ(m + 2)l cos φ1 − γ cos φ2. (A.3)

With α = 1 and γ = 0, the system linearization about zero is given by

M

⎡
⎢⎣φ̈1

φ̈2

⎤
⎥⎦ + D

⎡
⎢⎣φ̇1

φ̇2

⎤
⎥⎦ + K

⎡
⎢⎣φ1

φ2

⎤
⎥⎦ = 0, (A.4)

where

M =

⎡
⎢⎣m+2 1

1 1

⎤
⎥⎦ , D =

⎡
⎢⎣c1+c2 −c2

−c2 c2

⎤
⎥⎦ , K =

⎡
⎢⎣1+κ−F F−1

−1 1

⎤
⎥⎦ . (A.5)

B Data From Figures 5 and 6

Table 1 gives the eigenvalues and structured ε-pseudospectra dimensions from
Figures 5 and 6. For each value of F , the structured ε-pseudospectrum consists
of four distinct regions in C, each containing one of the system eigenvalues.
We identify each such region Ψ by the eigenvalue it contains. The structured
pseudospectrum is symmetric with respect to the real axis, and so we only
give data above the real axis.
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F Re(λ) Im(λ) min(Re(Ψ)) ∆Re(Ψ) min(Im(Ψ)) ∆Im(Ψ)

0.20000 -9.496656e-18 1.772232e+00 -4.918268e-04 4.626542e-04 1.772232e+00 8.034621e-08

0.20000 1.135801e-16 3.989923e-01 -1.253187e-04 1.249762e-04 3.989923e-01 2.221254e-08

1.20000 -1.949384e-17 1.434196e+00 -5.276500e-04 5.026811e-04 1.434196e+00 8.058873e-08

1.20000 1.949384e-17 4.930336e-01 -1.474492e-04 1.723291e-04 4.930336e-01 2.181407e-08

1.40000 6.884011e-17 1.351373e+00 -5.503930e-04 5.273948e-04 1.351373e-00 7.829293e-08

1.40000 -4.108453e-17 5.232507e-01 -1.619412e-04 2.070492e-04 5.232507e-01 2.859811e-08

1.60000 3.928148e-17 1.258741e+00 -5.887940e-04 5.645737e-04 1.258741e-00 8.145434e-08

1.60000 -1.152590e-17 5.617572e-01 -1.866597e-04 2.697304e-04 5.617571e-01 6.534549e-08

1.70000 2.679640e-18 1.206970e+00 -6.204038e-04 6.006905e-04 1.206970e-00 8.897478e-08

1.70000 -2.679640e-18 5.858529e-01 -2.059099e-04 3.210697e-04 5.858528e-01 1.069690e-07

1.80000 2.123300e-17 1.149652e+00 -6.706411e-04 6.505671e-04 1.149652e-00 1.785604e-07

1.80000 6.522575e-18 6.150617e-01 -2.295368e-04 3.949867e-04 6.150616e-01 1.945922e-07

2.00000 1.804112e-16 1.000000e-00 -9.831250e-04 9.758750e-04 9.999998e-01 1.562333e-06

2.00000 -4.483593e-17 7.071068e-01 -3.500000e-04 8.281930e-04 7.071053e-01 1.572187e-06

2.08000 -6.278791e-16 8.797905e-01 -3.032270e-03 3.559450e-03 8.797900e-01 9.897194e-05

2.08000 5.723679e-16 8.037218e-01 -9.253781e-04 3.424958e-03 8.036232e-01 9.897771e-05

2.08575 3.955170e-15 8.439200e-01 -1.032975e-02 1.502420e-02 8.439149e-01 7.460492e-03

2.08575 -4.024558e-15 8.378837e-01 -5.140275e-03 1.484115e-02 8.304282e-01 7.460505e-03

2.08590 5.328282e-03 8.408795e-01 5.097472e-03 5.618368e-03 8.312490e-01 1.347916e-02

2.08590 -5.328282e-03 8.408795e-01 -1.120838e-02 5.860394e-03 8.368811e-01 1.352532e-02

2.08700 1.741811e-02 8.407160e-01 1.717581e-02 9.079214e-04 8.350055e-01 7.293936e-03

2.08700 -1.741811e-02 8.407160e-01 -1.857042e-02 1.133566e-03 8.390573e-01 7.310464e-03

Table 1: Eigenvalues and structured ε-pseudospectra dimensions from Figures
5 and 6. In this table, ∆Re(Ψ) denotes max(Re(Ψ))-min(Re(Ψ)), and ∆Im(Ψ)
denotes max(Im(Ψ))-min(Im(Ψ)).
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