This note is to clarify what you have to know about PDE for the exam. You should know what heat and wave equations are and what initial/boundary value problems for these equations mean:

Heat equation: \(\partial_t u = \partial_x^2 u, \ u(x,0) = f(x) \), is the initial value problem, and the boundary conditions can be

- a) \(u(0,t) = u_1, \ u(L,t) = u_2, \ 0 < x < L \) (temperature fixed at both boundaries); typically \(u_1 = u_2 = 0 \);
- b) \(\partial_x u(0,t) = \partial_x u(L,t) = 0, \ 0 < x < L \) (no heat flow through the boundaries).

Wave equation: \(\partial_t^2 u = \partial_x^2 u, \ u(x,0) = f(x), \ \partial_x u(x,0) = g(x) \) is the initial value problem (note that you need two initial conditions), and the boundary conditions can be

- a) \(u(0,t) = 0, \ u(L,t) = 0, \ 0 < x < L \) (an oscillating string is fixed at both ends);
- b) \(\partial_x u(0,t) = \partial_x u(L,t) = 0, \ 0 < x < L \) (a string can move up and down at the ends).

You may be asked to solve the heat equation with any boundary conditions but I will not ask you to solve the wave equation.

To solve the heat equation with boundary conditions a) proceed as follows:

- Note that \(w(x) = u_1 + x(u_2 - u_1)/L \) solves the heat equation (it does not depend on \(t \) and \(w''(x) = 0 \)), and \(w(0) = u_1, \ w(L) = u_2 \).
- Hence \(u(x,t) = w(x) + v(x,t) \) where \(v \) solves the initial/boundary value problem
 \[
 \partial_t v = \partial_x^2 v, \ \ v(x,0) = f(x) - w(x), \ \ v(0,t) = v(L,t) = 0.
 \]
- To find \(v \) we expand \(f(x) - w(x) \) in sine series,
 \[
 f(x) - w(x) = \sum_{n=1}^{\infty} b_n \sin \frac{n\pi x}{L}, \ 0 < x < L,
 \]
 and get
 \[
 v(x,t) = \sum_{n=1}^{\infty} e^{-(n\pi/L)^2 t} b_n \sin \frac{n\pi x}{L}.
 \]
- Returning to the original problem we get as our solution
 \[
 u(x,t) = u_1 + x(u_2 - u_1)/L + \sum_{n=1}^{\infty} e^{-(n\pi/L)^2 t} b_n \sin \frac{n\pi x}{L}.
 \]

For boundary condition b) there is no \(w(x) \), so expand \(f \) in cosine series and get

\[
 u(x,t) = \frac{a_0}{2} \sum_{n=1}^{\infty} e^{-(n\pi/L)^2 t} a_n \cos \frac{n\pi x}{L}.
\]