VISCOSITY LIMITS FOR 0TH ORDER PSEUDODIFFERENTIAL
OPERATORS

JEFFREY GALKOWSKI AND MACIEJ ZWORSKI

ABSTRACT. Motivated by the work of Colin de Verdiere and Saint-Raymond [CS-1.20]
on spectral theory for Oth order pseudodifferential operators on tori we consider vis-
cosity limits in which Oth order operators, P, are replaced by P + ivA, v > 0.
By adapting the Helffer—Sjostrand theory of scattering resonances [HeSj86], we show
that, in a complex neighbourhood of the continuous spectrum, eigenvalues of P+ivA
have limits as the viscosity, v, goes to 0. In the simplified setting of tori, this justifies
claims made in the physics literature — see for instance [RV18].

1. INTRODUCTION

Spectral properties of Oth order pseudo-differential operators arise naturally in the
problems of fluid mechanics — for an early example see Ralston [Ra73]. Recently, Colin
de Verdiere and Saint-Raymond [CS-1.20], [CdV19] investigated such operators under
natural dynamical conditions motivated by the study of (linearized) internal waves —
see the review article of Dauxois et al [D*18] and the introduction to [C5-L20] for a
physics perspective and references. Dyatlov—Zworski [DyZw19b] provided proofs of the
results of [CS-L.20] based on the analogy to scattering theory — see Melrose—Zworski
[MZ96], Hassell-Melrose—Vasy [HMV04] and [DyZw19a]. This analogy was developed
further by Wang [Wal9] who defined and described a scattering matrix in this setting.
Tao [Tal9] constructed an example of an embedded eigenvalue.

Motivated by the physics literature — see for instance Rieutord et al [RV18] — we
consider here operators with a viscosity term

P, .= P+ ivA,

where P is a Oth order pseudodifferential operator on the torus (1.1) satisfying (1.2) and
the dynamical assumption (1.3). The operator A is the usual Laplacian on the torus.
The assumption (1.3) guarantees continuity of the spectrum at 0 [CS-L20], [DyZw19b].
We then show that as v — 0+ the eigenvalues of P, in a complex neighbourhood of 0
tend to a discrete set associated to P alone — see Figure 1 for a numerical illustration.
This justifies claims seen in related models of the physics literature’. Our approach is

For example a claim from [RV18]: “The aim of this paper is to present what we believe to be the

asymptotic limit of inertial modes in a spherical shell when viscosity tends to zero.”
1
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FIGURE 1. We display the resonances of P as red stars (a full expla-
nation using the deformed operator P, is given in Appendix B). The
paths of the eigenvalues of P + iwvA as v — 0+ are shown by the
green curves with the arrows denoting the direction of the path as
v decreases. P is chosen as in (B.4) with V, = 1(& — e ¢ and
Vip = (14 (e — 1)(€ = 2)?)e €2’ For an animated version of this
figure see https://math.berkeley.edu/~zworski/vis_dynam.mov.

again based on analogy to scattering theory, in this case to the general approach to
scattering resonances due to Helffer—Sjostrand [HeSj86].

To state our results precisely, we start with the class of pseudodifferential operators:
1 ot
L iW(y—y',m) / /
Pu(y) == Gn) /n /ne YT p(y, n)u(y')dy'dn (1.1)
where p € S™(T*T"), T™ := R"/2x7Z", has an analytic continuation from 7*T" satis-
fying

Ip(z, Q)| < M, for |Imz| <a, |Im(¢| <b(Re(). (1.2)

The integral in the definition (1.1) of Pu is considered in the sense of oscillatory
integrals (see for instance [Zw12, §5.3]) and we extend both y — u(y) and y — p(y,n)
to periodic functions on R"™.
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The dynamical assumption is formulated using an escape function:
3G € SYT*T"), C >0 H,G(x,&) >0, for (z,&) €{p=0}n{l¢|>C}. (1.3)

(For the definition of the symbol class S*(T*T") see (3.1) and [DyZw19a, §E.1] and
for a discussion of escape functions [DyZw19a, §6.4].) We make our assumption at
p = 0 but the value 0 can be replaced by any real number A\ by changing the operator
to P — A. We could also replace p in (1.3) by the principal symbol of P. Examples
of operators satisfying our assumptions are given in Appendix B (see also [DyZw19b]
and [Tal9]).

We denote by A = Z?:l agj the usual Laplacian on T™ and state a precise version

of our main result:

Theorem 1. Suppose that P is given by (1.1) with p satisfying (1.2) and (1.3). Then
there exist an open neighbourhood of 0 in C, U and a set
Z(P) C{Ilmw<0}NU
such that for every K € U, Z(P) N K is discrete, and
spec;2 (P +ivA) — Z(P), v — 0+, (1.4)

uniformly on K.

Numerical illustrations of this theorem are presented in Appendix B.

Another way to state the theorem is to say that Z(P) = {w;}'_, (where N = oo is
allowed) and spec (P + ivA) = {w;(v)}32, then (after suitable re-ordering)

w;(v) = w;, v — 04,

uniformly on compact sets and with agreement of multiplicities. In fact, the proof
gives a more precise statement implying smoothness of projectors acting on spaces X
of Theorem 2 — see [DyZw15, Proposition 5.3]. Since the statement is essentially the
same we do not reproduce it here.

The Laplacian A can be replaced by any second order (or any order) elliptic differen-
tial operator with analytic coefficients and the set Z(P) is independent of that choice.
The next theorem shows that Z(P) is defined intrinsically for operators satisfying our
assumptions:

Theorem 2. Suppose that P satisfies the assumptions of Theorem 1 and U 1is the open
set presented there. Then there exists a Hilbert space X such that for w € U,

P—w:X — X isa Fredholm operator ,

and R(w) := (P —w)™': X — X, forms a meromorphic family of operators with poles
of finite rank. The set of these poles in U is the set Z(P) in Theorem 1 (with inclusion
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according to multiplicity). Moreover,

Z(P) MR = spec,, 12(P)NU.

The space X = H, is defined in §4 and for some ¢ > 0,
as C X C A s,

where, for s € R, the spaces 47 is given by formal Fourier series with Fourier coefficients
bounded by e~1"*, n € Z". Hence X contains the space of analytic functions extending
to a sufficiently large complex neighbourhood of T™ and is contained in the dual of
such space — see (4.2) for precise definitions.

We briefly recall similar results in different settings. Dyatlov—Zworski [DyZw15]
showed that if X is the generator of an Anosov flow on a compact manifold and Q) is
a self-adjoint second order elliptic operator, then the eigenvalues of X + iv() converge
to the Pollicott—Ruelle resonances of the Anosov flow. These resonances appear in
expansions of correlations — see [DyZw15] for a discussion and references. Drouot
[Dr17] proved an analogue of this result for kinetic Brownian motion in which X is a
generator of an Anosov geodesic flow and @) is the “spherical Laplacian” on the fibers.
Dang—Riviere [DaRil7] showed that for Morse-Smale gradient flows, the eigenvalues
of Ly, 5+ ivA, (which agree with the eigenvalues of the Witten Laplacian) converge
to the Pollicott-Ruelle resonance of the gradient flow. That generalized a result of
Frenkel-Losev—Nekrasov [FF'LN11] who, motivated by quantum field theory, considered
the case of the height function on the sphere.

The complex absorbing potential method (see [DyZw19a, §4.9] for a description and
references) is also related to viscosity limits: to obtain discrete complex spectrum a
complex potential, say —ie|z|?, is added to a Schrodinger operator. In cases where
scattering resonances can be defined, the spectrum of this new operator converges to
the resonances — see [Xil9], [Zw18].

The essential ingredient in the proof of Theorems 1 and 2 is the theory of com-
plex microlocal deformations inspired by works of Sjostrand [Sj82],[Sj96] and Helffer—
Sjostrand [HeSj86]. The starting object there is an FBI transform considered with
an additional asymptotic parameter h — 0 which in this paper will be eventually
fixed and sufficiently small. In our case we need an FBI transform which respects
the analytic structure of the underlying compact analytic manifold. Hence, if M is
a compact analytic manifold, we define (using a measure on M coming from a real
analytic metric)

Tu(x,&,h) = h_?);/MK(x,f,y, h)u(y)dy, (1.5)

where

(z,&,y) = K(x,§,y,h)
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is holomorphic in a fixed complex conic neighbourhood of T*M x M and, uniformly
in that neighbourhood,

K (2,8, h) = x(z,y)a(z, &y, h)er#@Evh) 4 O(e=Bea/Chy
o(z,6,2) =0, dyp(,6,9)|y—e = =&, Imdop(2,&,y)]y—s ~ (Re ).
Denoting by M a complex neighbourhood of M, y satisfies
xXeC®U), xlv=1, VelUcC M x M are small neighbourhoods of A(M),

(1.6)

—

and a is analytic symbol of order n/4 in . (Here A(M) denotes the diagonal {(z,z) :
ze M}

Existence of such kernels K can be obtained by choosing a real analytic metric with
exponential map T, M > (z,v) — exp,(v), and then putting

p(x, & y) = —E(exp, ' (y) + £(E)d(x, y)*.

We can then solve the d-equation with the right hand side given by ém, applied to the
first term on the right hand side of (1.6).

In this paper, in view of our applications and for the sake of clarity, we consider an
explicit K (z,&,y,h) available in the case of tori, T" := R"/(27Z)™:

K(z,&,y,h) = ca(€)3 Z ot (x=y=27k &)+ 5 (€) (z—y—2mk)?) (1.7)
kEZ

Although the analysis works in the more general setting of analytic compact manifolds
and FBI transforms satisfying (1.5) and (1.6), we can avoid additional complications
such as the study of analytic symbols when the inverse of T" is not exact (see Proposition
2.2) and of operators annihilating T'u which do not commute exactly (see Proposition
5.1) by using (1.7). One motivation for this project was to present the theory of
exponential weights which are not compactly supported — see §4. The expository article
[GaZw19] is intended as an introduction to these methods in the simpler setting of
compactly supported weights, see also Martinez [Ma02] and Nakamura [Na95] for a
very clear approach to compactly supported weights in R™ (or more generally weights
¥ satisfying 0% € L™ for |a| > 0).

In an independent development Guedes Bonthonneau-Jézéquel [GeJe20)] presented a
similar theory in a more general setting of Gevrey regularity and arbitrary real analytic
compact manifolds. Their motivation came from microlocal study of dynamical zeta
functions and trace formulas for Anosov flows, see [DyZw16],[Je19] and references given
there.

The paper is organized as follows:

e In §2 we define an FBI transform, 7" on tori and construct its exact left inverse
S. The FBI transform takes functions on T"™ to functions on T*T".
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e The geometry of complex deformation and their relation to exponential weights
is reviewed in §3. The complex deformation of our FBI transform, T}, is then
investigated in §4 where the space X = H, is also defined. Here, A is a complex
deformation of 7*T" associated to G in (1.3) using (3.2).

e §5is motivated by the study of Bergman kernels by Boutet de Monvel-Sjostrand
[BoSj76], [Sj96] and of Toeplitz operators by Boutet de Monvel-Guillemin
[BoGu8l]: we construct a parametrix for the orthogonal projector onto the
image of X under T}.

e The action of pseudo-differential operators of the form (1.1) on the space X
is described in §6. We also present the compactness and trace class properties
needed in our proofs of the Fredholm property and of the viscosity limit for P
and P + ivA.

e Finally, §6 is devoted to the proofs of Theorems 1 and 2.

e Appendix A reviews some aspects almost analytic machinery of Melin—Sjostrand
[MeSj74], see also [GaZw19, §5]. In Appendix B we discuss the (very) special
case of escape functions which are linear in . In that case we can use an
analogue of the method of complex scaling — see [DyZw19a, §84.5,4.7] and ref-
erences given there. This method lends itself to numerical experimentation and
some results of that are presented in Appendix B as well.

Acknowledgements. We would like to thank Semyon Dyatlov for many enlighten-
ing discussions and Johannes Sjostrand for helpful comments on the first version of
[GaZw19]. Partial support by the National Science Foundation grants DMS-1900434
and DMS-1502661 (JG) and DMS-1500852 (MZ) is also gratefully acknowledged.

2. A SEMICLASSICAL FBI TRANSFORM ON T" = R" /27 Z™

We start by defining an FBI transform on T™ which respects the real analytic struc-
ture of T™ and is invertible with error exponentially small in A and in frequency.

As stated in §1 we achieve this with the following transform:
Tu(x,§) :=h"+ / Y enrlnv 2 du(y)dy, ue C(T"),
T hezn (2.1)
This sum is rapidly convergent since Im ¢ > (&)|z — y|?/2.

Remark. As already emphasized in §1, the crucial feature of 7" is the structure of its
integral kernel, K (z,&,y), which is analytic in all variables and is given by

en @D a(z, €, y)x(d(w, y)) + Oe™ /M),
p(x,&,y) = (exp,(x), &) + 5(E)d(x, y)?,
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where a is a classical analytic symbol and x € C°(R) is supported in a small neigh-
bourhood of 0 and is equal to 1 near 0.

Extending u to R" as a 2nZ" periodic function, we observe that

Tu(z,€) = h™1 | er?@vO(e)Tu(y)dy
R’I’L

and, moreover, Tu(z,§) is 2rZ" periodic in z.

Lemma 2.1. The operator T : C°(T") — C*(T*T") extends to an operator
T: LX(T") = L*(T*T"), |Tll2@m—r2aem < C,

with C' independent of h.

Proof. Suppose that v € C(T*T™). We extend v periodically in z and consider

TT'0(e,&) = h 5T [ Te oty n)dydndu
where
B = (o = w,€) + (w—ym) + §(O — w) + )y — w)?)

Completing the square and integrating in w, we then obtain

N i -n <€>%<77>% § : VW (z—y+27k,E,n)
TT —h A JA A h Yy n ,n)dydn.
v(@,¢) /T &+ mE =" vty

where

i (E=m)? i )z &+ (En
v 2, ga n =3 +3 +
Y R R T R I
Schur’s test for boundedness together with density of C°(T*T") in L?(T*T") complete
the proof of the lemma. O

- Z.

Our next goal is to find an inverse for 7. To do this, we define
Soly) = h~* / S k2O (p —y — 2k, €)u(, €)dadt
T (2.2)
(2,8, y) = oz, &, ).

Then, as before, extending v periodically in z,

Sv(y) = h™ / e ? EwOp(z — y, E)v(x, £)dade.

T* Rn
We then have

Proposition 2.2. Putting
b(w, §) = 23 (2m) "% ()T (1 + L(w,&/(8))), (2.3)

in (2.2) gives
STu=u, u€ L*R"). (2.4)
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Proof. Using definition (2.1) and (2.2) we have

3

STy — h?/ en (T=v 8+ 5O Ev* 130" (Vip(x — 2, O)u(y)dydzdE
R™ xR™ xR™

(2.5)
:h_n/ RO a0y, €& h)u(y)dydg.
R™ xR™
For our choice of b we have
a(z,y, & h) = h-Eein @) / e B CD NV i p(r — 2, €)de
Rn
n (£ 2 (&) 2 2 n
= hzeh (@) / e o[y —w — gy, &) dw
. (€) 5 ) (2.6)
—n @t [ Py - vbn) e
= (2m) " (L + 1z — 3. £/())-
The proof is now concluded using (2.7) below. O

For the reader’s convenience we include the derivation of Lebeau’s inversion formula
used in the proof of Proposition 2.2 (see [Hol, (9.6.7)]):

Lemma 2.3. For u € C*(R"),
u(z) = (27rh)”/ e {@—yEtiale >(’”’y»(l +ia(zr —y,&/(§)))uly)dyds, a>0. (2.7)
R2%

Proof. For uw € C2°(R") the Fourier inversion formula gives

u(z) = (2rh)™" lim en (= &)tiet Du(y)dydé,

e—0+

where the integral converges absolutely for € > 0. We deform the contour of integration
in & to I'y(z,y) given by

En=E+ail)(zr—y), E€ER” 0<axl.
This deformation is justified since on I,

Im(z —y,m) > c(n)(x —y)*.

and for a sufficiently small, () := (1 4+ ?)2 has an analytic branch with positive real
part. In particular, we have, using that d( ) =D& 1de;.
u(x) = (27h) "hr%/ / en @y iy (Y dydny Adns A -+ A dny,
€E— n

= (2rh) " lim o+ (r—y.Etia(z—y))+ieln det(ng) u(y)dyd€

e—0 R2n

= (27h)™" /R B er v EHie@) (1 +ia(x — y, &/(6)))uly)dyde.
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Since the right hand side is analytic in {a € C: Rea > 0} it follows that the formula
remains valid for all a > 0. O

3. GEOMETRY OF COMPLEX DEFORMATIONS

Following [HeSj86] and [Sj96] we will study the FBI transform (2.1) when T*T™ is
replaced by an I-Lagrangian R-symplectic manifold submanifold of

T+Tn = {(2,¢) | z € C*/2xZ", ¢ € C*} ~ T*(C"/2rZ").

We recall that T+T" is equipped with the complex symplectic form

oi=d( Ndz:=>_d(; Ndz = d(C - dz).

j=1
For a real 2n-dimensional submanifold of ﬁ\'ﬂ‘/”, A, we say
A is [-Lagrangian <= Im(o|,) =0,
and that
A is R-symplectic <= Re(o|s) is non-degenerate.

The specific submanifolds used here are given as follows. For a function G(z,§) €
C>®(T*T™; R), assume that for some sufficiently small €, (to be chosen in the construc-
tions below),

sup (&)~ PN020 G (2, €)| < €0, [0207G(w,€)| < Cap(©)™ L (3.1)

o] +[8]<2
(The second condition merely states that G € S*(T*T") in the standard notation of
[HOITT].) We then define
A= {(z +iGe(x,8), € —iGy(,€)) | (x,€) € T*T"} C T+T™. (3.2)
By considering G(z,£) as a periodic function of x, we can also think of A as a sub-
manifold of T*C".
A submanifold given by (3.2) is always [-Lagrangian:
C-dz|a = (£ —iG,) - d(x +1iGe)
=¢-dr+ Gy - GeedE + Gy - Gepdr +i(—Gy - dx + € - dG),
and
d(—Gy - dx + & - dGe) = dE N Gepda + dx N Gred€ = 0.
The smallness of ¢ enters for the first time in guaranteeing that A is R-symplectic:
d(§ - de + Gy - Geed€ + Gy - Gepdx) = dé N da + Gpdx N Geed€ + Gred€ N GeedE
+ Gpedé N Gepda + Gppdr N Gegda.

The left hand side is non-degenerate if €, in (3.1) is small enough.
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Since Im ¢ - dz|, is closed, there exists H € C*°(A;R) such
dH = —Im {dz|,, (3.3)

with the normalization H = 0 when G = 0. Using the parametrization (3.2) we have
the following explicit expression for

Any I-Lagrangian and R-symplectic manifold is automatically maximally totally

real in the sense that
T,ANiT,A={0}, peA.

In fact, suppose that X,iX € T,A, thenforallY € T,A,Rec(Y,iX) = —-Imo(Y, X) =
0, as Im o vanishes on T,A. But then the non-degenerary of Re o shows that X = 0.

The real symplectic form on A defines a natural volume form dm(a) = (o|p)"/n!. If
(2,0) = (x +1iG¢, £ — iG,) we sometimes write

dmp(a) = dzd¢ =da, a=(z,() €A, B=Rea. (3.5)

Let I' be a small conic connected neighbourhood of 7*T™ in 7*C"/Z" and let G (z,Q)
be a symbolic almost analytic extension of G(x,&) supported in I':

10.G(2, Q)| + (Re ) 9;G(2, Q)] < (Re)O(|Im 2™ + | Im /(Re ¢)|*),
sup_[0200G(z, 0)| < Ceo(Re Q)™ 9290, )| < Cuap(Re )V,

o +[8]<2
for (z,{) € I' — see [MeSj74, Theorem 1.3] (for a brief review of basic concepts of
almost analytic machinery see Appendix A).

We use an almost analytic change of variables in I' to identify the totally real sub-
manifold A with 7*R"™ (on A the differentials of that transformation are complex
linear): it is the inverse of the map

F:(z,0)~ (w,w):=(z+ iéC(Z,C),C — @éz(z,ﬁ’)), (3.6)
Using this identification we define
Cr(w,w) = F(F Y w,w)), (w,w) €T, Cxla = Ix. (3.7)

We also denote by o, the almost analytic extension of oy to T'.

Notation: The different identifications lead to potentially confusing notational issues.
We will typically use coordinates

o = (Oéx70[§> = (I7§) = 6 = (Bxuﬁf) - (l’ + ZG£($,§),§ - lGi(ZE,f)) € A
and consider the complexification of a using the identification (3.6). In that case for
a € T, a denotes Cp(a). Tt is not given by taking (z,() — (2,¢) in the original
coordinates on T*T" (for one thing, it would not be the identity on A). Sometimes it
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is convenient to use § € A as the variable in formulae and integrations. The choice
should be clear from the context.

4. COMPLEX DEFORMATIONS OF THE FBI TRANSFORM

For A given by (3.2) we define an operator T by prescribing its Schwartz kernel:

TA(Z7 g) y) = T((Z, C)v y)|(Z,()€A
We then define an operator Sy by

Suu(y) = /A S, A(B)dp. B =(=C) €A, df=dzAdlls,

where S(z, z, () is the kernel of the operator S:

S(x,z,¢) == hoE Z e_%‘p*(z_%k’m’ob(z — 1z — 27k, (), (4.1)
kezn
with b given in (2.3).

Note that if we parametrize A as in (3.2) with o = (x,€) we may also write

Suo(y) = / _ Salanz(a).Gla))o(adm ()

where dz A d(|y = dm(a). Finally, we sometimes write o, = z(a) and ag = ((«).

In order to make sense of the composition Sy7T), we start by analyzing T\ on a space
of analytic functions on T". For § > 0 let

= {ue LAT") : [lull?, := ) [a(n)[Pe™ < oo},

nezn
1 )
PV —ion)
u(n) : @n) /Tn u(z)e dx.

Let also o7 5 denote the dual space of 7. Note that &7 s is a space of hyperfunctions
but on tori it can be identified with formal Fourier series with coefficients satisfying

> Ja(n)Pe P < oo,

nezmn

(4.2)

(In that case u(n) can be defined using the pairing of the hyperfunction u with the
analytic function z + e~#®™ /(27)".) We note that u € </ extends to a (periodic)
holomorphic function in |Imz| < 26 and (by the Fourier inversion formula and the
Cauchy—Schwartz inequality),

V' < 2§ 3C such that for u € o, sup |u(z)| < COllu||z- (4.3)

| Tm 2| <&
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Lemma 4.1. Define
Q5 :={(2,¢) e T°(C"/2aZ") : [Im (| < 6(Re(), [Im 2| <6, [Re(| > 1}.
There exist co,dg > 0 such that for (z,¢) € Qs and 0 < § < dy,
Tu(z, O < el M fufl oy, 18"z, Q)] < eV u]| 4. (4.4)
where S* is defined by
S'ulz0)i= [ Stz Ouy)dy

where the kernel S is defined in (4.1).

Proof. Extended u to a periodic function on R™ we write

Tu(z, () = hi"/ e%((ny,<>+%<<>(zfy)2)<C>%u<y)dy'

n

Since u is analytic on |Imy| < 4, we may deform the contour in the y integration to
['(z, ) given by
Re(

Rec)’ w e R™

w— y(w) =w+ z—1i0

Then,

n L ((—wtis 28 Loy (w—is-2ES n
Tu(z¢) = h-% / H U RS O O@TREE ) () 3y (4 () o,

For | Im (| < 0(Re(), |Re(| > 1, with ¢ small enough,

Re(¢) > 3I¢l, [Im(Q)] < 1<l 1] = 5.

Hence for w € R and (z,() € s the real part of the phase in the integral above is
bounded by

—50[¢] + 50lwll¢] = F(lwl* = 0%)I¢] + 50l¢] < —col¢| — colw]*, co > 0.

In view of (4.3) the integrand is then bounded by exp(—co(|¢| + |w|?)/h)||u||.; which
gives the first bound in (4.4). The proof for S* is identical since the phase agrees with
that of T'. O

A natural Hilbert space on the FBI transform side is defined by the norm

ol = / [u(a) P2 g,

The next lemma gives boundedness of Sy and T on exponentially decaying functions
on A:
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Lemma 4.2. There exist 69 > 0 and Cy > 0 big enough such that for 0 < ey < g in
(3.1) we have

Sy e COORRI2Z(NY 5 ofs,  Tx e QML) 5 o

for all 0 < 6 < &y, where the adjoint T5 is defined using the L*(A,e 2H/") inner
product.

Proof. Let v € e=*9/"[2(A) and |Imy| < aé. Then,

Sauly) = h™ / e(W-anadtslodavp(y — o, Yo(a)da.
A

where b is given in (2.3). Therefore, by the Cauchy—Schwartz inequality,
_3n
|Sav(y)]* < Ch™3 J(y)||6005<5>/h1’”%2(/\)7
where

J(y) == / 6*2Im((yfaz,asH%<%>(ary)2)/h+2H(a)/h<|y — ,|)2e2C00ach/h g
A

Writing 8 = Re @ we now estimate
—Im(y — ag, a¢) = (Ge — Imy, fe) — (B, — Rey, Ga)
< (ad + €0)[Be| + €o(Be)| Bz — Reyl.
Similarly,

Re((ae)) (0 — 1) < —(1 — Ce)(Be) (18, — Reyf? — O — Ca),
and 2H (a) < Cep(fe) (see (3.4)). Hence for Cy > C, the phase in J(y) is bounded by
—C’15<B§><Rey — 6;5)2, Cl > 0.

That proves Spv in analytic and uniformly bounded in |Imy| < ad. In particular
Sav € 5. A similar argument applies to T73. O

Together, Lemmas 4.1 and 4.2 imply that there are d1, o > 0 such that SyT} is well
as an operator %, — %, and as an operator o/_5, — o,

We can now show that S\T) is the identity on @7 and 7_s for 6 > 0 small enough.
Proposition 4.3. There is 9 > 0 such that for all 0 < |§] < 01, Sy and Ty as above,
SATh =1 - JZZ; — %

Proof. Assume first that 0 > 0 and let v € . Then, by Lemma 4.1 for 6 > 0 small
enough, Tyv € e~ [2(A) and is given by

Twv(e) = [ Talag)oln)dy
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Then, again for 6 > 0 small enough, Lemma 4.2, shows that SyTjv is well defined and
given by

SaTpv(x) = /A . Sa(z, a)Ta(a, y)v(y)dyda. (4.5)

The decay in |ag| allows a contour deformation in « in (4.5) and then an application
of Proposition 2.2. This gives,

SaThv(x) = / / S(z,a)T (o, y)v(y)dyda = v(y), v € .
T*Tn n
To define Tyv for v € & 5, § > 0, we note that Lemma 4.2 shows that if w €
e~ CNO/ML2(A), then Tiw € o75. Therefore,
<TAU,’IU>L2(A) = <1},TXU}>L2(Tn)

is well defined and T : 75 — eC%O/ML2(A).
For u € .5, c; > 1, ¢16 <y (with Jy of Lemma 4.1), we formally have

<SATA’U, U) L2(T7) = <TAU, SXu) L2(A)- (46)
Since Siu = St[yue?@/" and H(a) < Cey(Reag), Lemma 4.1 shows that
SXU c eCeg(f)/hfcocuﬂ&\/hLQ(A).

and hence for ¢; > 0 large enough (and ¢; small enough so that ¢;d; < dy), the pairing
on the right hand side of (4.6) is well defined and

(SATAv,u) = (v, TS u).

We can now deform the contour in the the « integral which gives

TiSiule) = [ [ Tato.a) St ayutudyda = uly)

Hence for v € @5 and w € .5, (SATAv, u)r2(mny = (v, ) r2(7ny. Since 5, ¢ > 1 is
dense in @75, the claim follows. O

We now define natural spaces on which T}, Sy act:

Definition. Let dy be as in Lemma 4.1. We define the Sobolev space of order ¢t adapted
to A as

HY = oy, "R HUH% = /(Rea5>2t|TAu(Oz)|2e_2H(a)/hda (4.7)
A
where we used the notation from (3.5) and (3.3). We then have an isometry
Th: Hy — (§)7'L*(A),

where the notation on the right hand side is the shorthand for (Re c¢) ™. U
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Remarks: 1. There exists § > 0 such that
oy C HY' C ;.

The left inclusion is immediate from the definition. On the other hand, for v € H}",
Tau € (€)™L?(A) and in particular, by Lemma 4.2 SyThu € &5 for some § > 0. But,
SAThu = v and hence u € &_5.

2.Let I, denote the orthogonal projection from L*(A) — TA(HY). The properties of
I, show that Ty (HY) = TIA((£) ' L*(A)).
Lemmas 4.1 and 4.2 show that (with A dependent norms and changing ¢q to ¢/2),
Ty : s — e PO L2(A), Sy 1 e SO/ I2(N) s o,

This means that
TaSh : e POQ/NL2(N) — e0col&/hL2(N), (4.8)

Proposition 4.4. The operator TSy in (4.8) extends to an operator
TaSa = O(1) : (§"L*(A) — ()" L*(A).

Moreover, there are k € S°(Ax A), o, B € A, x € C=(R) such that for all § > 0, there
is €, > 0 such that for G satisfying (3.1) with €y < €,

TaSa = Kn + On(e” ) gn 12y -3 r2(n).
where the Schwartz kernel of Ky is given by
K(a, B) = h™"en" @O k(a, B)¥(o, 5)
%@, B) i= x(0"d(Re ay, Re 8,))x(6~" min((Re f¢), (Re ag)) | Reag — Re ),

and

(4.9)

_ i (ag— Be)? +f<55><045>(% — B.)? N (Be)ave + (ove) Be
2(ag) +(Be) 2 {ag) +(B) (ag) + (Be)

We will prove the proposition in two lemmas which for future use are formulated in
greater generality. We first study the kernel of the composition T Sy.

Lemma 4.5. Let Ag, and Ag, be given by (3.2) with G; satisfying (3.1). Then, there
are Y € C®(R) and k € S°(Ag, x Ag,) such that for all § > 0, there is €; > 0 such
that for G1 and Gy satisfying (3.1) with €y < €,

Tha,Saa, = K + On(e™ ™) v 124 o0~ 12(00);
where the Schwartz kernel of K is given by
h’”e%q’(a’ﬂ)k(a, B)x (07 d(Re o, Re B) ) x (6 min((Re ag), (Re B¢)) "' Re e — Re ¢ |),
(e, B) € Ag, X Ag, and where U is as in (4.10).
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Proof. The kernel of Ty, Sag, (again extending everything to be periodic on R™ and
using integration with respect dfg = (o|5)"/n!) is given by

_3n o) —o* n
b [ e O (ag) Rb(5, — g, Ge)dy

where o € Ag,, 8 € Ag,, and b is given by (2.3). To analyse it, we first observe that
for ¢y small enough

mp(a, ) — ¢*(8,9) > ;Hag)l(| Re(a — ) — | Im(a, — 3))

+ BN Re(B. — ) — | Tm(B, — 9)) + I, — g, ) + Ty — i, )

Now, fix § > 0, and assume that |Imy| < §. Then for ¢, < d in (3.1), we have

Im p(a, y) =" (B, y) = cl{ag)l| Re ay—Rey|*+¢[(Be)|| Re Bo—Rey|* = O (|{e) [ +] () |)
+Im(a, — vy, o) + Im(y — By, Be).
Therefore, deforming the contour in y using
i6(Bc — ae)

Re(Be —ag))” 7 <R

y=y+

we have (on the new contour)

e — Bel®
(Re(f — ag))
— Co*(|{ae)] + [{Be)]) + Im{a, o) — Im(Bs, Be).

Imp(a, y) — ¢"(8,y) = cl{ag)||Reay — Rey[* + c[(3¢)[| Re B — Reyl* +0

Using
[Tm By + | Im o] + [{ae) |~ Tm ag| + [(Be)| ™| Tm G| < Cep <4,
we then obtain
Im p(a, y) — 0" (8. y) = cl{ag)|| Re ay — yI* + ¢l (Be) || Re B, — yI?

lag=Bel® 5 o
Re(Ge—agy 00 el + 105

+cd
In particular when
|Rea, —Re ;] > 6 or |Reae —Refe| > 2cd min((Reag), (Re f¢))/C,
the integrand is bounded by

e~ ((Reag)+(Re B¢)) (1+|Re az—Re fa])/Ch

Therefore, modulo an ON(Gic/h)<§>NL2(A1)_><§>—NL2(A2) error, the kernel is given by

k(a,B) = h~% | etlelen=—" Gy (o 8 y)dy

Rn

X = x(0""d(0, B:))x (0~ min((Re ag), (Re B¢)) " |og — Bel).
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where y is a suitable cut-off function and k; € (Reag)(Re 3¢)1S%(Ag, x Ag, x R"),
and the dependence on the last variable is periodic and holomorphic on |Imy| < c.

We claim that k(c«, 3) is given by
hmen @0 k(a, B)X, (4.11)
where k € S°(Ag, x Ag,). To see this we note that the critical point in y is given by

_ B — ag) +{ag)as + {fe)fe

Ye =
(ag) + (Be)
We then deform the contour to y — y + y.. The phase becomes

o gylaeBe+aelBe) | illag) + () o P (ae)(Be)(Be — ax)® | i (B¢~ ag)®
(0w — Ba) (o0 T (3e) + 5 Y+

7

2 (og) + (Pe) 2 (ag) + (Be)

and the method of steepest descent gives (4.11). U
The next lemma gives the first part of Proposition 4.4:

Lemma 4.6. For all m € R, there are C, hg > 0 such that for 0 < h < hy,

Proof. By Lemma 4.5, we need to show uniform boundedness of K with the kernel
given by

1 Reags — Re
K(a,8) = h™"e \I/aﬁ)k(a7ﬁ)x(5—1d(Ream,Reﬁz>>X(5mi|n(<Rega§> <1§é|ﬁg>)>.

where ¥ is as in (4.10), k € S°.
m H

In particular, conjugating by (Reag)™e (@)/h we need to show that the operator
with the kernel

h—nei(‘ll(a,ﬁ)—iH(ﬁ )+iH (o k’( 6)

is bounded on L?(A, dm(«)) where

fa.8) = (AR ) ko 5)x(67 Rea — R

| Re g — Re | )

(Re f) dmin((Reag), (Re f¢))
To establish this we define
O(a, ) :=V(a, B) —iH(B) +iH (), (4.12)
where we see that ®(«, a) = 0. Next, we note that
do®@|a=p = aedo, + idyH. (4.13)

Therefore (see (3.3)), Imd,®|o—p = 0. Similarly, Imdg®|,—s = 0 and hence Im @
vanishes quadratically at o = £3.
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In the case of no deformation (that is, for A = T*T")
Im® > cfag)lay — Bu|* + c{ag) g — Bel*,  a, BeTT".
Since A is a small conic perturbation of 7T*T", this remains true on A. Hence,

K (o, B)] < Chme(c(Reae)| Reaa—Re b +e(Reag) ™! [Rea—Re /M (Re o) (Re B) 17,
X = X(&’ld(Re oy, Re ﬁr))x(é’l min((Re ag), (Re ﬁ5>)’1] Re ag — Re f¢]).

The Schur’s test for boundedness on L? then shows that K is uniformly bounded on
L%(A). OJ

The following lemma shows that compact changes of the Lagrangian A change the
norm on L?(A) but not the elements in the space.

Lemma 4.7. Let Gy and Gy satisfy (3.1). Then, for all M, N > 0,

Digj<ar Tag, Sae, = On(1) 1 ()N L (Ag,) = (§) VL (Agy,).

Proof. By Lemma 4.5 we only need to show that the operator 1<y K is bounded.
However, the structure of the Schwartz kernel described in that lemma shows that
the kernel of llj¢j<j K is smooth and compactly supported. Except for a loss in the
constant due to different weights the boundedness follows. 0

5. ASYMPTOTIC DESCRIPTION OF THE PROJECTOR

The main part of this section consists of a construction of a parametrix for the
orthogonal projector onto the (closure of the) image of Ty. It is inspired by [Sj96,
§1] which in turn followed ideas of [MeSj74], [BoSj76], [BoGu81] and [HeSj86]. A
detailed presentation in a simpler case of compactly supported weights can be found
in [GaZw19, §6] and it can be used as a guide to the more notationally involved case
at hand. We then use the argument from [BoGu81] and [Sj96] to relate the parametrix
to the exact projector.

5.1. The structure of the parametrix. We seek an operator of the following form

Bau(a) = h~" / (@B M=2HE (0 8 hYu(B)dma(B), -
T*Tn :

dma(B) := (o]|a)"/n! =da, B =Rea, «a€A,
where ¢ and a satisfy (for all &k, &', ¢,¢' € N")
supp ¥, suppa C {(a, B) : d(ag, B:) <€, |ag — Be| < (ag)e},

' y S 5.2
0k, 05,05, 05,0 (a, B) = O{ag) ™71 (e, B) = —4(8, ), 52)
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and
a(a, B, h) ~ « _1hjaj04, , ala,B) =a(fB,a),
(6>;<<5> Yaj(a.5), ala.f)=a(B,a) 53
ok, 04,08 05.a;(a, B) = O((ag)1711).

The basic properties we need are self-adjointness and idempotence:
By =By, By= B2, (5.4)
where A = B means that A — B = O(hY) gy~ r2(a)— -~ 12() for all N.

The deeper requirement comes from relating the image of By to that of Th:

Proposition 5.1. Suppose that Z;, differential operators with holomorphic coefficients
in I, are defined by

Z; = {Q) " (hD:, = G) + 5(0) G (hD. = O)* — ihD¢, — $h(¢) %G

If
7 = Zj|a (5.5)
in the sense of restriction of holomorphic operators to totally real submanifolds, then
for u € a7,
Z}Myu(e) =0, j=1,--- n. (5.6)

Proof. Putting

W =(0)"1Z;(C) 1 = ()7 (hDs, = ) + 5(C) °G(hD: = ¢)* — ihDg; — 5h{C) ¢,

we check that
W. (eh(<z y+2mk,O)+ 4 (C) (z—y+27k)? ) —0,

for all y € T" and k € Z". The definition of T) then immediately gives (5.6). O

We note that Z;’s commute and hence we also have
[Z}, Zy]) = 0.
We write
2= (07 — G O = Q%G — iy {2 =0
for the principal symbol of Z]/-\ (in a sense which will be explained after the rescaling

below). The vanishing of the Poisson bracket reflects the fact that Z]A vanish on the
involutive manifold {(a, dop(a,y) : @ € A, y € T"} — see Lemma 5.3 below.

Since B, is supposed to be a parametrix for a self-adjoint projection onto the image
T, Proposition 5.1 shows that we should have

Z}Bx =0, Bx(Z})"" =0, (5.7)

where the definition of = is given in (5.10) below.
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To explore the second condition in terms of the kernel of By we denote by A* the

formal adjoint of an operator A on L?(A, dm,) (no weight). We also define a transpose
of A by

/A Au(a)v(a)dma (@) = / u(a) Atv(a)dmy ().

A
We note the general fact (A*)" = Jo Ao J, Ju := @. Then, with Kj(a,f) :=
h~ret @B /ha(a, B, h),

(ABA)"u(a) = /AKm, BYA* (721 M u(0))(8)dma (8)
- /A<A*>t (Ka (o, #)) (B)e™ O u(B)dm(5)
- /AU o Ao J) (Kx(a,e)) (B)e MO u(B)dma(5).

Using (5.7) and the above calculation with A = Z} gives
va(KA(a, °)) =0, ZJA i=JoZMoJ Ju:=1, (5.8)

The principal symbols are given by

7B, 8%) = 2B, =), 2= 2}NB, B, (5.9)
and by almost analytic continuation are defined in T.

Remark: Here we recall that the complex conjugation of § and [* is defined as
in (3.7).

Lemma 5.3 will discuss some properties of ZJA and ZJA after a linear rescaling. Here we
point out that ZJA is a restriction to A of a holomorphic function in I' but Zé\(a, a*) =

(Masar), (@, a%) € T*A, is not.

5.2. A general construction. Here we establish the following

Proposition 5.2. Let ZJA and ZJA be given by (5.5) and (5.8) respectively. Suppose
that b = b(a, h) satisfies (5.3) (with no dependence on 3).
Then there exist ¥ (a, B) and a(a, B, h) satisfying (5.2) and (5.3) and such that
2ﬂ(aa Oé) = —ZiH(Oé), aj(a7 Oé) = bj(a)7

e‘%w(a75)Zf(a, hDa, h) <€%¢(a75)a(a’ ﬁa h))

O, (5.10)
e HVODZN(B.hDs, ) (70D a(a, B.1)) = O

where
O 1= O (d(az, 8:) + ({ag) "Hag — Be)™ + ({ag) ~'h)>) .
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The phase Y¥(c, B) and amplitudes a;(a, B) are uniquely determined by bj(a) up to
O and

— H(a) —Imy(a, B) — H(B) < —(d(aw, B2)* + {ag) Hae — Be|*)/C, (5.11)

for some C' > 0.

We will see that a and ¢/ are essentially determined by their values on the diagonal
in A x A. Therefore, the construction of ¢ and a can be done locally and we now work
near o’ = (2%, £%) € A, where we identify A with 7*T™ as in (3.6).

For a, 8 in a conic neighbourhood of a” we rescale Z; using the following change of
variables:

Qp =y — Q) Qg = (a?)’l(ag — ag),

. . B (5.12)
Boc = 61: - ag, 5{ = <Oé2> 1(6& - ag)
In this new coordinates the operators Z ]A become
Z} = (M@, hDg) + h¢) (&, hDg) + R*C (@), (= zj|a,
(2,625, C) = MO = GO = 0P (G +0) —iG,
0 0 '
LY S . B P
(o) {{ag) (¢ +0)) {ag)
where we still have {¢*, ¢} = 0. The operators ZJA are defined using (5.8).
We now define the rescaled phase and amplitudes:
(&, B) = (a) (e, B), H(@):=(ag) " H(a), G(a)=(ad)"'C(), (5.14)

i;(@, B) = (ad) a;(o, B), bj(a) = (ad)’b;(a),
so that

@A) 7 (DG 0. B, ﬁ)) (@) =0 (!d — B>+ 71”) , (5.15)

where now 1) and a; are smooth functions in a neighbourhood of 0 € R?" x R?".
To simplify notation we now drop ™ in h, ¢, H, G and a. (5.16)

This will apply until the end of the construction of the phase and the amplitude.
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5.2.1. FEikonal equations. Here we work in the coordinates (5.12) and use the conven-

tion (5.16). Hence we assume that A is a neighbourhood of 0 in T*R™.

Let ¢ JA and @A be the principal symbols of Z ]A and Z JA respectively — see (5.13). The
eikonal equations we want to solve are

G (@, dat(, B)) = O(la — BI™), (5.17)

G (8. st (e, ) = Olla = ), |

for a, 5 € A. We also put
Cj\(&,a*) = CJA(&, —a’),
see (5.8) and (5.9). We note that for (a,a*) € T*A, (}(a,a*) = (M(a,a*). The next

lemma records the Poisson bracket properties of CjA on A:

Lemma 5.3. Let {o, 0} denote the Poisson bracket on T*R™ defined using the (real)
symplectic form op = (op+cn)|a and coordinates (3.6). Let

So={CNp)=0:peTR™, |5 -0 < X&'}, p= (&2,
where \ is defined in (5.13).
Then, for CJA defined above we have {CJA,C,?} =0, and, for ||Gllc2 < 1,

({6 Mo 0") o > el >0, (5.18)
for (o, a*) € ¥ N nbhdpsgz2:(0).

The positivity condition in Lemma 5.3 will be used in two places. First, it is used to
guarantee that the Lagrangian used to construct the phase solving (5.17) is strictly
positive (see (A.16)). Next, when G is only smooth, this condition will be crucial
when proving (5.30) (see also [GaZw19, (6.29)]) and hence that the Lagrangian we
construct is almost analytic. The proof of the Lemma will also show that there are
solutions to (M(p) = 0 with |z* — & — 6] > A(&) (A(§) ~ 1 for ¢ in a neighbourhood
of 0). However, (5.18) may not be satisfied at these points and hence (at leais not
appropriately positive.

Proof. 1t is enough to check (5.18) for G = 0. In that case ¥ is contained in in
{(a,doip(c,y) : @ € R?™ y € C"} where p(a,y) is the rescaled phase of our FBI trans-

form (this follows from the fact that Q“JA are principal symbols of operators annihilating
T). Hence,

E = {(x,f,@x,@g) -y € (Cn’ |§+0 - S0I| < ]- ) l’,g € Rn} mT*RQn
={(2,£6+0,0)}, o= &y) = —y,E+0) + IAE) " (z —y)*,

where A was defined in (5.13). (We just check that if 2* = @, (x,&,v), £ = pe(x, £, y)
then y = 2 —iA(§ + 60 — 2*) and £ = iA({ + 0 — z*) + 310N+ 0 — 2%)?. As 2* and

(5.19)
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&* are real we obtain that either z* = £ 4 0 as claimed or

(RE+6))

ME+0— x| =22 20N =227 e+ 0 =2 >/
€+ 60— a7| = 2X%10e) €01t =2 >

which contradicts the condition in (5.19). Hence {£ = 2* — 0 and y = x.)

Since {CJA, Al = 0 we see that

G Gy = {Im ¢ Re ¢}
= —0¢, (M) (), — &—0)+INE) (2" — £=0)(& + 61)) = A(E)dji,

when evaluated at 2* = £ 4 6. Hence, for G = 0, the matrix is (5.18) is given by A(§)I
and \(&) ~ 1 for £ bounded. Hence for G small the matrix stays positive definite. [J

From the geometric point of view, the framework for construction of the phase is
the same as in [GaZw19, §2.2] (see also [GaZw19, §6.1] for a presentation in a simpler
case). It is convenient to remove the weight by putting

Vu(a, B) == iH(a) + ¢(a, B) + 1H(B).
We also define,
o, a") = ij-\(a, o —idH (),

j
o, a) = Q_“j/-\(a, o +idH (o)) = Cf(d, ax).

J

(5.20)

(Here again the & and a* are defined after an identification of A with 7*R™.) Lemma
5.3 remains valid for (/7.

The eikonal equations (5.17) become
¢ (e, datprr (e, B)) = O(lov = BI),

for o, 6 € A. Since we demand that (o, o) = —2iH(«), it follows that ¢ g (o, a) =0,
and by differentiation,

0= da(¢H(a7 a)) = dawH(&a 5)‘5=0€ + dﬂwH<Oéa 6)’5=Oﬁ a € A. (522)

To construct ¥y we will construct €y, a Lagrangian relation for which ¢y will be the
generating function:

Cn = {(o, do¥p (e, B), B, —dgibr(a, B)) : (a, B) € nbhdean (Diag(A x A))}.  (5.23)

We first assume that GG, and hence H, are real analytic and have holomorphic exten-
sions.

(5.21)
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Writing p = (z,&, 2*,£*), the eikonal equations require that we should have (up to
equivalence of almost analytic manifolds and exactly on T*A)
€y CSxS, S:={p:¢"(p) =0, p€nbhdeu(R™), 2" —&—0] <1}, (524
S={p:peSt={p:{(p) =0, p € nbhdeu (R™), [2" — € — 0] < 1}.
The condition (5.22) means that
CuNa H(Acgenyern) = A((SNS) x (SN S)), (5.25)

where A(A x A) := {(a,a) : a € A}. In fact, (5.22) shows that this must be true for
G N (Agenygen) and then it follows by analytic continuation (or an equivalence of
almost analytic manifolds once we move to the C* category). We have the following
additional property which comes from the choice of the weight H:

Lemma 5.4. Let S and S be defined in (5.24). The for H satisfying (3.3) we have
(SN S)r = Sk = {(a, Re(2d(|,) : @ € nbhdg2n(0)}. (5.26)
Proof. As in the proof of Lemma 5.3 it is useful to go to the origins of the symbols CJH
(5.20): Z]’-"s, with symbols CJA annihilate the phase in T and that shows that, after
switching to CJH ,
Se = SNTIAC = {(a,dop(, y) +idH()) = y € C"},

playy) = (z =y, (+0) + 527 ()= — )%,

2=, +1Ge(ay, ag), (= ag —iGy(ay, ag).
where A(¢) and 6 were defined in (5.13).

In the case G = 0 (and hence H = 0), S, and S,, := SNT*A® intersect transversally
in one point. This remains true for a small perturbation induced by G with ||G||c2 < 1
(this corresponds to symbolic norms before rescaling). Hence we are looking for a
solution to

dap(a,y) +idH (o) = dpp(a, y') —idH (). (5.27)
Now, at y = ¢/ = a, we have dyp(a,y) = (dz|s and in view of the definition of dH in
(3.3), (5.27) holds. It follows that for o € A, that is for « real,

S, NS, = {(a,Re(zd(|p)} = Sa NT*A, A =~ nbhdp-gn(0).
But this proves (5.26). O

Since
Gy C (™) H0) N (w3 TH0), mulpnp) == p, wrlp,p) =7,
j=1

it follows that the complex vector fields H . # and H,«zn are tangent to ¢y. By
checking the case of T*A = T*R"™ (no deformation and hence H = 0) we have (see
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[GaZw19, §2.2]) that SN S is a symplectic submanifold (with respect to the complex

symplectic form) of complex dimension 2n. The independence of HC,?? Hen s g,k =
J

1,---n (again easily seen in the unperturbed case) shows that

Ben(0,€) X Bea(0,€) x (SN S) 2 (t,s,p) — (exp(t, Hen)(p), exp(s, Hg, ) (p)) € C*",

is a bi-holomorphic map to an embedded (complex) 4n dimensional submanifold. This
implies that

Cu = {(exp(t, Her)(p), exp(s, Heu)(p)) : p € SN S, t,5 € Ben(0,€)}, (5.28)

where (t, Hyn) == > 1, tHym, @ =, ¢. Checking again in the unperturbed case, we
have that for p€ SN S

e 2 Ty — Tr(,)C" is onto. (5.29)

We now explain how to use almost analytic extensions off A in the C* case. We
first identify A with T*R™ using (3.6) and extending G almost analytically to C**. The
symplectic form is now the almost analytic extension of the symplectic form d{ Adz|,.
Hence we define (see the Appendix for the definitions)

% = { (exp (&, Hon) (o), exp (s, Hn) (0)) - p € SN S, L5 € Ben(0, )}
We claim that
[ Tmexp (i, Hon)(p)] > t1/C. | Tmexp (s, Han) (0)] > [s|/C. pe SNS. (5.30)

In fact, in view of Lemma 5.3 at p € T*A N S and for ||G||c2 small, we can assume
{CA ¢} (p)/2i is positive definite. The changes of variable leading to (¥ is a sym-
plectomorphism and hence we have the same property for CJH . By changing CJH by a
linear transformation we can then assume that {¢¥,(f}(p)/2i = 6x;. Hence we can
make a linear symplectic change of variables at any point of T*A giving new variables
(z,9,6,m), z,y,&,m € R™, centered at 0 € R, such that

G = clnj +iy;) + Ol=* + [yI* + 1€ + [n*), e>0.

J

This continues to hold for the almost analytic continuations of QJH . That means that
near 0,

SNS={(200)+F(2,0): (2 €nbhde(0)}, F=0(z*+|¢J), (531)

We also note that for (z,() € R*" (which corresponds to the interection with T*A),
SN S is real. This means that in (5.31),

Im F(z,¢) = O((| Tm 2| + [ Tm ¢[)(|2] + I¢]).
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Hence,
| Tmexp (£, Hen)((2,0,¢,0) + F(z,0))| = |(Im 2, cIm ¢, Im C, ¢ Re )|
+O((ITm 2 + [ Tm ¢] + [¢) (|2] + [C]) + %)
2 [t]/C; it o], I¢] <1,
with the corresponding estimate for (¥, Lemma A.1 and (5.30) now show the almost

analyticity of €y and Lemma A.2 shows that ¢ is Lagrangian in the almost analytic
sense:

(7] Wrsc2n — Tpwrsc2n)|gy ~ 0.
(See the appendix for the review of the almost analytic machinery and notation.)
Lemma 5.4 shows that A((S NSk x (SN S)r) = (Cy)r is a submanifold, Lemma 5.3
shows that Cp is therefore a strictly positive almost analytic Lagrangean submanifold
and hence, using (5.29), Lemma A.4 now gives ¢y = ¥y (a, 8) such that,

dg g (a, f) = O ([ Tm | + | Im 5 + [ Tm ¢ (a, 5)|%) ,

and (5.23) holds in the sense of equivalence of almost analytic manifolds (that is with
~ of (A.2) replacing the equality). In addition, in view of (5.26) and (5.30),

Aot (@, B)|p=a = Re(( - dz|4),
dgtn(a, B)lp=a = — Re(C - dzl),
and d,(Yy(a, ) ~ 0. Hence we can choose 1y (c, ) = 0. We also see that
do Im g (e, B)|p=a =0, dglmipy(a, S)|pg=a =0, « € nbhdgz(0),
which means that Im ¢y (a, ) = O(Ja — B]?), @, 8 € nbhdg2.(0), and the comparison
with the case of G = 0 shows that
Im ¢y (a, B) ~ o — B2 (5.33)

Finally we return to (5.21): (recall that (/" are the almost analytic extensions of (/'
from T*A and that {¢/, ('} ~ 0):

a € nbhdgaz. (0), (5.32)

n
—

<S, HW2<H>7TECJI_I = Z(HSkCECJH + HSkaICJH)
k=1

=O0(|Im Z[%), Z = (a,8,0",5%),
with similar estimates for 75(;’s. Hence using the definition (A.2). This implies that
WZCfI, W}k%g:f ~0 on%y.

In view of the discussion above (€ equivalent to the right hand side of (5.23)) we
obtain

¢, dotvr(a, B)) = O(|Im o™ + | Im | + | Im dotp | + | Im dgipp|>),
with the same estimate for (/' (8, —dgty(a, 3)). This and (5.33) give (5.17).
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This completes the construction of the phase needed in Proposition 5.2. The con-
struction of €y satisfying (5.26), (5.25) and (5.24) is equivalent, in the almost analytic
sense, to the construction of ¥y satisfying (5.33) and (5.22) that gives uniqueness of

(G

We have achieved more as the definition of €5 shows that, in the analytic case
(5.28), €y o €y = Cn (see [GaZwl9, Lemma 2] for a simple linear algebra case). In
general we have €y o €y ~ €5 which for real values of a and 8 means that

cVy (Vu(a,v) +Yu(v, 8)) = vula, f) + O(Ja — ™).

We now return to our original ¢ in (5.1), ¥(a, f) = —iH(a) + Yy (a, ) — iH(B).
Our construction shows that

(5.17) holds, ¥(a,a) = =2iH (), ¥(a,p) = —(6,a), a,f € A. (5.34)

The value of d,1) on the diagonal, ¢-dz|, is determined by (3.3) and (5.32). In addition,
1 is uniquely determined, up to O(|la — 3|*°), by (5.34).

Returning to the original problem of solving (5.17) we record our findings in

Proposition 5.5. With the convention of (5.16), suppose that H is given by (3.3)
and ¢, @A are defined in (5.13). Then there exists » € C*°(A x A), A = nbhdg2x(0),
such that (5.17) hold and ¥ (a, ) = —2iH (). The function 1 is uniquely determined
modulo O(|a — ]|>). Moreover we have,

eV (Y(a, ) +2iH () + ¥(7, B)) = ¥(a, B) + Ola — B]%),
—H(a) = Imi(a, B) = H(B) < —|a = B|*/C, C >0, (5.35)
(doﬂ/})(av a) = C : dZ|A

5.2.2. Transport equations. Keeping the convention (5.16) we now solve the transport
equations arising from (5.15). we start with a formal discussion (valid when all the
objects are analytic). We first note that in view of (5.17) and (5.35) for any b(«, ) €
analytic in a neighbourhood of 0 (in the notation of (5.13) and (5.16)),

ZM(a, hDy) (eF b, B) ) = het @A (V5 + ¢)b(a, B) + O(h)),

, 5.36
Z}(8,hDy) (57 b(a, ) o

hei @ D((V; +)b(a, B) + O(h)),
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Here,

‘/;' = <Vj(a,6),8a>, ‘/j(OC;ﬁ)Z = aazcj{\(avdoﬂ/}(a7ﬁ>>7
2n
=1 Z 0a, Ve, B) + G, datp(r, B))

—1 Z oakoze 82 C (a’ da¢(a’6))’

k=1

with similar expressions coming from the applications Z JA(ﬂ .hDg): V;, ¢;, replaced by

Vj, ¢;, and with the roles of a and 3 switched.

A key observation here is that the holomorphic vector fields Hea(,) and Hea(g) are
J J
tangent to

© = {<O‘7daw(a7ﬁ)7ﬁadﬁw(a7ﬁ)) NGRS nbthQ"<O)}7

and that they commute. In the parametrization of ¢ by (o, ), they are given by V;
and —V, respectively. Hence,

Vi, Vil =0, [V, Vil =0, [Vi,Vi] =0. (5.37)

Hence, we seek a of the form

a, ) ~ thak(a
k=0
where, we want to solve
‘/Tjak<057 ﬁ) + Cj(()é,ﬂ)(lk(Oé, 5) = Flg—1<a07 e 7ak—1>(a7 5)7 le = 07 (538)

with the corresponding expression involving 17J

Solving (5.38) means that

K-1
ZMa, hDg) <6h¢a6 thak o B)) = pEHlgnwl(p) Fl_ (o, B),
k=0 (5.39)

N

-1

k=0

708, hDy) <eiw<aﬂ> h’“ak(a,ﬁ)> = WD (0, 6).

Since
[Z} (v, hDa), Zi (@, hDW)] = 0, [Z}N(B,hDg), (8, hDg)] = 0,
[Z} (o, hDa), Zi(8, hDg)] = 0,
we have from (5.37) and (5.306),
Vier = Vi, Vig; = Vier, Vitj = Vja. (5.40)
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Similarly, (5.39) gives

(Vi+e))Fheoy = (Vi + en)Fle_y, (Vi +E)Fi_y = (Vi + @) Fi_y,

iy TR (5.41)
(Vidcj)Fg_y = (Vi + ) Fie_y.

Equations (5.40) and (5.41) provide compatibility conditions for solving (5.38):
(Vi +ej)ax = Fl_y, (Vi+@)ax = F{_y, ax(a, @) = be(a),

where the b,’s are prescribed. In fact, since the V,’s and \N/j 's are independent when
a = 3 (as complex vectorfields),

C X C" % C" 3 (p,t,5) = (0, 8) = (exp(V; 1) (o), exp(V,5)(p) ) € T x €,

(V,t)y = Ztﬂ/}, (‘7, s) == Zsj%,
j=1

/=1

is a local bi-holomorphic map onto of nbhdca (diag(A x A)) (almost analytic in the
general case). In view of this and of (5.37), (5.40), the following integrating factor,
g = g(a, B), is well defined (in the analytic case) on nbhdca (diag(A x A)):

- noopl
(e (p), e (p)) = — Z/ (tic; + Sjgj)|(a,g):(eﬂv,w(p),ef<\778>(p))d7'7
j=1"0

and satisfies

Vigla, B) = ¢j(e, B), Vigle, B) =Gi(e, B), j=1,---,n.
We then define ay(av, 8) inductively as follows: at (o, 8) = (e (p), eV (p)),
ap(a, B) = e7“Pby(p)
1
+ 69(0575) \A e_g("/,"/ )(t]F]‘cjfl(rY7 7,) + S]F]gfl(’)/; ’7,))|(’yﬁ,):(67—(v,t> (p),6T<‘775> (p))dT.

The compatibility relations (5.41) then show that (5.38) hold.

We now modify this discussion to the C'™° case using almost analytic extensions as
in §A.3 and that provides solutions of (5.38) for («, 5) € A x A valid to infinite order
at diag(A x A) with any initial data on the diagonal.

Hence we have solved (5.15) locally near («,3) = (0,0). We now return to the
original coordinates and note the uniqueness of the local construction gives us v and
a in (5.10) satisfying (5.2) and (5.3). This completes the proof of Proposition 5.2.
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5.3. Projection property. It remains to choose ala so that B3 = B,. From (5.35)
we already know that the phase in (5.1) has the correct composition property and
hence we need to find the amplitude a(«, $). From Proposition 5.2 it is enough to
determine a on the diagonal. For that we consider the kernel of B3 on the diagonal:

Kp (o, ) = h_zn/62(1”(0"@”””)”“ a(e, B, h)a(B, o, h)dmy(B).  (5.42)
A

We note that the support property of a in (5.2) implies that the integration takes place
over a bounded set |5¢| < C(ag). Application of complex stationary phase to (5.42)
yields

Kp =h~ nen¥(@he(q, B), Zhﬂng JhYa(y, 0, h)|—a,  (5.43)

where Ly, are differential operators of order 2j in v and
Lola = f(a), [f(@)| >0, A:=A(AXA).
Since ¥ (a, f) = —¢(B, ), f(a) € R. (Strictly speaking we should again proceed with
the rescaling (5.12) and we are tacitly using the convention (5.16) here.)
Writing a ~ > h'a;, we have

B) ~ Z hjCj(Oz, ﬂ)v Cj(aa a) = Z L2k’af(aa V)Gm(’% 04)'7:04-

k+l+m=j

We note that if a(a, 8) = a(8,«) then By is self-adjoint and hence so is Bi. That
means in particular that ¢(«, «) is real. Hence if ay(«, §) = ao(5, ) for £ < M, then
cela € R for £ < M. Since

bu (o, o) = 2f(a)ao(a, a)an (o, o) + Z Logae(ct, ¥)am (7, @)|y=a;

k+b4+m=M
fm<M
it follows that

ap(a, B) = ar(B,a), L <M = Z Logas(a, ¥)am(7, @) |y=a € R. (5.44)

k+l+m=M
fm<M

We iteratively solve the following sequence of equations
S Lol0,7)an(7,0)lsma = a;(a, ) (5.45)
k+l+m=j

with a;|a real. Proposition 5.2 then gives us the desired a(a, ). First, let

1 o0 (s
CLQ(CY,O()ZWEC (TR ,R)
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so that f(a)ag(a,a)? = ag(a, a) (i.e. (5.45) is solved for j = 0). The proof of Propo-
sition 5.2 (see §5.2.2) shows that we can then find ag(c, 3) so that (5.39) holds with
K =0 and ag|la = 1/f(«).

Assume now that (5.45) is solved for j < M — 1. Then, (5.45) with j = M reads

ay(a,a) = Z Lokae(c,¥)am(7, @)ly=a
k+l+m=M

= 2ap (v, ) + Z Lokae(c, v)am(7, @)|y=a

k4+l+m=M
Lm<M

Putting

a(a0)=— 3 Loar(@.7)an(7,0)—

k+l+m=M
lm<M

we solve (5.45) for j = M. From (5.44) we see that ap/(a, «) is real. The argument
in §5.2.2 provides the construction of ay; from a,, ¢ < M and ag|a. Taking an almost
analytic continuation with ay/ (o, ) = ap(8,a) then completes the construction of
aps and hence by induction and the Borel summation lemma we have, in the notation
of Proposition 5.2,

c=a+ Ox. (5.46)

This gives the following

Proposition 5.6. There exists a unique choice of bj(«) in Proposition 5.2 for which
the operator By defined by (5.1) satisfies

By =By, By =B+ O ) ey r2a) 16N 120 (5.47)
for all N.

Proof. In view of (5.46) we need to check that for » = O (in the notation of Propo-
sition 5.2), for all N,

R = O(h")in 12a)= (-~ 12(n),  Ru(a) = h_n/ r(a, B, h)er @ Du(B)dma(B).
A

But this is an immediate consequence of (5.11) and Schur’s criterion for boundedness
on L?. O

5.4. Construction of the projector. We now show that the exact orthogonal pro-
jector Iy : L?(A) — H(A) satisfies
II, = By + O(hoo)<§>NL2(A)_)<E>—NL2(A), (548)

for all N. For that we follow the proof of [Sj96, Proposition 1.1, formula (1.46)] which
is related to an earlier construction in [BoGu81, Step 3, Proof of Corollary A.4.6].
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We start with the exact projector Pjy:
Py(LX(A)) = H(A), P{=Pr, Pr=0(1)2a)-22(1),
given by
PA = TASA.
For a real valued f € S(A),

ka (h/{ee))*, fola) > 1/C,
we define the following self—adjomt operator:
Ap = PAfPX7H, Aru(a) =: h_”/ e%%(a”g)af(a,ﬁ, h)u(B)e 2O/ dm, (),
A

where 11 and a; were obtained using the method of complex stationary phase (again
it is justified using using the rescaling (5.12))

We claim that ¥ = ¥ + O (in the notation of Proposition 5.2. Indeed, since
A}’H = Ay and Py = Tx Sy, the arguments leading to (5.17) apply and 1; satisfies the
same eikonal equations. Similarly, ar(c, 8, h) satisfies transport equations implied by
(5.10). Arguing as in the proof of Lemma 4.6 we find the value of ¥4 | to be

dia, ) + 2iH(a) = c.v.s <\If(a, 8) — U(a, @)) —0.
We then invoke the uniqueness statement in Proposition 5.2.

If we can choose f so that afla = ala + O((h/{ae))™®), with a in (5.1), then the
same uniqueness statement shows that ay = a + O.,. Hence

afla = ala + O((h/{ag))*) = Ap = Ba+ O™ )iy r2a)se-~12(n)-  (549)
determined by its value on the diagonal and we find that using ¥ given in (4.10) and
satisfying (4.13)
wi(a, @) + 2iH(a) = cv.g (\If(a, B) — U(a, B) + 2iH () — 2z’H(ﬁ)> ~0.

But this means that (5.34) holds for ¢; and hence ¢ («, 5) = ¥(«, 8) + O(|a — B]>).

We next choose f so that Ay = By + O(h™)eyv 12(A)—(e)-N £2(A)-

Writing ag(a, 8) ~ > o o(h/{ag)) aysj(, B), we proceed as in §5.2.2: with different
L2k7S, g = L0|A ?é 0

ayja, ) Z Loy fe(a) = g(a) fi () + Z Loy fo(a).

k4-0=j k+0=j

(In our special case, the amplitude in P is constant which is not the case in gen-
eralizations — but the argument works easily just the same.) Using this, solving
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afj(a) = a;(a) for f is immediate. As in the construction of the amplitude of By
in §5.2.2 we see that f is real valued and that fy is bounded from below.

We can now follow [Sj96] and complete the proof of (5.48). We record this statement
as

Proposition 5.7. Suppose that 11, is orthogonal projector from L*(A) to H(A) and
that By s given by Proposition 5.6. Then

Iy = By + O(h ) YN L2(A)—s(€)~NL2(A)> (550)
for all N.

Proof. To start we observe that for u € H(A), [[ul|z2a) > 0,
(Afu, u>L2(A) = <PAfP]{u, u)Lz(A) = (fPAu, PAU>L2(A)

Piu,u)|?
> min fla)l| Prullza) 2 —CHUIIiz(A) [wllz2a)/
Hence,
ull2ay/C < |Apul| 2y < Cllullz2ay, w € H(A), (5.51)
Af’LLZO, ’LLEH(A)J', A;:Af, ’

and .
II A — AN 5.52
v g [ AT (552)

where 7 is a positively oriented boundary of an open set in C containing [1/C, C] and
excluding 0. From (5.49) and Proposition 5.6 we know that

Af—A +O<h ) YNL2(A)—(€) =N L2(A)> (553)

and we want to use this property to show that II, is close to A;. For that we note
that if A = A? then, at first for |\| > 1,

(A—A)~ Z)\JlAJ—)\ + - ZAJA AT AT =)7L

j=0 Jj=0

Hence, it is natural to take the right hand side as the approximate inverse in the case
when A? — A is small:

A=A+ AN A= 1)) = T = (42— APA°(A— 1)

In view of (5.53) and for h small enough, the right hand side is invertible for A € v
with the inverse equal to I + R, R = O(h™) g~ 12(p)—(e)-~r2(a)- Hence for A € 7,

()\ - Af)il == >\71 + )\71<)\ - 1)7114']“ + O(hoo><£>NL2(A)4)<£>—NL2(A).
Inserting this identity into (5.52) and using Cauchy’s formula gives

Ia = Ay + O(h™) (eyv L2(A) = (6) -V L2(A)
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which combined with (5.49) implies (5.50). O

6. DEFORMATION OF PSEUDODIFFERENTIAL OPERATORS

In this section we analyse pseudodifferential operators with analytic symbols acting
on spaces H}' defined in §4. That means describing the action on the FBI side of
operators P:

TAPU = (TAPSA)(TAU) = (HATAPSAHA)<TAU) (61)
The class of pseudodifferential operators we consider is given by
1 % /
Pu(y) == ——— e ly=y/) ")dy'd 6.2
u(y) k) /n /n en p(y. muly’)dy'dn (6.2)
where p € S™(T*T™) has an analytic continuation from T*T™ satisfying
p(=, Q) < M(O)™, for [Imz| <a, |Im¢| < b(ReC). (6.3)

The integral in the definition (6.2) of Pu is considered in the sense of oscillatory
integrals (see for instance [Zw12, §5.3]) and we extend both y — u(y) and y — p(y,n)
to periodic functions on R"™.

6.1. Pseudodifferential operators as Toeplitz operators. We start with a lemma
which describes the middle term in (6.1):

Lemma 6.1. Suppose P is defined by (6.2) with p satisfying (6.3). Then, for G
satisfying (3.1) with €9 > 0 small enough, the Schwartz kernel of Ty PSy is given by

Kp(a, ) = coh™"er"Pap(a, B) + r(a, 8) (6:4)
where W is as in (4.10),

ap~ Y WlagTa,  ag(0) = plala), (6.5)

=0
a;j € S%(A x A) is supported in a conic neighbourhood of A(A x A) and
Ir(e, B)| < e~ ((Reag)+(Re fe)+(Reaz—Re fz))/Ch (6.6)

Proof. We first note that for each 8 € A, v3(y') = 6_%¢*(5’y')b(6$ —y/, B¢) is a Schwartz
function and hence the integral

_3n 1 4 ! % /
h™1 —n/ en{y=y'm—e (B’y))p(y,n)b(ﬁx — ', Be)dydn
defines a Schwartz function of y. In particular, the kernel of T) PSy is given by

_3n

h™ 2
(2mh)"

/ | enleteart b =et Gy y, m)b(B, — o, Be) ) * dy dndy.
R3n
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To obtain (6.4) we start by deforming the contour in n: n — n + i51<n>ﬁ. The
phase ® is then given by

Q= (o, —y,ae) + i<§£> (o —y)? + @(ﬂx —y)?
2 \2
+ (Y = Bas Be) + (y — ' m) +idy <n>%-
We then deform the contour in y, 3’ as follows
5 N — Q¢ / / 5 66_77‘
R e (s
The phase ® becomes
® = (e —y,a¢) + Z«%@(% —y)* + Z<§£> (Be =) + (Y = Ba, Be) + (y — v/, m)
o flag=n)*  (Be—n)° (y—y)
)
o e PO )
i{a) - {ag =m0 —y) (g —m)°
R Ge—m e _n>2]
Z<ﬁ§> —9i8 <77 - ﬁf?ﬁx _y/> 52 (55 — 77)2
72 [ 0 (Be —m) 1<5s—77>2]

2 v Y=Y [llag = n) (B =) + (1= Be){ae —m)]
rolt T o )
03 (m) [l(ee = m){Be —m) + (n — Be)(ae —m)|*
+O<<y—y’)[ (e =) (Be —m* D
We first consider the case when (Reag) > 2(Re ). Then,
|Reag —n| +|Re f¢ —n| = c((Reag) + (Re f¢) + ().

and in particular,

Im® > c¢((Reage) + (Re B¢) + (Ren) + ¢(|Rea, —y| + |Re By — ¢/ | + [y — ¥/]),

which produces produces a term which can be absorbed into r satisfying (6.6).

Similar arguments, show that we can assume that (Reag), (Ren), and (Re ) are
proportional.

We now suppose that
| Re g — Re |
(Reag) + (Re f¢)
Then, the imaginary part of the phase is bounded below by
Im® > ¢((Reag) + (Re B¢))(1 + | Re o, — Re B,])
+c(|Reas —yl+ |y —y'| + |Re fr — yl + [n — Reag| + [n — Re f¢]).

+|Rea, — Re ;| > 0.
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In particular when
| Re ag — Re fF¢|
(Reag) + (Re f)

the integral is bounded by Ce~((Reag)+(Refe))(1+[Reaz—Refl)/h - Hence, we can insert a
cutoff

+ |Rea, — Re B;| > 0.

(5_1[<|R‘30€5 — Re S|

Re ag) + (Re ) + | Reas - Reﬁx@)

into the integral.

With this cutoff inserted, we deform in ¥, %’ to the critical point

y—=y+yla,B), Y =y 4y, B),

where

_ OéI<CK§> +Bx<5§> i 55 S
vele, ) = (o) + (Be) | Ga) + By

This contour deformation is justified since the cutoff function guarantees that

ag — e
fte ‘ (ag) + <ﬁ£>‘ =
The phase is then given by
i (((Be — ag)* + {ae) (Be) (aw — B:)? ahe? "o
o e o + (3P
ag(Be) + Belag) /
+ <az Be Ry <Bg>§ > +(y—v,n—nla,B))

with
_ 0elBe) + Belag) | {ae) (Be) (Be — aa)
(ae) + (Be) (ae) + (Be)
We would now like to shift the countour to n — n + n.. However, p only has

an analytic continuation to |Imn| < b(Ren) and Imn, is not, in general, bounded.
Therefore, when |Ren| < |Ren.|, we cannot make this deformation. To finish the

Ne(e, B)

proof, we consider two cases.

We first assume that |n.(«, 8)| < b/2. Then, the contour deformation n — 1 + 7, is
justified, and we may perform complex stationary phase to complete the proof.

We now consider the more involved case when

b
|nc|25>>€0>0

where € is as in (3.1). In that case we use the deformation

(77 — 770) (77 — 77(:)
<77 - 770> ’ <77 - 770>

Yy =y + 1, y =y —id
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to obtain the phase

L aelB) + Belady (5 — 0 + {ad) (B (o — Bu)?
O T e AR | )

+ <y —y', (11— 1) (1 Ty i1770>>> +2i0 <77 ncc)> ( —2<,75_1 nc>>'

Finally, let x € C2°((1/2,2)) withe x = 1 on (3/4,3/2), and shift contours

+{ag)y” + (Be) ()

| Ren|
n 0+ e Renl)

Note that this deformation is now justified since | Ren| > ¢|Ren,| on the deformation
and | Imn.| < ceg(Ren.). The phase is then given by

j[emod g ales 0y gy 445007

< 5”%26%155% >>+<y_y"<”_“_”"c>(1‘ )

(n—(1— )c)2< B &1 >
(n—(1=x)ne) 2(n — (1 =x)ne)/

and, since on |n.| > b/2 > €,
Ceol Re(n — (1 = x)ne)| = [Tm(n — (1 = x)ne)l,
we have that the imaginary part of the phase satisfies

Im ® > Im U(av, B) + c([{ae)|[yl* + [(Be)lly']?) + cdiln — (1 — X)ne]
— |y = ¢/l Tm((1 — x)7e)|
[(1 = x)ne]?

> Im W(a, B) + c(|{aellyl* + 1By *) + cdiln — (1 = x)nel — Cen [{ee) + (Be)l

> Im W(a, B) + c([{ag) lyl* + [(Be) Y/ *) + edrln — (1 = x)me| — Ceal (1 = x)*nel
> Im W(a, B) + c([{ae) lyl* + [(Be) 1y *) + corln — (1 = x)nel

where we have used that o and ¢ are comparable and taken ¢y < ¢; small enough.
Thus, we may apply the method of complex stationary phase to obtain the result. [J

+ 200,

The next result gives the description on the rightmost term in (6.1). For a simpler
case capturing the idea of the proof see [GaZw19, Theorem 2].

Proposition 6.2. Suppose P is defined by (6.2) with p satisfying (6.3). Then, for G
satisfying (3.1) with €g > 0 small enough,

[IATNPSAII, = IIpAbpII, + O(hoo)<§>NL2(A)_><€>7NL2(A)
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where

bp ~ Yy Wby, b; € S™, bo = pla.
j=0

Proof. Lemma 6.1 shows that we need to prove
HAKPHA == HAbHA + O(hoo)<§>NL2(A)_>(§)7NL2(A), (67)

where Kp is given by (6.4). Propositions 5.6 and 5.7 show that, modulo negligible
terms the Schwartz kernel of the left hand side is given by

/ / e%(w(a,v)Jr‘I/(%v’Hw(v’,ﬂ)+2iH(7)+2iH(5))a(a, Yap(y,7)aly', B)dydy,
AJA

where the support property of a (see (5.2)) shows that integration is over a compact
set. An application of complex stationary phase produces a phase (with critical values
taken for almost analytic continuation — see [MeSj74, Theorem 2.3, p.148])

Yi(a, B) = vy (Y, 7) + ¥ (1, 7) + 97, B) + 2iH (7).

If we show that ¥ («, ) = —2iH («) then the uniqueness part of Proposition 5.2 shows
that (modulo negligible terms) we can take 1)1 = 1. To see this we claim that for o = 3
the critical point is given by v =" = «, that is

dy(Y(a,y) + ¥ (7,7) + (v, a) + 20H(})) |y =y'=a=0 = 0,
dy (P, 7) + ¥ (7,7) + (v, @) + 2iH (7)) |y=1/=a=0 = 0.

To see this, we first use the formula (4.10) for ¥ to obtain

dV\I](’Ya'Y/)H:v’ = CdZ’A = _dv"IJWa 7/)|v=7“ (6-9)

This immediately gives the second equation in (6.8).

(6.8)

We then consider
dy((,7) + (7, 7) + (Y, B) + 20H (7)) ly=a =
dy(Y(a,y) +2iH(y) + (7, 7)) = (v,7) + ¥ (7,7) ]y =a-

The last line in (5.35) and (6.9) give
dy (=0 (7.7) + ¥ (7,7) ly= = 0.
Therefore to obtain the first equation in (6.8), it is enough to have
dy () + 200 () + (7,7 =y =a = 0,

which follows from the first line of (5.35) together with ¥(a,a) = —2iH («). Since
(o, a) = —2iH () the critical value is given by ¥4 (o, ) = (v, ).
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It follows that
HAKPHAU(O‘):h_n/eh¢ “Pe(a, B,h)e > Pu(B)dp
A

+ Oh™[ull w2y o) -~ 2 (a)s

where ¢ satisfies (5.3) (and the support property in (5.2)). Arguing as in (5.7)—(5.8)
we see that the terms in the expansion of ¢ satisfy transport equations of (5.38) and
hence are determined by their values on the diagonal.

Assume that we have obtained b;, j = 0,---,.J — 1 (the case of J = 0, that is no
b;’s is also allowed as the first step) so that

J-1
HAKPHA = HA <Z<a§>_jhjbj> HA + R;{, (610)

J=0

where
Z%mm—hJN%>{/d“Mm%mMe”mWWWM@ a’ ~ aj+h{ag) tai+ -,
A

with aj satisfying the transport equations of §5.2.2. If we apply the method of sta-
tionary phase to the kernel of the first term on right hand side of (6.10) we obtain, by
the inductive hypothesis, a kernel with the expansion

RV (ay 4 - 1 ag) a4 B o) 7 (a4,

where a;’s are the same as in (6.5). Again all the terms satisfy transport equations
and hence are uniquely determined from their values on the diagonal. Hence, if we put

by(a) = 1] (a, ) + aj (o, a),
we obtain (6.10) with J replaced by J+1. When J = 0, b;(«) = ap(a, @) = p|a(). O

Proposition 6.3. Suppose p; € S™ and py € S™*. Then, for G satisfying (3.1) with
€0 > 0 small enough,

[Api apolly = HABIA + O(h™) )N £2(A)—(e) N £2(A)

where

by Wby, ¢ € ST by = pips.

Proof. Propositions 5.6 and 5.7 show that, modulo negligible terms the Schwartz kernel
of TIxbi 1100511, is given by

oo / / o W) +2AH ) P37 )+ 2H( V+ (o' B)+2iH (5))

m(Mala,v)aly,y)p2(v)aly, B)dydy'
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where the support property of a (see (5.2)) shows that integration is over a compact
set. As in the proof of Proposition 6.2, we apply complex stationary phase to the
integral resulting in the phase

Y1, B) = eV (V(a, ) +(7,7) + (Y, B) + 2iH () + 2iH(Y')).

Then, it follows from (5.35) that, modulo negligible terms, we may take 1 (c, 5) =
(o, B) and that, when av = 3, the critical point given by 7 =+ = a and hence that

A Kpllpu(a) = h"/eiw(a’ﬁ)c(a,ﬁ,h)e2H(5)u(5)dﬁ
A

+ O |ulligv 2 -v2(a);

where ¢ satisfies (5.3) (and the support property in (5.2)). Arguing as in (5.7)-(5.8)
we see that the terms in the expansion of ¢ satisfy transport equations of (5.38) and
hence are determined by their values on the diagonal. Arguing as in the last paragraph
of the proof of Proposition 6.2 then completes the proof.

0

6.2. Compactness properties of the spaces H'(A). We next study the compact-
ness and trace class properties for operators the spaces H™(A).

We start with
Lemma 6.4. There is hg > 0 such that for all s € R and 0 < h < hg
(hDa) "My = O(1) : (€)* PLA(A) = (€)°L*(A), (6.11)
and
t>s = H'(A) < H*(A) is compact. (6.12)
Proof. To prove (6.11) we show the equivalent fact that the operator
(€) 7 (hDa) A ()" 1 L2 (A) — L*(A)

is uniformly bounded. By Proposition 4.4, the kernel of this operator is given, modulo
acceptable errors, by

h=en V@D (((9,9) k(av, B) + O(Re ag) 1)) (Re Be)* I (Re ag) X,
X := x(| Rea, — Re B,[)x(min({Re f¢), (Reag)) | Reag — Re f¢[), x € CF(R),

where, U is defined in (4.10). Now, on the support of the integrand, c(Reag) <
(Re B¢) < C(Refe) and therefore, [0,¥| < C(Re f¢). In particular, after conjugation
by ef/" the kernel is bounded by

Ch—nec(<Rea5)| Reagz—ReBe|2+(Reag) 1| Reag—Reﬁg\z)/hY

and hence, by Schur’s test, for boundedness on L? is uniformly bounded on L2
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To see (6.12) we prove a slightly stronger statement, namely that T)(H'(A)) <
(€)7°L*(A) is compact. For that we observe that for u € Ty(H!(A)), u = Iyu and
(6.11) shows that for m € Z and k € N,

Ma (€)™ LA(A) — H5™7M(A),  H™(A) := (hDyg) " (§) °L*(A).
Hence, by interpolation,

Iy (&) T'LA(A) — H™"(A), r>0, tER.

s+t

Setting 7 = (t — s)/2 > 0 we obtain continuity of T (H*(A)) < H™2 (A). The lemma
then follows from Rellich’s theorem: H™**"(A) < (£)*L*(A), r > 0, is compact. [

The next lemma provides trace class properties needed in the study of determinants:

Lemma 6.5. Fort > 3n+ s the inclusion H'(A) < H*(A) is of trace class.

Proof. First, note that for all r € R, m,(a, a*) := {ag)7{a*)" is an order function in
the sense of [Zw12, Section 4.4.1] and for r < —2n

/ my (o, & )dada™ < co.
T*A

Therefore (see [Zw12, (C.3.6)] or [DiSj99, Chapter 8]) if () *A(£)* € ¥(m,) for r <
—2n, then A : (§)7°L2(A) — (£)7°L?(A) is of trace class.

On the other hand, Lemma 6.4 shows that

il r 2 - t
A= {a)F (hDa)~% = O(1) - T(H'(A) — (@) L(), r =201
Also, A € U(m_,) is elliptic and invertible and hence A™' € ¥(m,). Therefore A™! is
of trace if r = @ < —2n, that is when ¢t > 3n + s. We conclude that

1T 1| er v an.gg -2y < IA7 e 2y 2 | All e ay g o2y < 00,

where £ denotes the trace class. O

7. OTH ORDER OPERATORS AND VISCOSITY LIMITS

Recall that the constructions in the previous sections depend only on finitely many
S! norms of G determining

A=Ac={(z+1iGe, & —iG,) | (x,€) € T*T"}.

(Unless we worked with different G’s, we suppress the dependence on G in Ag.) There-
fore, we start by fixing h > 0, ¢y > 0 small enough and Ny > 0 large enough such that
if

sup (€)' 171020/ G| < e, (7.1)

|la+[B|<No
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the constructions of T}, Sy, are valid and

By =TIy : ()M L*(A) = (&) VL*(A).

7.1. Elliptic regularity in deformed spaces. We begin with the following prelim-
inary elliptic regularity lemma.

Lemma 7.1. Suppose that G € S*(T*T") satisfies (7.1) and

sup [(€)lorolal < e, (7.2)
| +]B]<1

for a fized 1. Suppose also that E is given by (6.2) with e (replacing p) satisfying (6.3)
and

le(z, O = ailc™, ¢ = C; [Imz] <e, [In(] < e(().

Then E : H — H{™™ is a Fredholm operator and there exists Cy = Cy(s,€e1, E,N) >0
such that

seillullmg < [|Eul

gt CIHUHHXM

Proof. The assumptions on e guarantee that
ela(@)] > arlag™, Jagl > C, a€A.
Proposition 6.2 then shows
HATAESAHA = HAbEHA + id
with
BENZE]', l;j ESm_j, 6026‘/\
J
and
HR/H<£>NL2(A)ﬁ(£>—S+mL2(A) < Cy=Ch(s, e, E,N).
Next, by Proposition 6.3,
\bpIzbplly = TzbpIly + R
with
b~ by, bieS™I by =|ela]’
J
and
HR//“<E>NL2(A)_><§>—s+mL2(A) g Cg — Cé’(s, €1, E, N)
Since |bg| > ¢Z|ae|*™ on |ag| > C, there is by, € S such that with b:= bp + be

2 m
bl > Zc(lach™,
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and
(IIATA ESAILY) (IIATa ESAIL) = TI\bI1, + R,
| Ry~ 12(A)—(6)—s+mr2(a) < Co = Ca(s, €1, E, N).
For uw € H*(A) we compute
Bl

<HATAESAHATAU, HATAESAHATAU><§>—s+mL2
<H (b+ R)TA’LL TAU>< g)y—s+m 2
{

H.sm

Z bTAu TAU> £)y—s+mL2 —CQHUHE,N
A
> 1eulll — G2l x
with C; = C4(s, €1, E, N). Therefore,
sallullm < [1Bull gz-m + Cullull v (7.3)

We now note that for all s,
<E*u,v)H/s\ = (u, EU)HX = (Tau, HA\TAESATINTAU) (65 12(n)
= (Tau, (b+ R)Tav)(g)-+12(n) (7.4)
= ((b+ R*)Tau, Tav) (g)-s12(n)-
Using (7.4), we obtain
12 |7

Hs m — <E*U, E*’U,>Hls\—m = <(l_)+ R*>TAU7TAU><5>*S+ML2

b — Clul?, s

Therefore

sellullmg < 1B ull gg=m + Collul v (7.5)

Combining (7.3) and (7.5) with s replaced by m — s, and applying Lemma 6.4, we
have for N > m — s that H{ ™ — HXN is compact. Thus, we have proved that
E: H{ — Hy ™ is a Fredholm operator. O

7.2. Zeroth order operators on deformed spaces. We now work in the setting
of Theorem 2. Let P € W0 satisfy the assumptions there, Gy € SY(T*T") and C' > 0
such that

HGy>0,  {lg|>C}n{p=0}. (7.6
Define the R-symplectic /-Lagrangian submanifold Ay C T+Tn by
Np = {(z +i00:Gy, & — i00,Gy) | (z,&) € T*T"}.

We work with the spaces H}" as defined in (4.7). Observe that for [#] small enough,

0G satisfies (7.1). To avoid cumbersome notation, we will suppress the dependence
of Ag on 6.
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For w € HY" we have Ty Pu = II\TA\ PS\T\u. By Proposition 6.2
[MATAPSAII, = TIpbpII) + Ry, MMA\TAASNIT) = Mpaally + Ro, (7.7)
where R; : (€)NL2(A) — (€)"NL2(A),
bp —pla € 571, an + (O)?*|a € ST
Now,
pla = p(x, &) —i0H,Go + O(6)s0.
In particular, by (7.6), there are ¢, C' > 0 such that for # > 0 small enough,
Impls < (~c+C© ™0, on |Repla| <c.

In particular, there exists by, € S™°° such that for eg := bp + by, there are ¢y, Cy > 0
satisfying

leo] > cof >0, Imeg < —cof on |Reeg| <co, |Imeg| < Co(0+ ()71, (7.8)

By (7.7), we also have
[IATAPSAIT = TTpeolly + Ry (7.9)
with Rg : (§)NVL2(A) — (€)™ L?(A) uniformly over 0 < 6 < 6.
To analyse the contribution of the Laplacian we note that

Re(Q)*[a > (1= COM)E)*,  [Im(C)*[a] < COIEI*.

Therefore, for 8 > 0 small enough, we can find a, € S~ such that

1
Re(as +ax) > 56 |Im(aa +ax)| < OOP +Clel, (710
and we have
HATA<P + iVA)SAHA = Ilpe Il + R, €, = ey — iV(CLA + aoo) (7.11)

where, by (7.7) and (7.9), R, : ()NL?(A) — (&)"NL?(A) uniformly in 0 < v < 1,
0<0 <0,

The next lemma gives us crucial properties of e, :
Lemma 7.2. There exist cq,0q,v9 > 0 such that for all0 < v < vy and 0 < 0 < 6y
lev| > c16(1 + v[¢]?) > 0,

, ) (7.12)
Ime, < —c10(1 +v[E]*) on |Ree,| < ci1(1 4 v|E]7).

Proof. We consider two cases. First, suppose [£| > Mv~'/2. Then, by (7.10) and (7.8),
there are ¢y, Cy > 0 such that

Tme, < —co(M? + v[E[*) + Co(0 + M~ 0/?).

Therefore, setting
M = max (1,2 CQ/CQ),
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(7.12) holds on [£] > My~Y/2 (uniformly in 0 <v <1land 0 <6 <1).
We next consider the case || < Mv~Y2. If ¢y > 2| Ree,|, then

0_20 > |Ree,| > |Reeo| — COM? — CvM/?M.

Choosing 6y and vy small enough, we obtain | Reeg| < ¢y and hence
Ime, <Imey < —cyb,

which completes the proof of (7.12). O

7.3. Fredholm properties and meromorphy of the resolvent. We add a lo-
calized absorbing potential to P + ivA to obtain invertibility. That is, for ¢ €
C®(A;]0,00)) we define

qu, =P+ ivA —iQ), Q = SAIIAGIIAT . (713)

This family includes the operator P = Fy, and the viscous operator P + ivA = F .

We note that
IIATAQSAIIN = IIATNSAIIAQIIAT A SATIA

= A PAITAQITA PpITA = TIpqII,,

where we recall that Py = TS satisfies [y, = PyII,. We record the following Lemma
for use later.

(7.14)

Lemma 7.3. The adjoint of P : H*(A) — H*(A) satisfies
(P u,v) sy = ((I1x €0 Hp + RG)Tw, T0) ()~ 12(n),
and the adjoint of P, : H*™(A) — H*(A), v > 0 satisfies
(Pyu,v)sa) = ((Ha (€, —iq) Tx + R))Tu, Tv) e)-s12(a)-

Proof. The lemma follows from (7.4). O

We start by proving that P — w is Fredholm on H3. In particular, the next lemma
proves the first part of Theorem 2 with X = H3.

Lemma 7.4. There is wy > 0 such that for Imw > —wef and | Rew| < wy,
P—w:Hy — Hj;
is a Fredholm operator. For Imw > 1, P —w is invertible with inverse R(w) satisfying

C
By H; < T Imw>C, |Rew| < wp.
mw

IR(w)]

In particular, R(w) : HY — Hj is a meromorphic family of operators for w €
(—wo,wo) + i(—wpb, 00).
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Proof. First, observe that by (7.11) with v = 0, and using Proposition 6.3
HA<£>2S(HATA(P — w)SAHA)*<£>_25(HATA(P — (JJ)SAHA) = HA|€0 — w’QHA + RO
where
Ry (§)°LA(A) — ()T LA (A).
By (7.12), there is ¢; > 0 such that Imey < —c10 on |Reeg| < ¢;. Therefore, on

|Reeg| < ¢y,
202

0
leo — w|? > (c160 + Imw)? > ClT—l— max(Im w, 0)?,

where we have taken wy = % and Imw > —wef. Then, using [Rew| < wy, on

| Reeg| > c1, there is C' > 0 such that

2
leo — w]? > % +min(|Imw|? — C,0) > ¢, (1 + | Imwl?).

In particular, for u € H3,
1P = wully = (P = w)u, (P = w)u)g]
= |(HATA(P — w) SAlATau, IANTA (P — w) SAIA Ty u) ) - 2

Z |<|60 - w|2TAu,TAu)(§)7sL2| — |<R0TAU,TAU>(§)75L2|
> (1 + [Imw]?) — Cllul? ...
H 2

A

In particular, iterating this argument, we have for any N, there is Cy > 0 such that

iy < C(L+ [ Imw]) H[(P — w)ullfy + Cnllullf—n]- (7.15)

-N
Hy

[[ul

By almost exactly the same argument, using Lemma 7.3, we obtain

my < C(L+ [Imw]*) [P — @)ullmg + Cnllull-v]- (7.16)

|

Next, by Lemma 6.4, for N > —s, the embedding H} — HXN is compact. Therefore,
P —w: H{ — Hf is Fredholm.

Finally, taking Imw >> 1, we may absorb the H,” error into the left hand sides
of (7.15) and (7.16) to obtain that P —w : Hy — Hj is invertible with the desired
estimate. The meromorphic Fredholm theorem (see e.g [DyZw19a, Theorem C.9]) then
shows that R(w) is a meromorphic family of operators on (—wy, wp) +i(—wef, 00). O

We next study the meromorphy of the inverse of F,, — w, where F,, is given in

(7.13):

Lemma 7.5. There exists € > 0 such that the following holds. For all s € R, K € N,
weC, qge Cx(T*T") and v > 0 there are Cy = Cs, i, and Cy = Cs,, k. n Such that
for all G satisfying (7.1),

(Ppw —w)™ : Hy — H?K
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18 a Fredholm operator and
lull sy < Coll(Py — w) ull gre-2x + Cul|ull - (7.17)

Moreover, P,, —w : Hy — Hy? is invertible for Imw > 1 with inverse R, (w)
satisfying

Rg.(w)]
In particular, for allv > 0, R, (w) : H{ — H3™ is a meromorphic family of operators
for w e C.

H/S\_>H/S\+2 < Cl/il, Imw > C(l + I/).

Proof. We first note that
|o(A)(2, Q)1 = [¢* = [Re ¢J* — [ Im ¢J*

and hence AX satisfies the hypotheses of Lemma 7.1 for any ¢; < 1. In particular, by
that lemma (ivA)X : H{ — H3?¥ is a Fredholm operator and satisfies

lullmy < CF V5| (ivA) ul

H3-2K + U_KCS,NJ(HUHHXN? (718)

for any G satisfying (7.1).
Next, observe that (P, —w)X — (ivA)K : HY — Hy 252 and H7 252 — g772K s
compact by Lemma 6.4. Therefore, (P,, —w)X : H{ — H3 ** is a Fredholm operator.
Finally, using (7.18),

lullmy < Corell(ivA) S ull greax + Cov.iellul o

S CZ/,KH (Pq,l/ - W)Ku‘

w26+ Covrellull g2 + Covnrelfull g~
Estimating [[ul| s> by [|(Pgw — w)KHHZ_zx_z and iterating we obtain (7.17).
For invertibility, let Imw > 1 and consider
(P = w)ul Hy?
> —Im((P,, — w)u, u>H;§*2 (7.19)
> —Im(IIp (iva — iq — W)\ Thu, Tau) gy -s+212(a) — CNHUH%,XN

-2l

where a = ap + a is as in (7.10). In particular, for Imw > 0,
Imiva —iq — w < —cv|é]* + Cvlé] — Imw,
and for Imw > Cy + 1+ Cv,
Imiva —iq —w < —Cy — 1 — cv|€]?.
Using this in (7.19), we obtain
1(Po = wull gz = Crlul

H3 -
This same argument implies that

1Py = @)ull g2 = Cvlull .
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and hence P, — w is invertible with inverse as claimed. The meromorphic Fredholm
theorem (see e.g [DyZw19a, Theorem C.9]) then shows that R, ,(w) is a meromorphic
family of operators for w € C. O

7.4. A parametrix for the resolvent of F,, —w. We next find ¢ so that the compact
perturbation P,, of F,, is invertible. This inverse will be used to approximate the
inverse of Fp .

Lemma 7.6. There are wy, vy, 0y > 0 so that for all e > 0 and 0 € (0,6y), there is ¢ =
q(€,0) € CX(A;[0,00)) such that for all v € (0,10], and w € (—wp,wp) + i(—wpb, 00),
the operators

P, —w: H™ — H, and P,o—w:Hy — Hy
are invertible with inverse Ry, (w) := (P,, —w)™! satisfying

IR ()]

<1

HX‘—)H/S\_

Proof. We assume without loss of generality that € < % Observe that by (7.11)

and (7.14)
HATAP, ,SAIIp = (e, —ig)lI) + R,.
and thus, by Proposition 6.3,
T (€)* (A TA (P — w)SAIIA) (€) " TIATA (P — w)Sally = Tale, —ig — w|’Is + R,
where for all s € R,

1R,v]

my < Co([lv]

it Vvl it + v ||v| Hi+3>’ 0<v<l.

Therefore,

I(Pao = )l

> [((6)%lew — i — V(€)™ T, ()~ Taw) -1
— (R (€)°(€)“Tu, (€)°(€) Tt g-os7

> [((6)%lew — i — V(€)™ T, ()~ a1
= o)Ll ) VIO Thul?,

+ 2 —eT 2
e Taull?,

(7.20)

S+%+EL2(A)

S+%+€L2(A))

Let 6, vy, and ¢; be as Lemma 7.2 and fix x = x. € C2°(A; [0, 1]) with

8 max(Cp, 1)

— 2¢
X =Ton (% < c?min(1,62)
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Then, let ¢ = M. for M to be chosen later and wy < ¢;/2. On supp(1l — x.),
(&)*le, —iq — w* > (€)*(|Ree, — Rew|® + |Ime, — ¢ — Imw|?)
(€)* (min((cr (1 + v[€]*) — [Rew])?, |10(1 + v[¢*) + Imw]?)
i(ﬁ)zecf min(1,0%)(1 + v|£]?)?
(1+ Co) (L + vIg[*)?

£>26
&)™

AVARRAVARR V]

On x. =1, we have
(€)* ey —iq — w]” = (€)% (M* — A(weh + e, ])?) > 1(M* = C)
for some C' > 0 independent of v,wy, 8 € [0, 1]. Therefore, for wy := min(c¢;/2,1) and

8 max(Cy, 1)>2

2 min(1, 62)

M2 ::C+4(1+Og)<1+

we have
i%f<§>2€|e,,—iq—w|2 > (14 Co)(1+ v|E]?)?, 0<v<I

In particular, using this in (7.20) yields

el rg=e < 1Py = w)ull g (7.21)
A

As in the proofs of Lemma 7.4, an identical argument using ||(P;, — @)ul

713 implies

[ull 3= < [1(Pg, — @)ul

Hj- (7.22)
Since, Py, — P,, : Hy™® — HY for any N, P,, —w is a Fredholm operator. In particu-

lar, (7.21) and (7.22) imply that R, ,(w) exists and satisfies the requisite bounds. [

7.5. Convergence of the poles of R, (w). We now finish the proof of Theorem 1.

Proof of Theorem 1. First, observe that by Lemma 7.6 for w € (—wp,wp) +i(—wpb, 00),
and v € [0, 1) the inverse R,, : Hi — HJ} exists and satisfies

(I +iRqu(w)Q) = Ry (w)(Poy — w).

Moreover, by Lemmas 7.4 and 7.5, there is C), > 0 such that for w € (—wp,wp) +
i(Cy,0), Roy(w) : Hy — Hj exists. Therefore, for w in this region, the inverse

(I +iR,,(w)Q) ™ = Ro,(w)(P,, —w): Hy — Hj

exists.

Now, for any N > 0, Q : Hj — Hy™" and R,,(w) : HPNTe — HYY ) with
uniform bounds in v > 0. Therefore, Lemma 6.5 implies that for any s

Ryv(w)Q : Hy — HJ,
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is trace class with uniformly bounded trace class norm. In particular, for w € (—wp,wp)+
i(—wpl, 0) the operator
I+iR,,(w)Q : Hy — Hj,

is Fredholm with index 0. Thus, by the meromorphic version of Fredholm analyticity
(see for instance [DyZw19a, Theorem C.10])

(I 4+1Rqu(w)Q) ™" - Hy — Hj,
is a meromorphic family of operators satisfying
Roo(w) = (I +iRy, (w)Q) 'Ry (w). (7.23)

For ¢ chosen in Lemma 7.6, R, ,(w) is analytic in (—wg,wp) + i(—wpf, 00). Hence, the
eigenvalues of Py, on HYy agree, with multiplicity, with the zeroes of

folw) = detHX([ +iR ., (w)Q).
Lemma 7.7. We have
fow) — fo(w)

v—0

uniformly on compact subsets of w € (—wy,wp) + i(—wplf, 00).
Proof. First, note that

VH(Ryw(w) = Ryo(w))Q) = —iRy, (W) AR 0(w)Q.

Since @) : HY — HfﬁN for any N, and, by Lemma 7.6, R,, : Hy — H}  with uniform
bounds in v, R,,(w)AR,o(w)Q : H — Hi™ is uniformly bounded in v for any N.
In particular, Lemma 6.5 implies

V(R (w) — Ryo(w)Qll s -z < C.
By [DyZw19a, Proposition B.29]
|detay (I + A) — detuz (I + B)[ < ||A - BHEl(HX%HX)61+HAHﬁl(Hf\—»Hf\)'i_”B”gl(HX—)H}‘\)‘

Therefore, since R,,Q : Hi — HY is uniformly bounded in v for any N, the lemma
is proved. U

Finally, we show that the eigenvalues of Py, on Hj agree with those on L?. Together
with Lemma 7.7, this will complete the proof of Theorem 1.

Lemma 7.8. Let v > 0, and Gy, Gy satisfy (7.1). Suppose that u € focl and
(Po, —w) u=0 (7.24)

Then u € H’XGO for any k. In particular, the spectrum of Py, on L*(T™) agrees with
that on Hj.
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Proof. Let G. = (1 — x(€l¢]))G1 + x(€|€|)Go with x € C*(R), x = 1 on [—1/2,1/2]
and supp y C (—1,1). Note that G, satisfies (7.1) and lim.,o G. = G pointwise. In
particular, G, = Gy on 2|§] < ¢! and G. = G on [§] > e .

Suppose that u € HJ satisfies (7.24). Then,

[l = IK€) Thg, ull2(ac,)
< ||]‘|§‘§€71<§>kTAGEu||%2(AGE) + ||1‘£|>671<§>STAGIU||%2(AG1)
< g<e14€) Tha, Sae, Tag, ullzz(ag,) + [Liese1(€) Tag, ulli2(ag,)
< Ce|[(€) Thag, ullr2ag, )
where in the last line we use Lemma 4.7. In particular, u € H*(Ag,) for each fixed
e > 0.
Since u € Hj , , we can apply (7.17) together with (7.24) to obtain

Jullag, < Crallulgs

€

where Cs n,, does not depend on e. Writing this on the FBI transform side, we have

() T, ull12(a6,) < Crnwll (€)™ Thg, ull L2 (ag,)
< Crovw (1< Tag, ull 2 (ag,) + M*NIE  Thg, ull 2 (ag,)) -

Now, choosing M > (ZC’k,Nw)ﬁ large enough, and subtracting the last term to the
left hand side, we obtain

1) Tag, ull2ag.) < Crnvwlllig<rTag, wll2ae,) = Cenwlllig<aTag, ull2(ag,)
= Cr,nullLig<mTag, Sag, Tag, ullL2(ag,)
< Crs Nl () Tag, ull L2 (ag,)

where in the last line we apply Lemma 4.7.

In particular, sending € — 0", we have that

lim sup ||<£>kTAGEUHL2(AGE) < Cful

Hs -
e—0 M

Finally, by Fatou’s lemma together with the fact that G. — G, this implies

lullery = 1(6)* Tag, ullz2(agy) < Cllul

HS
Ay’
0

and in particular, u € H /’ﬁGO as claimed. O

This completes the proof of Theorem 1. U
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7.6. Poles of the resolvent R,(w) in the upper half plane. Finally, we study
the behavior of Ry o(w) = R(w) for Imw > 0 and complete the proof of Theorem 2.
(That resolvent was defined in Lemma 7.4.)

Lemma 7.9. Suppose that
w1 € {|Rew| < wp, Imw > 0} \ spec,,, 12(P).
Then, R(w) is analytic near wy. Moreover, for s € R, Imw > 0 and u € L*(T") N Hj,
R(w)u = R (w)u where R* denotes the L* resolvent for P.
Conversely, if wy € (—wo,wo) Nspec,, r2(P), then wi is a pole of R(w) and
le

7
W — W

R(w) = A(w) +

where A(w) : HY — Hj is analytic near wy and 11, is the orthogonal projection onto
the L? eigenspace of P at wy.

Proof. For Imw > 0, the spectral theorem shows that the resolvent of P,

RY (W) == (P —w)~': L3(T") — L*(T")
exists and is analytic. Also, Lemma 7.4 shows that R(w) = Roo(w) is a meromorphic
family of operators in (—wq, wp) + i(—cof, 0).

Lemma B.5 implies that for u € o7 (defined in (4.2)) and Imw > 1, RY (w)u € 7
Since P : Hy — Hy and % C Hy, R(w)(P — w)|w = 1. Therefore, for u € 7,

RE (w)u = [R(w)(P — w)] R" u = R(w) [(P —w)RY (w)] u=Rw)u.
Since 7% are dense in both L*(T") and Hj,
R(w)u = R¥ (w)u, Imw >0, Rew € (—wp,wp), ue LA(T") N HS.

This proves the first part of the lemma.

To prove the secod part, let wy € (—wp,wp) and I, : L*(T") — L*(T") be the
orthogonal projection onto the w; eigenspace for P (possibly the zero operator if wy is
not an embedded eigenvalue for P). By [DyZw19b, Lemma 3.2], the w; eigenfunctions
of P are smooth and hence P = P + I1,,, has the same symbol as P and no embedded
eigenvalue at w;. Moreover, we may choose € > 0 so small that w; is the only embedded
eigenvalue for P in |w —w;| < e. Then, for 0 < |w — wy| < ¢, Imw > 0,

R¥(w) = (P —w) ™'+ (P —w) I, (P —w)™!
le
(w1 —w) (I +wi —w)
Note that by [DyZw19b, Lemma 3.3] for w € (w1 — €,w; + €), the limiting absorption
resolvent (P — w —i0)~' : HY/2+0 — [=1/270 exists.

=(P—w) '+
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The meromorphy of R(w) : H; — Hj (Lemma 7.4) gives

R(w) = Alw) + Z ﬁ (7.25)

where A : Hy — Hj is holomorphic near w;. Therefore, for |w —w;| < €, Imw > 0,
and u € L*(T") N HY,

K
(w—w)®A(w Zw lejBu
=1 (7.26)
- - I, B
= (w — wl)K [(P — (,U) - ﬁ}u — (w — wl)K 1leu.
Let u € o5 C Hi N H2t0. Then, using (7.26) with w = w; + ir, we obtain
K
Byu = lim [(ir)* A(w; + ir)u + Z ir) = Bju]
r—0+ =
= lim (ir)* [(ﬁ —wy —ir) = My }u — (i), u
r—0+t ! 1—ar “1
= (5K1leu
Since &7 is dense in both H3>%0 and HY, Bx = 0rk1ll,,. In particular, we may
write (7.25) with K = 1 and by the same argument obtain B; = I1,. O

APPENDIX A. REVIEW OF SOME ALMOST ANALYTIC CONSTRUCTIONS

Here we include some facts about almost analytic functions and manifolds. For an
in-depth presentation see [MeSj74, §1-3] and [Tr81, Chapter X].

A.1. Almost analytic manifolds. Let U be an open subset of C"™ and let Uy :=
U NR™. We define an almost analytic function as follows:

feC™(U) = 0.f(z) = Ox(|Im2|™®), z€ K €U.

This definition is non-trivial only for Ug # 0. We write f ~ 0 in U if f(z) =
Ok(|Imz|*), z € K € U C C™ We note that (see [Tr81, Lemma X.2.2]) that
for f € C'*° that implies 0*f ~ 0 in U.

We also need the notion of an almost analytic manifold. Let A C C™ be a smooth
manifold and Ag := A NR™. We say that A is almost analytic if near any point
2o € Ag, there exist a neigbourhood U of z in C™ and functions fi,..., fr € C*(C™)
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such that:
ANU ={z:fj(2) =0,1 <j <k}, 0.fj(2) are linearly independent,
0:f;(2)] = O(|Im 2[* + | sup fu(2)[*),
1<6<k

see [MeSj74, Theorem 1.4].

A special case is given by
i) =2 = by, 2= (e 7). (A1)

Equivalence of two almost analytic manifolds can be defined as follows (see [MeSj74,
Definition 1.6, Proposition 1.7]): suppose Aj N R™ = Ay N R™ and that Ay is defined
by (A.1) with h = hy, k = 1,2, respectively. Then

A; and A, are equivalent as almost analytic submanifolds (denoted Ay ~ As)

if and only if, on compact subsets,
|71(2) = ha(2)] = O(| Im Ay (7))
or, equivalently, (A.2)
71 (2') = ha(2)] = O(|Im 2| + [ Im 7y (27)[).

We now consider almost analytic vector fields:
V = Zaj(z)azj, a; € C*™(C"),
j=1

which we identify with real vector fields V such that for u holomorphic 1% f=v:
V:=V+V=2ReV

= Z Rea;(2)(0;; + 05,) +ilma;(2)(0;, — 0z,)
j=1

= Z Rea;(2)0re ., +Ima;(2)0m.,.
j=1

Example. Suppose M C C™, dimg M = 2k is almost analytic. Then vector fields
tangent to M are spanned by almost analytic vector fields, V; = a;(2) - 0., 0za;(z) =
O(|Imz|*®), z € M, j =1,--- k. In fact, using [MeSj74, Theorem 1.4, 3°] we can write
M locally near any z € M NR™ as {(2/,h(2") : 2/ € C*}, h = (hiy1, - , hm) : CF —
C™ % 9:h = O(|Tm 2/|* + | Im h(2')|*°). We then put

V=0, 4 Y 0. ()0, (A.3)

{=k+1

The real vector fields ‘A/J then span the vector fields tangent to M. U
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Following [MeSj74] and [S]74] we define the (small complex time) flow of V' as follows
for s € C, |s| < ¢

D,(2) == exp sV (z). (A.4)

The right hand side is the flow out at time 1 of the real vector field sV. Unless
the coefficients in V' are holomorphic [V,iV] # 0 which means that exp(s + t)V #
exp sV exptV for s,t € C. However, we still have [iV, V] ~ 0.

Lemma A.1. Suppose that I' € C™ is an embedded almost analytic submanifold of
real dimension 2k and V' is an almost analytic vector field. Assume that,

‘7, iV are linearly independent with span transversal to T, (A.5)
and that, in the notation of (A.4),
| Im @, (2)| > |t|/Ck, z€ KET. (A.6)
Then for any U € C™, there exists 6 such that
A= {expt/‘\/(p) pelNU, [t <é, teC}

is an almost analytic manifold, Ax = I'r and dimg, A = 2k + 2.

We will use the following geometric lemma:

Lemma A.2. Suppose Z; € C*(R™;T*R™), j = 1,---,J, are smooth vector fields

and, for s € R7,
J

(s, 2) 1= s;Z; € C®(R™TR™).
j=1
Then for f € C*°(R™)
"
FE(0) = 32 (5. 2D () + O((sl™), pe K ER™. (A7)
=1
while for Y € C®(R™; T*R™),
P
Gis’Z>Y(P) _ Z H ad](gs,Z) Y(p) + OK(‘S|P+1), pe K e R™. (A.8)
p=1""

For a proof see for instance [Jel4d, Appendix A]. We recall that F.Y (F(p)) :=
dF(p)Y (p).

Proof of Lemma A.1. Let ¢ : I' — C™ be the inclusion map. Then
Dexp(t,V +t21V) o 1(p) : Ty, (R? x T') — T,C™
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is given by (T, X) — T; W+ T 27:/‘\/ +1,X, which, thanks to our assumptions, is surjective
onto a 2k + 2 (real) dimensional subspace of T*C™. Hence, by the implicit function
theorem A is a 2k + 2 dimensional embedded submanifold of C™.

To fix ideas we start with the simplest case of ' = {0} C C™. In that case {A =
{®.(0) : t € C, |t| < 0}, and from our assumption |Im ®,(0)| ~ [t;V + t2iV| ~ |t]. The
tangent space is given by

T@t(o)A = {at(bt(O)T + 8{(I)t(0)T T c (C} C C2.

If we show that
050+ (0) = O([t|™) (A.9)
then d(To, )\, iTs,0)A) = O(t*) and almost analyticity of A follows from [MeSj74,

Theorem 1.4, 1°]. The estimate (A.9) will follow from showing that for any holomorphic
function f, 07 0;20rf(P(0))|;=0 = 0. But this follows from (A.7) and the fact that

[‘A/,z/‘\/] ~ 0 at 0. Indeed,

0505200 (@u(0))] im0 = D5 05201 | D (17 +6iV) £(0) ] li=o
k=0

N S A L (A.10)
= 8t118t22 <Z E <t1V + t22V> (V -+ ZZV)f(O)) ’t:O
k=0
= ViV (V + V) £(0) = ViV (V = V) £(0) = 0.
The fact that ‘A/ and Z/‘\/ commute to infinite order at 0 was crucial in this calculation.

Holomorphy of f was used to have W f=wWf.

We now move the general case. For z € I', Ty, ()A is spanned by

We can repeat the calculation (A.10) with 0 replaced by z to see that, using the
assumption (A.6) and the fact that Im ®,(2) = Im 2z + O(t),

9®(2) = Ot + | Im 2[<) = O(| Im &, (2)|). (A.12)

To consider d®;(2)X = (P;).Y (P4(z)) we choose a vector field tangent to I', YV, Y.(z) =
X. We choose

k
Y, =W, Wczzcjvj, c e CF, (A.13)
j=1

a constant coefficient linear combination of vector fields (A.3). Then d®,(z)X =
(®).Y.(P4(2)) and we want to show that

¢ (D). Y. (Py(2)) is complex linear modulo errors O(| Im ®4(z)]>). (A.14)
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In view of (A.11) that shows that d(Ts,)A,iTs,:)A) = O(|Im ®(2)|>) and from
[MeSj74, Theorem 1.4, 1°] we conclude that A is almost analytic.

To establish (A.14) we use (A.8) with (s, X) = s1V + 851V, s1 = Ret, s, = Imt.
Since [V,iV] ~ 0 and V ~ iV /i at Imw = 0, we see that

(@0.Yelw) = 3 Sadt W(w) + O+ + [ Tmw|~). (A.15)

p=0 P

Because of the form of W, (see (A.3) and (A.13))
ad?, W, (w) = adf, W,(w) + O(| Imw/| + | Tm h(w')|),
and
¢+ ad}, W.(w) is complex linear.
Since w = ®y(z), z € [,
| Im w'| + | Im h(w")| = O(| Im 2’| + | Im h(2")] + |¢])
= O(|Tm 2| + [t]) = O(| Imw| + [t]) = O(| Im w),

since |Imw| = |Im ®,(2)| > [t|/C. Combining this estimates with (A.15) gives (A.14).
U

A.2. Almost analytic generating functions. We now recall how to obtain gener-
ating functions for almost analytic strictly positive Lagrangian manifolds. We recall
that an almost analytic submanifold of T*C", A, is Lagrangian if

(we)la ~ 0, we =Y _d¢ Adz.
j=1

In addition we say that A is strictly positive ([MeSj74, Definition 3.3]) if Ag is a
submanifold of T*R™ and for all p € Ag,

1 _

;a(v, V)(p) >0, forall VeT,A\(T,Ag)". (A.16)
Lemma A.3. Suppose that A is a strictly positive almost analytic Lagrangian sub-
manifold of nbhdp«cm (0) given by

{(2,{(2)) | z € nbhdcm(0)}.

Then there is C > 0 such that for x € nbhdgm(0),

%d(m,w(AR)) < |Im¢(2)| < Cd(z, 7(Ag)). (A7)

Proof. Since Ag is a submanifold of 7*R™, we may choose real coordinates on R such
that (near 0)
As = {(@/,0,¢(2/,0)) | (&, 2") € RE x R™F},
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Then, with p = (2/,0,¢(2’,0)), (T,Ag)® = {(6.,,0,0.,((2',0)0,/) | 4., € C*}, and it
follows that for all §,» € R™*,

(O, Oprr 8m//<(1'/, 0)535//) S TpA \ (TpAR)C.

Strict positivity of A then implies that

20((0, 80, 00 €&, 0)60), 10,520, Tur (a7, 0)8,0)) = 2(Im DB, ) > 0.
Since in our coordinates,
Zla’] < d(z,w(As) < Ol
(A.17) follows. O

With this lemma in place we can find generating functions in the almost analytic
setting:

Lemma A.4. Suppose that A is a strictly positive almost analytic Lagrangian sub-
manifold of nbhdp«cm(0) and that m, = TooyA — ToC™ is onto. Then there exists
U € C°°(nbhdcm (0)) satisfying

OV = O(|Im 2| + | Im ¥ (2)|>), (A.18)
such that, as almost analytic manifolds,

A~{(z,V.(2)) :|2| <€}, V.(0)=0. (A.19)

Proof. Since A is an almost analytic Lagrangian, we have o[y ~ 0 (vanishes to infinite
order at Ag) while the projection property shows that, near z = 0, A = {(z,({(2)) : z €
C™}, ¢(0) = 0. Hence d(¢(z)dz) ~ 0 and (see [MeSj74, Theorem 1.4, 3°))

0:((2) = O(| Tm 2[> + [Tm ((2) ).

We note that for z = = € R”, Lemma A.3 together with the strict positivity at
Agr = {(0,0)} show that

|2"|/C < |Im((z)| < C)2"], € R", |z| <e. (A.20)

where 7(Ag) is given by {|z”| = 0}. We now see that
0~ ola =2 8:G(2) Adz+ O Im 2 + [T ()| e eninanen),
j=1

and in view of (A.20)
0:,.Gi(x) — 05, Ce(x) = O(|2"|*), = eR", |z| <e.
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For € R", define ¥ by a simple version of the Poincaré lemma: W¥(x fo ) - xdt.
Then

ax]\I'(x) = /0 (Z tzkazjgk(tx) + Q(tl‘)) dt
- / | (it%@zkcj@x) + @(m)) dt + O(|2" ) (A.21)

:/0 (1G5 (tx))dt + O(|2"[*) = ¢;(x) + O(| Im ((x)]>),

in the last argument we used (A.20) again. We now define ¥(z) as an almost analytic
extension of W. From [MeSj74, Proposition 1.7(ii)] we obtain (A.19). O

A.3. Integration of almost analytic vector fields. Here we show how to solve
transport equations arising in §5.2.2. For clarity we present a simpler case (see also
[GaZw19, §5.2.2]). Thus we assume that V' is an almost analytic vector field on C™ (
w = (wy,w') € C", w; € C, w' € C"!) satisfying

|Imexp(t/\\/)(0,w’)| > |t|/C, w' € Ben-1(0,¢), t€C, |t] <e, dw (V) #0.

Then (¢,w’) — exp(t/‘\/(O,w')) =: z(t,w") is a diffeomorphism for e small enough. We
solve

Va~b, a(0,w") = ae(w), (A.22)
by putting

a(z) == a1(2) + az(2), a1(z) = ag(w'(2)), az(z(t,w)) := /0 th(z(ts,w'))ds.

We calculate the action of V' on a; using almost analyticity of b, the properties of
z(t,w') and (A.7):
(Vag) (2(t, ) / Z VI (=0, w))ds + O(|1])

OkO

1 2O ok pi1
~ |30 G b0 s+ O + O T 20,00)])

k!
k=0
- 1 LA / /
~ >tV b(2(0,w') + O(|t[*) + O(| Im 2(0, w')|*)
—~ (k+1)!

= b(z(t,w')) + O(|t|* + | Im 2(0,w")|*)
— bz (t, w)) + O] Tm =),
Similarly, Va; ~ 0 and we obtain (A.22).
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APPENDIX B. PHYSICAL DEFORMATIONS AND NUMERICAL RESULTS

The purpose of this appendix is to illustrate our results by numerical examples. We
have not yet implemented the general theory numerically. However, in some circum-
stances, it is enough to consider physical deformations of T" rather than the more
complicated phase space deformations. In particular, this is possible when there exists
G(z, &) linear in & satistying H,G > 0 on {p = 0}N{|¢| > C'}. This type of deformation
is analogous to the method of complex scaling (rediscovered as the method of perfectly
matched layers in numerical analysis) — see [DyZw19a, §§4.5,4.7] for an introduction
and references.

B.1. Deformations of analytic pseudodifferential operators. For v € 2'(T")
we extend u to be 27Z" periodic on R". We consider

p(z, Q)] < CRe()™, [Imz| <a, [Im(] < b(Re(),
p(z,§) = p(x + 27k, §), keZ".
and G(x,&) € S*(T*T™) such that
G(z,§) = (Go(x),§),  Go€ C=(T"R").

Remark: Observe that (B.1) agrees with the definition of the standard left quantiza-
tion of the symbol p as in (6.2).

(B.1)

We consider the complex deformed operator, Py, defined by the property that when
u is analytic in a sufficiently large neighbourhood of T™ (or simply for u being a
trigonometric polynomial),

Py(ulr,) = (Pu)|r,, Ly :={x+i0Gy(x) | x € T"}.
We start by deriving a formula for the kernel of Pp:

Lemma B.1. Suppose u € C¥(T") extends analytically to |Imz| < a. Then, for
| Im z| < a, the limit

1
= 1 li
v(z) = lim lm o

i(z— —el¢]2—6(2—y)?
[t e ety s
exists and, moreover, v(z) is the analytic continuation of Pu.

Proof. For each fixed €, 9, the resulting function of z is manifestly analytic in a neigh-
bourhood of T" (or R™ if we think of periodic functions). Therefore, in order to see
that v itself is analytic, we need only show that the limit exists and the convergence
is uniform on compact subsets of |Im z| < a. For this, we deform the contour in y to

I'z):y—y+ilmz,



VISCOSITY LIMITS FOR 0TH ORDER PSEUDODIFFERENTIAL OPERATORS 61

so that we have

1
= lim i
o(z) = lim lim oo
1

/ / I GO
I'(z

/ ei{Rez=y L) =t =0IRe=—yl* . Yy (y + i Tm 2 )dydE.

= lim lim
e—0t §—0t+ (271')”

This contour deformation is justified for each fixed § since the integrand is super
exponentially decaying in y. Now, integrating by parts in & using
1+ (Rez—y— 2ie, Dy)
1+ |Rez—y|2+4el¢]?’

we have for any N > 0

= li li
v(z) = lim lim os

/ ¢lRez—y & =eléP =0 Rez=ol* (TN (12 €))u(y + i Tm 2)dyd€.

In particular, since |9¢p| < Co(Re&)™ 1, the integrand is bounded by Cy(Rez —
y) "N (€)meE” yniformly in § > 0 and compact subsets of |Im z| < a. Hence, for N
large enough, the limit in ¢ exists and is uniform in compact subsets of | Im z| < a. It
is given by

1

v(z) = elif(% W /€i<ReZy’£>€|5|2(Li)N [p(z, 5)]'&(3/ + ¢ Im 2)dyd¢.

Defining B := (14 (£, Dy))/(1 + [£]*) we have, for any N > 0,

U(z) — lm 1 / ei(Rez—y7§>—E|§|2 (Bt)N [(Li)N [p(Z, 6)}'&(1/ +iIm Z) dydf
r

=0t (2m)"

Since [O5u(y + ilmz)| < C, and yagagp(x,gﬂ < Chp(Re &)™ 1Pl the integrand is
bounded by

Cn(Rez —y)™ (™",
uniformly in € > 0 and compact subsets of |Imz| < a. In particular, the limit in e
exists, is uniform in compact subsets of |Im z| < a, and is given by

1

v(z) = W /r e!Rez=u.8) (BHN [(LB)N[p(z,f)]u(y +iIm z)] dyd¢.

Thus, we see that v is analytic on |Im z| < a and agrees with Pu on Imz = 0. In
particular, by uniqueness of analytic continuation, v(z) = (Pu)(z). O

We now move to the representation for the Scwartz kernel of FPjp:

Lemma B.2. The kernel of Py acting on 2nZ"™ periodic functions on R™ is given by

(271T>n /€¢<x—y76>p(79(x), (69(%3/)_1)755)%

Ko(z,y) = d¢ (B.2)
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where the integral is interpreted as an oscillatory integral,
Y9 := x + 110Gy (z),
and eqg(x,y) satisfies
eo(,y)(z —y) = 70(x) — 70 (y)-
In particular, Py € V™ and its principal symbol is given by

o(Py) = p(e(x), (9ve(z)~1)"E).

Remark: Note that the symbol in (B.2) is not 277" periodic in x. However, it is of
the form a(x,x — y,§) where a is 2n7Z" periodic in the first variable. Therefore, it still
maps periodic functions to periodic functions.

Proof. By Lemma B.1, for v analytic on | Im z| < @ and 6 small enough
(Poufr,)(vo(z))

1
= lim lim
=0t 50+ (27)"

Now, since for each fixed > 0, the integrand is super exponential decaying in y, we
may deform the contour in y to ['y, to obtain

(Pyulr,) (30(x)) = lim Tim —

e—0t §—0+ (27T)"

/ 10 () 10 (1) &) —<l€l2—6(30(x) 70 (v))?
(B.3)

p(ve(), €) det(0y70(y))ulve(y))dydé.
Next, using that for each fixed € > 0, the integrand is super exponentially decaying in
¢ and that, with eg(z,y)(x — y) = vo(x) — Y6(y), we have e¢g = I +O(0{x — y)~1), we
can deform the contour in & to 'y = & — (eg(x, y)!) "1, to obtain

(Pyulry)((2)) = lim Tim — / (e =el(eh) =30 a) =30 1)

e—=0T §—=0+ (271’)"
det(ay%)(y))

p(%(@? (ea(, y>71>t£) det eg(x,y)

Now, integrating by parts as in the proof of Lemma B.1, results in the formula (B.2).

u(e(y))dyds.

To prove the final claim, let x € C°(—1,1) with x = 1 near 0. Then, for any § > 0,
we have by (B.2) that with
1 i(r— -
Pi= gy [ € Gute). (el )

the error Py — P, is smoothing and maps periodic functions to periodic functions. In
particular, P is a pseudodifferential operator on T" with symbol

a(Py) = p(ve (). (970(x)~)"€),

proving the last claim in the lemma. U

det(9y79(y))

-1 B
Tot ey X0l =
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B.2. The resolvent of the deformed operator. We now consider the setting of
Theorem 1. Namely, we assume that P is a self-adjoint Oth order pseudodifferential
operator and study the properties of Fj.

Proposition B.3. Suppose that P € W° is self adjoint and satisfies (B.1) and that
G = (Gy, &) € ST has H,G > 0 on {p = 0} n{[¢] > C}. Then there are wy,0y > 0
such that for 0 < 0 < 0y, w € (—wp, wp) + i(—wpb, 0), and all s € R,

Ro(w) := (Py —w)~ '+ H(T") — H*(T")

s meromorphic with finite rank poles.

Proof. First, note that there is wy; > 0 such that H,G > ¢ > 0 on {|p| < wo}N{[¢| > C}.
We compute

U(Pg)(l’, 5) = p($a 5) + ZQ(@IP(ZL', g)a GO(‘T» + <afp($7 5))7 (879(x)_1)t - I)£> + 0(92)
= p(x,€) +i0((0:p(@,§), Go(2)) — (0ep(2, ), (0:Go)' (2)§) + O(F?)
= p(x, &) — i0H,G(z,£) + O(6?).

Therefore, for # > 0 small enough, and wy = min(c,w;), Py — w is elliptic when
Imw > —wpb, | Rew| < wy.

In particular, Py — w : H® — H® is Fredholm for w € [—wy,wo] + i(—wpb, 00).
Moreover, since Py : H* — H? is bounded, if Imw > 1, Pyj—w is invertible by Neumann
series and hence Py—w has index 0. By the meromorphic Fredholm theorem [DyZw19a,
Theorem C.9], its inverse Ry(w) = (P —w)™' : H* — H*® is a meromorphic family of
operators with finite rank poles for w € (—wq,wp) + i(—wpf, 00). O

Proposition B.4. Let P and G as in Proposition B.3. There are 6y, wy > 0 such that
for 0 < 0 < By, the poles of Ro(w) for w € (—wo, wp) +i(—wob, 00) agree with multiplic-
ity with those of R (w) where RPA(w) the resolvent of P on H} from Lemma 7.4.

We will need the following lemma.
Lemma B.5. For P as in (B.1), there are C > 0 and § > 0 such that for Imw > C,
R¥ (W) + A5 — As.

Proof. We start by showing that P : @5 — <7 is bounded. For this, note that for
j e Zn?
Pu(j) =Y a(k)p(j — k. k)
kezn
where p(7, €) denotes the Fourier series for p(z, £) in the x variable. Note that by (B.1),
there is C' > 0 such that

Pk, &) < Cg)me ™,
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Therefore, for 6 < 3,

IPulf =3 | > (k)P & )|t
< Z (Z [@k)Pe7) (319G — k. ke 07
k
_ HUH%<Zefzaufk\e4(ljlf\k\)6) < C\|u|!ff§(ze(45 1645+2a)|a|) < CHUH2
k?j

Since Imw > ||P||ws o0y, RY (w) = — 3250 w * 1 P* the proof is complete. O

Proof of Proposition B./. Let wy be the minimum of wy from Proposition B.3 and
Lemma 7.4 and suppose that w € (wo,wp) + i(—wpf,00) with Imw > 1. Then,
Ro(w) : H5(Ty) — H*(Ty) and RL2(w) : o5 — .
Let u € o/. Then we have R (w)u € @ and
(P — w)([R™(w)ullr,) = (P — w)R"(w)u)|r, = ulr,.
In particular, [R2(w)u]|r, = Re(w)(ulr,).
For u, v € o5, and Imw > 1,
2
(Ro(w)ulry: vlr, )2,y = ([RY (@)ulen ]|y, vle,) 2y

By Lemma 7.9, when Imw > 0 and u € &, we have R*(w)u = R (w)u. Then,
deforming the contour of integration in the inner product to T",

2
(Ro(w)ulry: vlr, )2,y = ([RY (@)ulen ]|y, vlr,) 2y
= <RL (OJ)U, U)LQ(TW)

= <RHA( )U U>L2 ) <RHA( )uav>ﬂ—5(T")vﬂ5(T")'

Since @75 C HY C /s, both sides of this equality continue meromorphically from
Imw > 1tow € (—wp,wpy) + i(—wpl, o) and the equality continues to hold for w in
this set. Finally, since % is dense in Hj and %]|r, is dense in L?(T'y), this equality
implies that the poles of Ry and R4 coincide with an agreement of multiplicities. [

B.3. Numerical examples and discretization. In our numerical study, we consider
operators of the form

P = (D)™ Dy, + sin(z1)(I =Vin(Day)) + (I =Vin(Da)) sin(ar) + Va(D), - (B4)
with V4(&1), @ = a, m, satisfying
Va(&)] < CeBe8F | Imgy| < b(Re&y), o =a,m. (B.5)
Then, P satisfies the assumptions of Proposition B.3 with Gy = (=2 cos(x;), 0).
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FIGURE 2. We display the eigenvalues of P acting on e*2 Lil for three
different values of # and —20 < n < 20. P is chosen as in (B.4) with V, =
0and V,, = ((1 — &) + 652)6_52. These choices guarantee the existence
of an embedded eigenvalue at 0 [Tal9, Example 1]. Note that once the
eigenvalues emerge from the continues spectrum, they are independent
of the choice of 6.

Since the deformation G does not involve x5, we may decompose

LZ(TQ) _ @ einm2L2(x1)

n=—oo

and use that D,,|ginzsre =nl.
1

In order to discretize the operator Fy|cinsars , we replace Tq, by *(Z/NZ) and
denote by X1,Y; € [2(Z/NZ)|N vectors with j* entry X (j) = 22. We will represent

-
the Fourier dual to 22(Z/NZ) as —% + Z/NZ and index vectors on the Fourier side
with K € {—%, —% +1,..., % — 1}. We then compute a matrix which approximates

the action of Py on the Fourier series side.

Letting yg(x) := x4+ i0Gy(z), and Fy the matrix for the Discrete Fourier transform,

e—27rin/N N N

L= — —— <K< —-1 0<j<N-1
(FN)KJ \/N ) 5 = =79 ) >7>
we obtain for a vector u € C¥,
U 1
Fnt —TFyu, T := FyDiag (—) -
Yo vp(X1) /"N
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FIGURE 3. We display the eigenvalues of Py on e™*2L? with 6 = 0.8
as well as those for P + ivA for five values of v approaching zero and
—20 < n < 20. P is chosen as in (B.4) with V, = 0 and V,,, = ((1 —
&%) + 652)6_52. These choices guarantee the existence of an embedded
eigenvalue at 0 [Tal9, Example 1].

so that
[Fn(Dy,)ou] ~ [TKFyu]
where
K = Diag(K).
At this point we discretize ((D)~2), using the functional calculus of [SjZw91, Section
4]. In particular, writing
(D)o = (1+n*)I + (TK)?,
we have
Ful((D)2)gu] = (v/(D)o) ' Fyvu
where the square root is taken in the sense of matrices and all eigenvalues are taken
with non-negative real part.

Remark: Note that the functional calculus definition of ((D)~'/2), agrees with the
definition (B.3) with p = (1 4+ n2+ £2)~2. To see this observe that at 6 = 0, the two
operators agree and hence their analytic extensions to ['y agree.

The operators [V, /(D)}y are computed by using (B.3) to write

1 )
(Vaym(D))ou(z) = Z o /GZ(W(x)_vg(y))kva/m(k‘)u(y)dy-
p
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This sum converges since V,,, satisfies (B.5). We then evaluate z and y on 2% (Z/NZ)
in the above kernel to obtain the matrix approximation on the Fourier transform side.
More precisely, putting

~ 1 . , )
(VD=5 /ez(w(Xl(z))—vem(g)))kv.(k% «—am,
k

we have

FnVa(D)ou~ VIFyu,  VI=FyVIFs.
Note that this approximation is valid since we take |V (£)| < Ce ¢l and therefore the
sum in k converges rapidly. Finally, writing

S’ = Fn Diag(sin(ve(X1))) Fx,
Our total operator is then approximated by

Pylineapz ~ FNPYFn, Py i=n(y/(D)g) ™ +8°(1 = Vy) + (I = V58" + Vg

Since Fy is unitary, we compute the eigenvalues of P4, to approximate the eigenvalues
of Pg

When approximating P +ivA, these computations are much simpler and we use the

in 2 .
e 2L11

standard Fourier series approximations
P +ivA = FiPYFn, P4 =nD)y V2 4+S(I-V,)+ (I —-V,,)S+V, —ivK?
where

(D)~"/*:= Diag((K) %), V. :=Diag(Va(K)), S = Fy Diag(sin(X1))F.

The results of several numerical experiments are displayed in Figures 1, 2, and 3.
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