MATH 54: Complex eigenvalues

Suppose that A is an $n \times n$ matrix and the characteristic polynomial has a complex zero:

$$
P(r)=\operatorname{det}(A-r I), \quad P(\alpha \pm i \beta)=0 .
$$

If $\alpha+i \beta$ is a root so is $\alpha-i \beta$ so we need to worry about one of them only.
This comes up when we consider systems of equations:

$$
\begin{equation*}
\mathbf{x}^{\prime}(t)=A \mathbf{x}(t) \tag{1}
\end{equation*}
$$

We then need to look for \mathbf{a} and \mathbf{b} in \mathbf{R}^{n} such that

$$
\begin{align*}
& A \mathbf{a}=\alpha \mathbf{a}-\beta \mathbf{b} \\
& A \mathbf{b}=\beta \mathbf{a}+\alpha \mathbf{b} \tag{2}
\end{align*}
$$

NO COMPLEX NUMBERS ARE INVOLVED HERE.

The two independent solution of (1) associated to the complex roots are

$$
\begin{aligned}
& \mathbf{x}_{1}(t)=e^{\alpha t}(\cos \beta t \mathbf{a}-\sin \beta t \mathbf{b}), \\
& \mathbf{x}_{2}(t)=e^{\alpha t}(\sin \beta t \mathbf{a}+\cos \beta t \mathbf{b})
\end{aligned}
$$

SO, HOW DO WE SOLVE (2)?

This is a homogeneous system of $2 n$ linear equations in with $2 n$ unknowns

$$
\begin{gathered}
\mathbf{a}=\left[\begin{array}{c}
a_{1} \\
\vdots \\
a_{n}
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{c}
b_{1} \\
\vdots \\
b_{n}
\end{array}\right] . \\
(A-\alpha I) \mathbf{a}+\beta \mathbf{b}=0 \\
-\beta \mathbf{a}+(A-\alpha I) \mathbf{b}=0
\end{gathered}
$$

You will not be asked to do this for some complicated matrices but 2×2 matrices are fair game.

Those of you who are comfortable with complex numbers can also proceed directly and solve

$$
(A-(\alpha+i \beta) I)(\mathbf{a}+i \mathbf{b})=0
$$

which is done by row reduction as in the case of real equations but using the complex numbers arithmetic.

