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Motivation: bilayer graphene
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Cao et al '18, Yankovitz et al "18: superconductivity at § ~ 1.08°
Predicted by Bistritzer—MacDonald '11



The chiral model of TBG

PHYSICAL REVIEW LETTERS 122, 106405 (2019)

Editors' Suggestion

Origin of Magic Angles in Twisted Bilayer Graphene

Grigory Tarmopolsky, Alex Jura Kruchkov, and Ashvin Vishwanath
Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
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U(z) := E whea (GET=200) . @2mi/3,
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U(z + %TI'I'OJZ) =wU(z), U(wz)=wl(z), {=1,2.

Derived from the full Bistritzer—MacDonald '11 Hamiltonian

Mathematical derivation:
Cances—Garrigue—Gontier, Watson—Kong—MacDonald—Luskin.'22



The operator of today

o1~ (307 ") i 01 30,0

U(z+ ) =U(z), ~ €T, a(very specific) lattice
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The operator of today

D)= (40070 “3c)) T D= (0, + i)

Uiz+7v)=U(z), ~ €T, a(very specific) lattice
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Seeley 85: P(a) = eXD, +ae™, x € S, Spec(P(a)) =C, a € Z.



The operator of today

PHYSICAL REVIEW LETTERS 122, 106405 (2019)

Editors’ Suggestion

Origin of Magic Angles in Twisted Bilayer Graphene

Grigory Tarnopolsky, Alex Jura Kruchkov, and Ashvin Vishwanath
Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA

Twisted bilayer graphene (TBG) was recently shown to host superconductivity when tuned to special
“magic angles” at which isolated and relatively flat bands appear. However, until now the origin of the
magic angles and their irregular pattern have remained a mystery. Here we report on a fundamental
continuum model for TBG which features not just the vanishing of the Fermi velocity, but also the perfect
flattening of the entire lowest band. When parametrized in terms of a ~ 1/, the magic angles recur with a
remarkable periodicity of Aa ~ 3/2. We show analytically that the exactly flat band wave functions can be
constructed from the doubly periodic functions composed of ratios of theta functions—reminiscent of
quantum Hall wave functions on the torus. We further report on the unusual robustness of the
experimentally relevant first magic angle, address its properties analytically, and discuss how lattice
relaxation effects help justify our model parameters.

0  D(a) —k

Bands: eigenvalues of Hy(a) := D(a) — k 0

,keC/rr

A flat band at 0 energy means that Spec,2>(c/r)(D(a)) = C



A simpler example first: Dy := %OX

Specior)(Dx) =R, Spec;2(r/ox7)(Dx) = Z

Lz(R) = Lz(R/Z? LZ(R/27TZ))7 Dx|L2(R) = @ (Dx_k)‘LQ(]R/ZfrZ)
keR/Z

u(x) = U(x, k) =Y e 2™ 0mmiy(x — m), Deu e (Dy — k)U
meZ

SpeCL2(R)( U SPeCL2(R/2nZ)(D — k)
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Flat bands
The bands are eigenvalues of Hy(c) on L3(C/T), k € C/3I*:

Theorem (BHZ '22; implicit in BEWZ '20)
Jk ¢ 3 +40,—i} Ei(a,k) =0 = Vk Ei(a,k) =0.
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A curious structure of the first band

k = Ei(c, k)/(mkax Ei(o,k)), 04<a<0.6

Rescaled plots remain almost fixed at k — |U(—4+/37ik/9)|
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Symmetries play a crucial role!

o 2D2 aU(z) i 0 D*
D(e) = <aU(—z) 2D; > Ha) = (D o)
Zuu = diag(w™ %2, 1,02 1)u(z + §in(war +w?a)), a € Z3,

¢ u(z) = diag(1,1, &%, @ )u(w*z), ke Zs3

LH=H%L,, €H=HE, €2 =Lus?, M:<(1) j)

Decompose into irreducible representions of this Heisenberg group:

Lc/m= @ L, (c/rcel, (C/rcHal, (C/C?)
k,pEZ3

Pkp — L= whlarta) @ = gp



Symmetry protected states
kerj2(c/ry H(0) = C* T =4in(wa +w?ay)

e;leLp107 ey € 12 e3€L e4€Li01

£0,07 1,17

H(a) = =W H(a)W*, W = (1 _01> S HWEC =CHW, LW =WL

0

This implies that the spectrum of H(« )|/_2 ,(C/T) is even

0.1

-0.1

dim kerLZ(C/r)(H(Oé)) Z 4, dim kerLZ(C/r)(D(Oé)) 2 2



Spectral characterization of flat bands

O R RS A R L B CT!

L3(C/r):={uec®(C/T): Lu=u, ac 3/

Bands: {Ej(a, k)}jeZ\{O} = SpeCLS Hk(a), Eil(a,O) == Eil(a, —i) =0.

Flat band at 0 <— SpecL%((C/r)(D(a)) =C

Theorem (BEWZ '20) There exists a discrete set A C C such that
3r*+40,—-i} ad¢A

Specyz(c/ry D(@) = { C 0.7} o i A,
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Exponential squeezing of bands

Theorem. (BEWZ '20) There exist ¢;j > 0 such that for all k € C,

’E_/(a7 k)| < Coeiqa? JS Qo, o> 0.

In practice, c; = 1 and ¢ can be taken arbitrarily large

Consequence of general results about quasimodes for semiclassical
(h=1/a) non-normal operators:

Hormander '69 ({q, g} # 0), Sato—Kawai—Kashiwara '73 ...
Dencker-Siostrand—Z '04



™" a¢A
Spec2(c/ry D(a) = { C a i 1

flat band at @ <= Spec;2¢/ry D(a) = C <= 1/a € Spec(Ty)
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We did not prove that ANR, # (). However, A # () BEWZ '21:

72
Z at=tr Tf _ e combinatorics + g function

acA \/§

Luskin-Watson '21: |.A N (0.583,0.589)| > 1



" a¢A
Spec;2(c/ry D(e) = { C a i A

Theorem (BHZ '22) For all p > 1
—2p T _
g « € — and as a consequence |A| = co.
\/gQ 9 Al

acA

Op = 15 tr T2, Fa) = dzet(l —a?T?)

D ‘ V30,/3Pm D ‘ V30,/3P

2 4/9 5 9560,/20007

3 32/63 6 245120/527877

4 40/81 7 1957475168/4337177481

Theorem (BHZ '22) The largest real eigenvalue of Ty, 1/a, is
simple and o, € (0.583,0.589).



Spectral characterization allows accurate computation of more «'s:

k ok g — k-1
1 0.58566355838955
2 2.2211821738201 1.6355
3 3.7514055099052 1.5302
4 5.276497782985 1.5251
5 6.79478505720 1.5183
6 8.3129991933 1.5182
7 9.829066969 1.5161
8 11.34534068 1.5163
9 12.8606086 1.5153
10 14.376072 1.5155
11 15.89096 1.5149
12 17.4060 1.5150
13 18.920 1.5147

Tarnopolsky et al '19 observed that o — a1 =~ % (0< k<8)

Ren—Gao—MacDonald—Niu '20 “exact” WKB:

ap — a1~ 1.47 777



Works for general potentials with Z% X Z3 symmetries
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Flat bands from theta functions

Tarnopolsky et al '19: consider u € L%LO(C/F; C?), D(a)u=0

ux(z) == eé(ZRij)fk(z)u(z), Z— e%(ZHZk)fk(z) periodic, O0zfx =0
(D(a) — k)uk(z) =0
Problem: fi with these properties will have poles

Solution: Look for a's at which u has a zero!

log [u(a, 2)| for a = 0.58600
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Flat bands from theta functions

Q- : 2 .2 _

Tarnopolsky et al '19: consider u € Ly (C/I;C%), D(a)u =0

ue(z) = e2 @6 (2)u(z), z s e2FHIL (2) periodic, s = 0
(D(a) = kJuk(z) =0

Problem: # with these properties will have poles

Solution: Look for a's at which u has a zero!
u(a,zs) =0, a€ A, zs= #w, zs =wzs mod /3
ed (&) g () G2n(c—0k/va0i(C + K|w)

01(Clw)

Similar argument in Dubrovin—Novikov '80

4 .
z = 3w

Theorem (BHZ '22) o € A simple = zs is the only zero of u.



New direction: in-plane magnetic field

Kwan et al '20, Qin—MacDonald '21:

B 0

Dg(a) :=D(a)+ B, B:= (0 _B

) , B =By’

How do the Dirac points move as « and 6 change?

Theorem (BZ '23) If « € A is simple (+ one more condition) and
0 < B <« 1 then then there are no flat bands and for o ~ a Dirac
points (eigenvalues of Dg(«)) are close to the I point.
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New direction: in-plane magnetic field

Kwan et al '20, Qin—MacDonald '21:

Dg(a) :==D(a) + B, B:= (g _?9) . B = Bye™it.

How do the Dirac points move as « and 6 change?

Theorem (BZ '23) If a € A is simple (+ one more condition) and
0 < B <« 1 then then there are no flat bands and for o ~ o Dirac
points (eigenvalues of Dg(a)) are close to the I' point.

002
001 001

-0.01

-0.02




New direction: in-plane magnetic field
Kwan et al '20, Qin—MacDonald '21:

Dg(a) :=D(a)+ B, B:= (g —OB> . B= Bye2™0

Theorem (BZ '23) If « € ANR is simple and 0 < By < 1 then

Ky \ U D(k,e) C U SPeCLg(DwéB(a)) C S,
k£K K a—6<a<a+s

Ry = ' 2n(iR + Z) U %(R +iZ)) £=1 in the figure
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Video resized with ezgif.com
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Fine structure of u € keryp D(a)  (dimkerj D(a) =1, a ¢ A)

log [u(a, 2)] for a = 0.58600
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Countour plots of z — log |u(c, z)|
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A contour plot of |{q,G}|, g = (2¢)? — U(z)U(—=2)
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Numerically, |u(e, z)| < e~ near the set where |{q,§}| =0 !
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Fine structure of eigenfunctions

Numerically, |u(a, z)| < e7%% near the set where |{q,§}| =0 !

-log(maxiul) over conic neighbourhoods at z ~log(maxlul) over conic neighbourhoods at -z
22 - T T T T al

Conic neighbourhoods at + zg for 0 = x/6

6 8 10 12 14 16 18 20 6 8 10 12 14 16 18 20

Theorem (HZ '22) Any point on an open edge of the hexagon has
an open neighbourhood Q C R? such that

lu(a,z)| < e % ze€Q, cq>0.



Theorem (HZ '22) Any point on the open edges of the hexagon
has an open neighbourhood Q C R? such that

u(e, z)| < e /P 7€Q, >0, h=at

Reduction to the principally scalar case: g = (2()? — U(z)U(—2z):

( 2nD;  U(2)

al(-z) 2th> u=0 = ((2hD)* - U(2)U(~2)+hR)u =0

This allows an adaptation of (to some, v esoteric) hypoellipticity
methods of Kashiwara, Sjostrand, Trepreau, Himonas... (the 80’s):

{9, @Hr1z)ng-10) = 0, {4:{9, G} r1(z)ng-1(0) # O
implies the conclusion of the theorem for Q = neighc(zp).

At the corners, it is trickier and does not fit into existing theories.
Near the center of the hexagon g is not of principal type.



Another numerical observation (BHZ): Curvature

C/3r* > k — uy € L3(C/T) s holomorphic (Ledwith et al '21) and
defines a natural line bundle

Chern connection: 1 := Oy log ||ux||? = |luk||~2(Okux, uk) dk
Curvature: Q = dn = 9,0y log ||u||? = H(k)dk A dk, H(k) > 0.

Chern class: ¢ = ﬁ fC/3r* Q=-1

Curvature




Another numerical observation (BHZ): Curvature

C/3r* > k — uy € L3(C/T) s holomorphic (Ledwith et al '21) and
defines a natural line bundle

Chern connection: 1 := Oy log ||ux||? = ||luk||~2(Okux, uk) dk
Curvature: Q = dn = 9,0 log ||u||? = H(k)dk A dk, H(k) > 0.

Chern class: ¢; = i f(C/3r* Q=-1
_ Curva_lture _
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Many mathematical open problems

» Multiplicity issues; a stronger generic simplicity statement
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> The fixed “shape” of the first band; what is a heuristic
explanation?

» Significance and explanation of the curvature “peak” at k =i

» Asymptotics of o € AHR+, in partlcular Aa ~ 3? Help from
Hitrik—Sjostrand '04... :




Thanks for your attention!



