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This talk will be concerned with very classical objects:

Eigenfuctions of the Dirichlet (or Neumann) Laplacian on a
bounded domain, €2, in the plane:

—Au; = A?uj ,  ujlgo =0, /Q |uj(:v)\2dw =1.

)\0<)\1§)\2§§)\j—>00

This is a theoretical and experimental model for the study
of the classical/quantum correspondence.
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Napoleon asked Chladni what can be said of more

complicated domains.



The Shnirelman Theorem.

Suppose that the billiard flow on a bounded domain with
boundary, €2, is ergodic.

Here is an example:

The Sinai billiard



The Shnirelman Theorem.

Suppose that the billiard flow on a bounded domain with
boundary, €2, is ergodic.

Here is an example:

A quantum coral made in the shape of the Bunimovich
stadium by Crommie, Eigler et al.



The Shnirelman Theorem.

Suppose that the billiard flow on a bounded domain with
boundary, €2, is ergodic.

Then there exists a sequence {j;};2; C N of density one,

lim (maxk)/N =1
N—>oo(jk§N )/ ’

such that for any nice open subset V, of €2,

Area(V
lim / \ujk(x)\Qda:: rea( )
k—oo Jy/ Area(2)



T his theorem has a long history.

It was announced by Shnirelman 1974, and first proved for
closed manifolds by Zelditch and Colin de Verdiere 1986,

semiclassical case by Helffer-Robert-Martinez 1989,

for a class of billiards in any dimension (incl. Bunimovich)
by Gérard-Leichtham 1993, and for arbitrary manifolds with
piecewise smooth boundaries by Zelditch-Zworski 1996.

T here exist versions for quantum maps with a lot of recent
progress on the concentration and non-concentration: De
Bievre, Faure, Nonnenmacher, Rudnick....



T he asymptotics

Area(V
lim / \ujk(ac)\zd:v: ( )
k—oo Jy/ Area(2)

can be observed.

Here are the experimental images of the first 24
eigenfunctions in a Bunimovich cavity:






Can there exist exceptional sequences?

That is, can we have a sequence j. — oo and an open set
R C €2 such that

Area(R
lim / |ujk(a:)|2da: =1> (1) 7
k—oo Jp Area(£2)

We have a candidate sequence:

a 4 o - " - . - - .

The open set R is the rectangle obtained by “sawing off”
the wings of the table.



Can there exist exceptional sequencies?

That is, can we have a sequence j. — oo and an open set
R C €2 such that

Area(R
lim / |ujk($)|2da: =1> (£) 7
k—oo Jp Area(2)

We have a candidate sequence:

Note that 4 in 24 is a ‘“density zero” sequencel



T heorem 1.

Suppose that v is an eigenfuction of the Laplacian on the
Bunimovich stadium. Let V be any open neighbourhood of
the "wings”.

Then

v

1
2
de > — > 0.
| u@)Pae >
More generally, if

(A —-z)v=f, vlpa =0,

then

[ 1r@Pae+ | u@Pds = oo | jute)Pa



Remark: By using control theory results a la
Bardos-Lebeau-Rauch we can reduce V to a control set.

(EONE

The control set V is the red set on the left.

For instance

Both this and the relevance of the picture on the right will
hopefully become clear in a moment.



T heorem 1.

Suppose that v is an eigenfuction of the Laplacian on the
Bunimovich stadium. Let V be any open neighbourhood of

the "wings”.

Then
1
/ lu(z)|?de > — > 0.
% Cy

-

S ——T
i
o
o e -
gy
A

fith

14
e

f



Can we have a concentration in the rectangle?

Trivial quasi-mode concentrating in the interior of the
rectangle:

(~A — p)op = O(1), wglo =0, / o2 = 1.
R
Since in Theorem 1 we had

(A —-z)v=1f, vlpa =0

——

[ 1r@Pde+ [ P> o= [ @

this best possible if we demand that v,'s concentrate in a
set smaller than R.



Can we have a concentration in the rectangle?

A highly probable statement:

(—A — pp)ve =0(1), vglogg =0, pp — oo,

/|Ul~c|2:17 /|”Uk|2—>1-
Q R

I will offer a dinner in a ® restaurant in Paris to the first
person in this audience who shows me, within five years
from now, a proof of this, possibly elementary, result.



Can we have a concentration in the rectangle?

A more dubious statement:

(A — pp)vp, = O, ), vklag =0, pp — o0,

/ |2 = /|U/€|2 — 1.
O

I will offer a dinner in a ¥ ® restaurant in Paris to the first
person in this audience who shows me, within five years
from now, a proof of this result.



Can we have a concentration in the rectangle?

An impossible statement:

(—A—uk)kaO, Uk|8§2207 M — OO,

/|Ul~c|2:17 /|Uk|2—>1-
Q R

I will offer a dinner in a ¥ % # restaurant in Paris to the
first person in this audience who shows me, within five years
from now, a proof of this result.

To encourage everybody I will now show how elementary is
the proof of Theorem 1!



We need the following result motivated by control theory:
Proposition.(Burg 1993)

Let A =97 + 07 be the Laplace operator on the rectangle
R = [0,1]: x [0, a]y.

Then for any open w C R of the form w = w; x [0,a], , there
exists C such that for any solution of

(-A=X)u=f on R, ulpp =0,

we have



Partially rectangular billiards

No concentration possible on single bouncing ball orbits

We expect, in some cases, concentration in the entire
rectangle.



What about the Sinai billiard?
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Bouncing ball trajectories:

The same argument as before shows that no concentration
IS possible on a rectangle which does not touch the

obstacle.

A refinement shows that for any neighbourhood, V, of the
obstacle we have

1
/ lu(z)|?de > — > 0.
Vv Cy



Hyperbolic trajectories:

@

Theorem 2. Let V be a neighbourhood of the hyperbolic

trajectory above. Then

C

w(z)|?dz > ., ¢>0.
-/Q\V | | l0g A\

The proof is based on ideas from scattering in the presence
of one trapped hyperbolic orbit: Ikawa, Gérard, Sjostrand,
., J.F.Bony-Michel.



The bound fQ\V lu(x)|?dx > ¢/log A is in some sense optimal.

Colin de Verdiere-Parisse 1994 considered a truncated

)

They showed the lower bound for surfaces containing this

hyperbolic cylinder:

type of “neck” and for the truncated cylinder itself showed
that the weak concentration is possible. The methods were
based on the reduction to one dimension (cf. Paul-Uribe,
Fujiie-Ramond).

Theorem 2 works for any closed (real) hyperbolic orbit
which does not intersect the boundary.



General point of view:

Studying an effect of a black box in a closed system by
putting that black box in an open system (or a system with
an absorbing barrier).

Reversal of the black box strategy of Sjostrand-Zworski
1991 in the study of resonances.

A different approach to Burg 1993.



General point of view:

Studying an effect of a black box in a closed system by
putting that black box in an open system (or a system with
an absorbing barrier).

Reversal of the black box strategy of Sjostrand-Zworski
1991 in the study of resonances.

A hyperbolic orbit.



General point of view:

Studying an effect of a black box in a closed system by
putting that black box in an open system (or a system with
an absorbing barrier).

Reversal of the black box strategy of Sjostrand-Zworski
1991 in the study of resonances.
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Rectangle as a black box for the Bunimovich stadium.




General point of view:

Studying an effect of a black box in a closed system by
putting that black box in an open system (or a system with
an absorbing barrier).

Reversal of the black box strategy of Sjostrand-Zworski
1991 in the study of resonances.

References:

N. Burg and M. Zworski, Control in the presence of a black
box, J. AMS, 2004

N. Burg and M. Zworski, Bouncing ball modes and
quantum chaos, SIAM Review, to appear.

J. Marzuola, Eigenfunctions for partially rectangular
billiards, in preparation.



