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1. Introduction

This are the notes taken by Zhongkai Tao from the topics course taught by Maciej

Zworski in Fall 2022 at Berkeley, on mathematics of condensed matter physics.

We will cover the following topics:

• Magnetic Hamiltonian of the free electron; Landau levels, derivation of de Haas–van

Alphen oscillations in that case.

• Spectral theory of periodic structures; band theory.

• Berry phase, curvature and Chern numbers.

• 2D crystals in magnetic fields and the Peierls substitution; semiclassical study of

the de Haas–van Alphen effect.

• Semiclassical derivation of the tight binding model.

• Introduction to many-body interactions and the language (if nothing more) of sec-

ond quantization.

2. Preliminaries

We discuss some preliminaries which will be useful later. A brief account of geometric

preliminaries can be found at https://math.berkeley.edu/~zworski/symple.pdf. For

tempered distributions (S ′) and Fourier transform an in depth presentation is provided

in [Ho03, Chapter 7] (see also [Zw12, Chapter 3] for a more light-hearted treatment).

References for pseudodifferential calculus (going beyond what is needed here) are [DS99]

and [Zw12, Chapter 4]. For unbounded operators, a detailed account can be found in

[Sch12] and for brief reviews see [DS99, Chapter 2] and [Zw12, Appendix C.2].

2.1. Symplectic geometry. A symplectic manifold is a smooth manifold M with a non-

degenerate closed 2-form σ on M , called the symplectic form. On a cotangent bundle T ∗M ,

there is a canonical symplectic structure given by

σ =
∑

dξj ∧ dxj = d(
∑

ξj ∧ dxj).

In the case of M = Rn, we can think of σ as a non-degenerate quadratic form on R2 ×Rn:

σ(X,Ξ, X ′,Ξ′) = 〈Ξ, X ′〉 − 〈X,Ξ′〉. (2.1)

https://math.berkeley.edu/~ztao/
https://math.berkeley.edu/~zworski/
https://math.berkeley.edu/~zworski/
https://math.berkeley.edu/~zworski/symple.pdf
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Given a smooth real-valued function p : T ∗M → R, we may define the Hamiltonian

vector field Hp by

σ(·, Hp) = dp.

In local coordinates, it is given by

Hp =
∑
j

∂p

∂ξj

∂

∂xj
− ∂p

∂xj

∂

∂ξj
. (2.2)

The flow ϕt = exp tHp under the Hamiltonian vector field is called the Hamiltonian flow.

It is straightforward to verify that ϕt preserves the symplectic form and the function p. In

particular, it preserves the volume form dVol = σn/n! (Liouville theorem).

Example 1. Let p(x, ξ) = 1
2
ξ2 + V (x) : Rn × Rn → R, then the Hamiltonian flow is given

by

ẋ = ξ, ξ̇ = −∇V (x).

That is, ẍ = −∇V (x). We think of V (x) as a potential and ~F (x) = −∇V (x) as the force,

then this is Newton’s law of motion.

Example 2. Suppose there is a charged particle in an electromagnetic field. By Maxwell

equation

∇ · ~B = ~0, ∇× ~E = ~0.

So there is a potential V (x) and a vector potential ~A(x) such that

~E = −∇V (x), ~B = ∇× ~A(x).

The force on the particle is then given by

~F = −∇V (x) + ẋ× ~B.

Now we have an equivalent Hamiltonian formulation. Let

p(x, ξ) =
1

2

∑
j

(ξj − Aj(x))2 + V (x).

The Hamiltonian flow is given by

ẋj = ξj − Aj(x), ξ̇j =
∑
k

∂jAk(x)(ξk − Ak(x))− ∂jV (x).

That is,

ẍj = −
∑
k

∂kAj(x)ẋk + ξ̇j =
∑
k

(∂jAk(x)− ∂kAj(x))ẋk − ∂jV (x) = (ẋ× ~B −∇V )j.
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The quantization of this Hamiltonian in the case of a constant magnetic field is the Landau

Hamiltonian which we will study in §3.

A classical observable is a function a on T ∗Rn. Under the Hamiltonian flow ϕt = exp tHp,

the evolution of the observable is given by ϕ∗ta(x, ξ) = a(ϕt(x, ξ)). In other words,

d

dt
ϕ∗ta = Hpϕ

∗
ta = {p, ϕ∗ta}. (2.3)

2.2. Analysis on Rn. The space of Schwartz functions is defined as

S (Rn) = {u ∈ C∞(Rn) : xα∂βxu ∈ L∞,∀α, β ∈ Nn}.

The seminorms ‖u‖α,β = ‖xα∂βxu‖L∞ give S a structure of Fréchet spaces. The space of

Schwartz/tempered distributions is the dual of S , or equivalently,

S ′(Rn) = {u : S → C : ∃N ∈ N, CN > 0, such that |u(ϕ)| ≤ CN
∑

|α|,|β|≤N

‖ϕ‖α,β,∀ϕ ∈ S }.

We note that Lp(Rn) ⊂ S ′(Rn), with the definition

u(ϕ) :=

∫
u(x)ϕ(x)dx.

The main advantage of distributions, and in particular of tempered distributions, is the

fact that the derivative is always defined using formal differentiation by parts:

(∂xju)(ϕ) := −u(∂xjϕ), u ∈ S ′(Rn), ϕ ∈ S (Rn). (2.4)

The Fourier transform of a Schwartz function u ∈ S is defined by

Fu(ξ) = û(ξ) =

∫
Rn
u(x)e−ix·ξdx

and F : S → S gives an automorphism of the Schwartz space. The inverse Fourier

transform is given by

F−1u(x) = ǔ(x) =
1

(2π)n

∫
Rn
u(ξ)eix·ξdξ. (2.5)

We recall the basic properties of Fourier transform without proof.

Proposition 2.1. The Fourier transform F : S → S extend to a continuous linear

isomorphism F : S ′ → S ′, with the following properties.

• (Plancherel theorem) Up to a normalization constant, F is an isometry on L2(Rn):

‖Fu‖2
L2 = (2π)n‖u‖2

L2 .

• F∂xj = iξjF , Fxj = i∂ξjF .
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Using Fourier transform, we can define the Weyl quantization for a ∈ S (R2n) by

Opw(a)u(x) = aw(x,D)u(x) =
1

(2π)n

∫
ei(x−y)·ξa

(
x+ y

2
, ξ

)
u(y)dydξ, u ∈ S (Rn).

(2.6)

For u ∈ S you can check that aw(x,D)u ∈ S as well.

Here

Dxj =
1

i

∂

∂xj
.

This definition can be extended to a more general class of symbols such that Opw(xj) is

multiplication by xj and Opw(ξj) = Dxj . In this class we will only need the case when

a ∈ S or when a(x, ξ) is a polynomial in ξ.

Example 3. The quantization of Landau’s Hamiltonian is given by

P =
1

2

∑
j

(Dxj − Aj(x))2 + V (x).

This is called the magnetic Schrödinger operator.

2.3. Unbounded operators. The quantization of a classical observable is ususally an

unbounded operator on a Hilbert space. We recall some results for unbounded operators.

Definition 2.2. Let H1, H2 be Banach spaces. An unbounded operator P : H1 → H2 means

a linear subspace D(P ) ⊂ H1 along with a linear map P : D(P )→ H2. P is called densely

defined if D(P ) is dense in H1.

Definition 2.3. The graph of an unbounded operator P : H1 → H2 is

G(P ) = {(x, Px) : x ∈ D(P )} ⊂ H1 ×H2.

P is closed if the graph is closed. P is closeable if G(P ) is the graph of an operator P ,

called the closure of P . We say P ⊂ Q if G(P ) ⊂ G(Q).

We will say a densely defined operator P : H → H on a Hilbert space H to be formally

self-adjoint or symmetric if

〈Pu, v〉 = 〈u, Pv〉, u, v ∈ D(P ).

Given a densely defined operator P : H1 → H2 between Hilbert spaces, the adjoint P ∗ is

defined as

D(P ∗) = {u ∈ H2 : ∃C = C(u), such that |〈u, Pv〉H2| ≤ C‖v‖H1 ,∀v ∈ D(P )}
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and P ∗ : D(P ∗)→ H1 satisfying

〈P ∗u, v〉 = 〈u, Pv〉, u ∈ D(P ∗), v ∈ D(P ).

The adjoint is well-defined by Riesz representation theorem. We recall some facts of the

adjoint operator without proof

Proposition 2.4. The operator P ∗ is closed. Also, if P ∗ is densely defined, then P is

closeable annd P = P ∗∗.

Now we can define self-adjoint operators.

Definition 2.5. Let P : H → H be a symmetric operator on a Hilbert space H. We say

P is self-adjoint if P = P ∗. P is called essentially self-adjoint if P is self-adjoint, that is

P = P ∗.

Example 4. Suppose Aj(x) are linear, V (x) = 0. Then Landau’s Hamiltonian

1

2

∑
j

(Dxj − Aj(x))2,

defined with the domain given by S (Rn) is an essentially self-adjoint operator. This follows

from a more general case of operator of the form

P =
1

2
〈Ax, x〉+

1

2
〈Bx,Dx〉+

1

2
〈Dx, Bx〉+

1

2
〈CDx, Dx〉

where A = AT , C = CT are two symmetric matrices. Let

p(x, ξ) =
1

2
〈Ax, x〉+ 〈Bx, ξ〉+

1

2
〈Cξ, ξ〉,

be the symbol of P in the sense that for u ∈ S ,

Pu = pw(x,D)u.

Let Np be the operator P with domain D(Np) = S (Rn) and Mp be the operator P with

domain

D(Mp) = {u ∈ L2(Rn) : Pu ∈ L2(Rn)}.

The proof of the following properties can be found in [Zw12, Appendix C.2]

• Mp is closed;

• Np = Mp;

• N∗p = M∗
p = Mp̄.

Those properties imply that if p is real-valued, then Mp is a self-adjoint operator and Np

is essentially self-adjoint.
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The importance of self-adjointness is due to the following spectral theorem.

Theorem 1. Let P : H → H be a self-adjoint operator on a Hilbert space. Then there

exists a measure space (X,M, µ), a measuable function f : X → R and a unitary operator

U : H → L2(X,µ) such that

• x ∈ D(P ) if and only if f · Ux ∈ L2(X,µ);

• U(Px) = f · Ux for any x ∈ D(P ).

Remark 1. The spectrum of an arbitrary operator P is defined as

Spec(P ) = {z ∈ C : P − z is not invertible }.

In the case of self-adjoint operators, we can apply Theorem 1 so that it is given by f(X).

In particular in that case the spectrum is real.

Using spectral theorem, we can define the unitary evolution by

U(t) = e−itP : H → H, U(t) = U∗Mexp(−itf)U, e−itf ∈ L∞(X,µ).

One then checks (again using the spectral theorem) that for u ∈ D(P ),

‖(U(t+ h)− U(t))u/h− Pu‖H → 0, h→ 0.

(Convert P to multiplication by f and use dominated convergence theorem based on fu ∈
L2.)

A quantum observable is a linear operator A : H → H, the evolution of a quantum

system is described by (Heisenberg picture)

A(t) = U(t)∗AU(t).

In other words,

d

dt
A(t) = i[P,A(t)]. (2.7)

Comparing the quantum evolution (2.7) with the classical evolution (2.3), we obtain a

similarity between them. The Poisson bracket corresponds to the commutator after quan-

tization. This is explained in the following example.

Example 5. We have {ξk, xj} = δjk and [ξwk , x
w
j ] = [Dxk , xj] = 1

i
δjk.

The ideal generalization of this would be

[pw, qw] = i{p, q}w,

for the quantization (2.6) or another form of quantization. However the Groenewold–Van

Hove theorem showed that it is impossible. However, it remains true up to “lower order

terms” – see Th

https://en.wikipedia.org/wiki/Canonical_quantization#Groenewold.27s_theorem
https://en.wikipedia.org/wiki/Canonical_quantization#Groenewold.27s_theorem
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2.4. Properties of pseudodifferential operators. The Weyl quantization has many

good properties.

Proposition 2.6. • Formally, (aw)∗ = (a)w. In particular, if a is real, then aw is

formally self-adjoint.

• (Calderon–Vaillancourt theorem [Zw12, Theorem 4.23]) If ∂αx,ξa ∈ L∞, then aw(x,D) :

L2 → L2 is bounded.

• (Beals theorem [Zw12, Theorem 8.3]) If A : L2 → L2 is bounded and adxj adξk · · ·A :

L2 → L2 is also bounded, then there exists a : R2n → C with ∂αx,ξa ∈ L∞ such that

A = aw(x,D).

The first property is straightforward calculation. The next two are deeper. We will

not prove those properties here but just indicate the L2 boundedness is easy if we assume

a ∈ S . In fact, when a ∈ S , we write

̂aw(x,D)u(η) =
1

(2π)n

∫ ∫ ∫
a

(
x+ y

2
, ξ

)
ei(x−y)·ξu(y)e−ix·ηdydξdx.

We write the phase as follows

〈x− y, ξ〉 − 〈x, η〉 = −2〈x+y
2
, η − ξ〉 − 〈y, 2ξ − η〉.

We then put

â1(ζ, ξ) :=

∫
a(z, ξ)e−iz·ζdz.

Hence,

̂aw(x,D)u(η) =
2n

(2π)n

∫
â1(2η − 2ξ, ξ)û(2ξ − η)dξ

=
1

(2π)n

∫
â1(η − ζ, η+ζ

2
)û(ζ)dζ := [Kû](η).

Because of Parseval’s identity (‖u‖L2 = (2π)−n/2‖û‖L2) it is enough to prove

‖Kv‖L2 ≤ C‖v‖L2 . (2.8)

We now recall Schur’s criterion for boundedness on L2: if

Kv(η) =

∫
K(η, ζ)v(ζ)dζ

and ∫
|K(η, ζ)|dη ≤ C,

∫
|K(η, ζ)|dζ ≤ C, (2.9)



PDE METHODS IN CONDENSED MATTER PHYSICS 11

then (2.8) holds with the same C. In fact, using Cauchy–Schwarz inequality we see that

‖Kv‖2
L2 =

∫ ∣∣∣∣∫ K(η, ζ)v(ζ)dζ

∣∣∣∣2 dη ≤ ∫ (∫ |K(η, ζ)|dζ
)(∫

|K(η, ζ)||v(ζ)|2dζ
)
dη

≤
(

sup
η

∫
|K(η, ζ)|dζ

)(
sup
ζ

∫
|K(η, ζ)|dη

)(∫
|v(ζ)|2dζ

)
≤ C2‖v‖2

L2 ,

(2.10)

which proves (2.8).

In our specific case

K(η, ζ) := â1(η − ζ, η+ζ
2

),

and (2.9) holds as a ∈ S so that a1 ∈ S as well.

We note that we can use a weaker condition:

|â1(ζ, ξ)| ≤ (1 + |ζ|)−n−ε, ε > 0,

as that also implies (2.9).

The composition properties for quantizations are also interesting. We recall the following

result without proof. In principle, it could be shown without general theory since it involves

only differential operators.

Proposition 2.7. Suppose aj =
∑
|α|≤mj aj,α(x)ξα, j = 1, 2. Then aw1 ◦ aw2 = aw3 with

a3 =
∞∑
k=0

1

k!

(
i

2
σ(Dx, Dξ, Dy, Dη)

)k
a1(x, ξ)a2(y, η)|x=y,ξ=η,

where σ is the symplectic form given in (2.1). In particular,

1

i
[aw1 (x,D), aw2 (x,D)] = {a1, a2}w(x,D) + rw(x,D),

where ξ 7→ r(x, ξ) is a polynomial of degree less than the degree of {a1, a2} (which is less

than or equal to m1 +m2 − 1.)

We refer to [Zw12, Theorem 4.12] for the proof.

2.5. Trace class operators. In this section we recall basic properties of trace class oper-

ators.

Let H be a Hilbert space and A : H → H be a compact operator. Then Spec(A) = {λi}
is discrete and can be ordered as

|λ0| ≥ |λ1| ≥ · · · ≥ |λj| → 0. (2.11)
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If A is self-adjoint, then λj’s are real. Moreover, there exists an orthonormal basis {ej}
consisting of eigenvectors of A, such that

Au =
∑
j

λj〈u, ej〉ej.

In the non-self-adjoint case, there is a similar form using singular value decomposition

(SVD).

Proposition 2.8. Let H1, H2 be Hilbert spaces and A : H1 → H2 be a compact operator.

Then there exists

s0 ≥ s1 ≥ · · · ≥ sj → 0, (2.12)

and orthonormal sets {ej} ⊂ H1, {fj} ⊂ H2, such that

Au =
∑
j

sj〈u, ej〉fj.

In fact {sj} \ {0} = Spec((A∗A)1/2) \ {0} = Spec((AA∗)1/2) \ {0}.

Proof. Observe that A∗A : H1 → H1 is a non-negative self-adjoint operator. Let {ej} be

the eigenvectors corresponding to the eigenvalues s2
j = λj(A

∗A). Let

fj =

{
s−1
j Aej, sj 6= 0

0, sj = 0.

Then it is direct to check fj’s are orthonormal and

Au =
∑
j

sj〈u, ej〉fj.

�

The set {sj} are called singular values of A. We list some properties without proof.

• sn(A) = min{‖A−K‖H1→H2 : rankK ≤ n}.
• sj+k(A+B) ≤ sj(A) + sk(B).

• sj+k(AB) ≤ sj(A)sk(B). In particular, sk(AB) ≤ ‖A‖sk(B).

Here is an example of how to use those inequalities.

Example 6. Let s > 0 and A : L2(Tn)→ Hs(Tn) ⊂ L2(Tn) be a bounded operator, then

sj(A) ≤ Cj−s/n. This is because

sj(A) = sj((−∆ + 1)−s/2(−∆ + 1)s/2A)

≤ ‖(−∆ + 1)s/2A‖L2→L2sj((−∆ + 1)−s/2)

≤ Cj−s/n.
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The claim sj((−∆ + 1)−s/2) ≤ Cj−s/n is proved by lattice point counting:

#{sj : |sj| ≥ r} . #{m ∈ Zn : (m2 + 1)−s/2 ≥ r} . r−n/s.

Now we can give the definition of trace class operators.

Definition 2.9. Let H be a Hilbert space, the family of trace class operators is

L1(H) = {A : H → H : A is compact and
∑
j

sj(A) <∞}.

The norm for L1(H) is defined as

‖A‖1 =
∑
j

sj(A).

It makes L1(H) a Banach space with a continuous functional called trace:

tr(A) =
∑
j

〈Aej, ej〉

where ej is any orthonormal basis.

The trace norm can also be written as

‖A‖1 =
∑
j

〈|A|ej, ej〉

where |A| = (A∗A)1/2 and {ej} is any orthonormal basis. This is because for two orthonor-

mal bases {ej} and {fj} we have∑
j

〈|A|ej, ej〉 =
∑
j,k,k′

〈|A|fk, fk′〉〈ej, fk〉〈ej, fk′〉 =
∑
k

〈|A|fk, fk〉. (2.13)

If A ∈ L1(H), then A = U |A| for some unitary operator U . Thus∑
j

|〈Aej, ej〉| =
∑
j

|〈U |A|ej, ej〉| ≤
∑
j

‖|A|1/2ej‖‖|A|1/2U∗ej‖

≤

(∑
j

〈|A|ej, ej〉
∑
k

〈|A|U∗ek, U∗ek〉

)1/2

=
∑
j

sj = ‖A‖L1 .

So the trace is well defined and bounded by the trace norm. For the same reason as (2.13),

the definition of trace does not depend on the choice of orthonormal bases.

We recall some properties of trace class operators without proof.

• (Lidskii’s theorem) If A ∈ L(H) has eigenvalues λj ordered as (2.11), then tr(A) =∑
j λj.
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• (Weyl inequalities) Let A ∈ L1(H) with eigenvalues λj and singular values sj or-

dered as in (2.11) and (2.12), then
n∑
j=0

|λj| ≤
n∑
j=0

sj, ∀n,

n∏
j=0

(1 + |λj|) ≤
n∏
j=0

(1 + sj), ∀n.

• If A : L2(Rn) → L2(Rn) is in L1(L2(Rn)), with integration kernel KA(x, y), then

KA(x, x) ∈ L1(Rn) and

tr(A) =

∫
Rn
KA(x, x)dx.

This is easily verified by KA(x, y) =
∑
sj(A)fj(x)ej(y).

We remark that the trace class condition is much stronger than the condition that KA(x, x)

can be integrated. For example, for any a 6= 1, Au(x) = u(ax) gives a bounded operator

with KA(x, y) = δ(y − ax). Then KA(x, x) = δ((1− a)x) = |1− a|−1δ(x) and∫
KA(x, x)dx = |1− a|−1.

But A is far from being in the trace class.

2.6. Grushin problems. In this section we review Schur’s complement formula and its

application to spectral theory. Schur’s complement formula is a direct lemma in linear

algebra:

Lemma 2.10. Suppose(
P R−
R+ R+−

)
=

(
E E+

E− E−+

)−1

: X1 ×X− → X2 ×X+ (2.14)

are bounded operators on Banach spaces, then P is invertible if and only if E−+ is invertible.

Moreover, in such case we have

P−1 = E − E+E
−1
−+E−, E−1

−+ = R+− −R+P
−1R−. (2.15)

Proof. The proof is direct. If E−+ is invertible, then from

PE +R−E− = I, PE+ +R−E−+ = 0,

we get PE − PE+E
−1
−+E− = I. Similarly, since

EP + E+R+ = I, E−P + E−+R+ = 0,
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we get EP −E+E
−1
−+E−P = I. We conclude that P is invertible and P−1 = E−E+E

−1
−+E−.

The proof for the other direction is similar. �

If R+− = 0, we have the following observation.

Proposition 2.11. If R+− = 0 in(2.14), then R+ and E− are surjective, and R− and E+

are injective.

Proof. This is because we have

R+E+ = I, E−R− = I.

�

We will call the R+− = 0 case a Grushin problem, that is(
P R−
R+ 0

)
=

(
E E+

E− E−+

)−1

: X1 ×X− → X2 ×X+ (2.16)

Perturbation of Grushin problems are stable due to the Neumann series argument.

Proposition 2.12. Suppose (2.16) is true, and suppose A : X1 → X2 satisfies

‖EA‖X1→X1 , ‖AE‖X2→X2 < 1,

then the Grushin problem

PA =

(
P + A R−
R+ 0

)
is still well-posed with inverse (

F F+

F− F−+

)
where

F−+ = E−+ +
∞∑
k=1

(−1)kE−A(EA)k−1E+.

Proof. Let

P = E−1 =

(
P R−
R+ 0

)
then

PA = P
(

1 + E
(
A 0

0 0

))
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and

P−1
A =

(
1 + E

(
A 0

0 0

))−1

P−1 =
∞∑
k=0

(−1)k
(
E
(
A 0

0 0

))k
E

= E +
∞∑
k=1

(−1)k
(

(EA)k 0

E−A(EA)k−1 0

)
E .

�

We will usually study the Grushin problem for Fredholm operators. For more details,

see [DyZw2, Appendix C].

Definition 2.13. A bounded linear operator P : X1 → X2 between two Banach spaces is

called a Fredholm operator if the kernel and cokernel of P are both finite dimensional. The

index of a Fredholm operator is defined as

indP = dim kerP − dim cokerP.

Proposition 2.14. (i) Suppose P : X1 → X2 is a Fredholm operator. Then there exists

finite dimensional spaces X± and operators R− : X− → X2 and R+ : X1 → X+ such that

the Grushin problem (2.16) is well-posed. In particular, the image of P is closed.

(ii) Suppose the Grushin problem (2.16) is well-posed, then P is a Fredholm operator if and

only if E−+ is a Fredholm operator, and

indP = indE−+.

Proof. (i) Let n+ = dim kerP and n− = dim cokerP . Let X± = Cn± . Suppose kerP is

spanned by x1, · · · , xn+ , by Hahn-Banach theorem there exists x∗j : X1 → R such that

x∗j(xi) = δij. We then define

R+ : X1 → Cn+ , x 7→ (x∗1(x), · · · , x∗n+
(x)).

On the other hand, choose a representative y1, · · · , yn− of cokerP and define

R− : Cn− → X2, (a1, · · · , an−) 7→
n−∑
j=1

ajyj.

We claim the operator (
P R−
R+ 0

)
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is bijective. First, if (
P R−
R+ 0

)(
u

u−

)
= 0,

then since the intersection of the range of P and R− is zero, we have Pu = R−u− = 0, so

u− = 0 and u ∈ kerP . By R+u = 0 we conclude u = 0. We conclude injectiveness. On the

other hand, (R,R−) : X1×X− → X2 is surjective by definition. Since modifying u ∈ kerP

does not affect value of Pu, we conclude the whole matix is also surjective.

Finally, PX1 can be viewed as the image of the closed subspace (X1, 0) under the invert-

ible map (P,R+) (mod kerP ). So the image of P is closed.

(ii) Take u− = 0, we observe that

Pu = v ⇐⇒ u = Ev + E+v+, 0 = E−v + E−+v+. (2.17)

So E− : PX1 → E−+X+ and induces

E#
− : X2/PX1 → X−/E−+X+.

By Proposition 2.11, E− is surjective, so E#
− is surjective. On the other hand, E−v ∈

E−+X+ will give us v ∈ PX1 by (2.17), so E#
− is also injective. We conclude

dim cokerP = dim cokerE−+.

Now we look at

E+ : kerE−+ → kerP.

It is injective by Proposition 2.11. Moreover, if u ∈ kerP , then by (2.17) we get v+ ∈ kerE−+

such that E+v+ = u, so E+ is also surjective. We conclude

dim kerP = dim kerE−+.

This finishes the proof of (ii). �

Corollary 2.15. • The family of Fredholm operators is open and the index map is

locally constant, that is

ind : π0(Fred(H1,H2))→ Z.

• If K is a compact operator, then ind (I +K) = 0.

• A Fredholm operator has closed image.
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2.7. Vector bundles. Let E,X be topological spaces, π : E → X is called a (complex)

vector bundle of rank r if for any x ∈ X, π−1(x) is a (complex) vector space of dimension

r, and there exists a covering {Ui} of X such that we have an isomorphism which is linear

on each fiber

π−1(Ui) Ui × Cr

Ui

π
pr1

∼=

A vector bundle of rank 1 is called a line bundle. We will only consider complex vector

bundles.

Let E,F be two vector bundles over X. A vector bundle morphism f : E → F is a

continuous map preserving each fiber and linear on each fiber:

E F

X

f

A bijective morphism is called an isomorphism. Let g : Y → X be a continuous map

between topological spaces, π : E → X be a vector bundle on X, then the pullback bundle

πg∗E : g∗E → Y is defined as

g∗E := {(y, p) : y ∈ Y, p ∈ E, π(p) = g(y)}, πg∗E(y, p) := y.

If Y → X is an inclusion, then pullback bundle can be thought of as the restriction of the

bundle E to Y and we denote it by E|Y .

A vector bundle isomorphic to X × Cr is called a trivial bundle. In general, a vector

bundle can be nontrivial, and we are interested in criteria guaranteeing triviality. One is

provided by the following proposition from Bott–Tu [BoTu82, Section 6].

Proposition 2.16. Let X be a compact Hausdorff space, and E → X × [0, 1] be a vector

bundle. Let p1 : X × [0, 1]→ X be the projection to X and i0 : X = X × {0} → X × [0, 1]

be the inclusion, then E ∼= p∗1i
∗
0E. In particular, if i∗0E is trivial, then E is trivial.

Proof. Let F = i∗0E. It suffices to construct an isomorphism between E and p∗1F . We call

the variable t ∈ [0, 1], then at t = 0, E|t=0 = F by definition. We can then find a finite cover

Ui of X, such that over each Ui, there exists εi > 0 such that the isomorphism extends

to Ui × [0, εi]. Using a partition of unity, we get a map E → p∗1F in a neighbourhood

X × [0, ε] for some ε > 0. By choosing ε small, we may assume it is an isomorphism
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since isomorphism is an open condition. By connectedness of [0, 1], we can extend this

isomorphic to the whole X × [0, 1]. �

Corollary 2.17. Any vector bundle over a compact contractible Hausdorff space is trivial.

Proof. By definition, X is contractible if there exist (with ∗ denoting a point space) i : ∗ →
X, p : X → ∗ and H : X × [0, 1]→ X such that H0 = idX and H1 = i ◦ p. By Proposition

2.16, E = H∗0E
∼= H∗1E = p∗i∗E. So E is a trivial bundle. �

For paracompact spaces, this remains true but the proof becomes a bit more subtle. We

provide a direct proof for the case we will need.

Corollary 2.18. Any vector bundle over Rn is trivial.

Proof. Let E be a vector bundle over Rn. Then E is trivial over B(0, ε) for some ε > 0.

Since B(0, R)\B(0, ε) is homeomorphic to Sn−1× [0, 1], we conclude from Proposition 2.16

that E is trivial over B(0, R) for any R > 0. Then it is easy to glue those trivializations to

get a global trivialization of E over Rn. �

3. Spectra of magnetic Schrödinger operators

Let B > 0 be a constant and suppose we have a constant magnetic field ~B = (0, 0, B).

Let the vector potential be A = (0, Bx1, 0). We are interested in the spectrum of the

magnetic Schrödinger operator

PB = D2
x1

+ (Dx2 +Bx1)2 +D2
x3

(3.1)

with symbol pB = ξ2
1 +(ξ2+Bx1)2+ξ2

3 . We have proved in Example 4 that PB is self-adjoint

with domain

D(PB) = {u ∈ L2(R3) : PBu ∈ L2(R3)}.
Before studying PB, we first look at two simpler examples.

3.1. Spectrum of the Laplace operator. Let P = −∆ be the Laplace operator on Rn,

with domain D(P ) = {u ∈ L2(Rn) : Pu ∈ L2} = H2(Rn). Then we may use Fourier

transform to conjugate and explicitly diagonalize it. Let

Uu(ξ) =
1

(2π)n/2

∫
u(x)e−ix·ξdx,

then U : L2(Rn)→ L2(Rn) is unitary, and

UPU∗ = |ξ|2.

In particular, Spec(P ) = [0,∞).
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The propagation equation

(i∂t − P )u = 0, u|t=0 = u0

can be explicitly solved by

û(ξ) = e−it|ξ|
2

û0.

We call λ = |ξ|2 the dispersion relation.

There is a similar operator P0 =
√
−∆. We can also diagonalize it by UP0U

∗ = |ξ|. The

dispersion relation for the corresponding half wave equation (i∂t − P0)u = 0 will then be

λ = |ξ|.

3.2. Spectrum of the harmonic oscillator. Let Pω = −∆ +
∑d

j=1 ω
2
jx

2
j , ωj > 0. This

is called the harmonic oscillator. For each j, we can do a change of variable yj =
√
ωjxj

and get

D2
xj

+ ω2
jx

2
j = ωj(D

2
y + y2).

Without loss of generality, we study the operator P = D2
x + x2 on R. We define the

“annihilation operator” A = Dx− ix and the “creation operator” A∗ = Dx + ix. We notice

• A∗A = D2
x + x2 − 1 = P − 1;

• AA∗ = D2
x + x2 + 1 = P + 1;

• [A,A∗] = 2.

Let v0 = e−x
2/2, then it is easy to verify that Av0 = 0, thus Pv0 = v0. We notice

PA∗v0 = (AA∗ + 1)A∗v0 = 3A∗v0, so we will let v1 = A∗v0 and we have Pv1 = 3v1. In

general, let

vn = (A∗)nv0

then

Pvn = (2n+ 1)vn.

So A∗ “creates” higher and higher excited states of P . Since vn are eigenvectors of P with

distinct eigenvalues, we have

〈vn, vm〉 = 0, n 6= m.

Let un =
vn
‖vn‖L2

= Hn(x)e−x
2/2, it is easy to verify inductively that Hn(x) are polynomials

of degree n, with nonvanishing leading coefficients. Moreover, Hn(−x) = (−1)nHn(x).

Those polynomials Hn(x) are called Hermite polynomials.

We now claim the sequence {un} is an orthonormal basis of L2(R). It suffices to prove

{un} is dense. We prove by contradiction: suppose there is 0 6= g ∈ L2(R) such that

0 =

∫
g(x)un(x)dx, ∀n ∈ N,
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then we know ∫
g(x)xne−x

2/2dx = 0, ∀n ∈ N.

By Taylor expansion of e−ixξ we know∫
g(x)e−ixξ−x

2/2dx = 0, ∀ξ ∈ R.

This implies that g(x) = 0, a contradiction.

So if we define

U : L2(R)→ `2(N), Uu(n) =

∫
u(x)un(x)dx.

Then UPU∗u(n) = (2n+ 1)u(n). In particular,

Spec(P ) = {2n+ 1 : n ∈ N}.

For Pω = −∆ +
∑d

j=1 ω
2
jx

2
j , it follows that

Spec(Pω) =

{
d∑
j=1

ωj(2nj + 1) : nj ∈ N

}
.

3.3. Spectrum of the magnetic Schrödinger operator. Now we come back to the

magnetic Schrödinger operator (3.1). We can first use

U1u(x1, ξ2, ξ3) =
1

2π

∫
u(x1, x2, x3)e−ix2ξ2−ix3ξ3dx2dx3

and get

U1PU
∗
1 = D2

x1
+ (ξ2 +Bx1)2 + ξ2

3 .

Then it looks very much like the harmonic oscillator: we put

x1 = B−
1
2y1 −B−1ξ2, y1 = B

1
2x1 +B−

1
2 ξ2,

so that

D2
x1

+ (ξ2 +Bx1)2 = B(D2
y1

+ y2
1).

This motivates the introduction of the following unitary operator:

U2v(y1, ξ2, ξ3) = B−1/4v(B−1/2y1 −B−1ξ2, ξ2, ξ3),

for which we have

U2U1PU
∗
1U
∗
2 = B(D2

y + y2) + ξ2
3 .

We then use

U3u(n, ξ2, ξ3) =

∫
u(y1, ξ2, ξ3)un(y1)dy1
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and let U = U3U2U1. Then

UPU∗u(n, ξ2, ξ3) = (B(2n+ 1) + ξ2
3)u(n, ξ2, ξ3).

So we explicitly diagonalize (3.1) and conclude

Spec(PB) = {B(2n+ 1) + ξ2
3 : n ∈ N, ξ2, ξ3 ∈ R} = [B,∞).

3.4. A different gauge. We could also consider a two dimensional version of PB:

PB = D2
x1

+ (Dx2 +Bx1)2. (3.2)

In that case

Spec(PB) = {B(2n+ 1) : n ∈ N}.

The eigenspaces have infinite multiplicity and are given by

Hn :=

{
u(x) = B

1
4

∫
R
un(B

1
2x1 +B−

1
2 ξ2)f(ξ2)eix2ξ2dξ2 : f ∈ L2(R)

}
.

It is interesting to compare this to the eigenfunctions in the symmetric gauge:

PB = (Dx1 −Bx2/2)2 + (Dx2 +Bx1/2)2.

In this case, let w = x1 + ix2, we have

PB = −∆ + 1
4
B2|x|2 − iB(x1∂x2 − x2∂x1)

= −4∂w∂w̄ + 1
4
B2|w|2 −B(w∂w − w̄∂w̄)

=
(
−2∂w + 1

2
Bw̄
) (

2∂w̄ + 1
2
Bw
)

+B

So one ground state is given by u0 = exp(−Bww̄
4

) and the other ground states can be written

as

u(w, w̄) = f(w)e−
B|w|2

4

where f(w) is a holomorphic function such that∫
|f(w)|2e−

B|w|2
2 dm(w) <∞.

4. Magnetic oscillations for the free electron

In this section we study the magnetic oscillations for the free electron. The mathematical

tool to study it the the density of states.
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4.1. Motivation. Suppose A is a self-adjoint matrix acting on CN . We can then think of

dρ(λ) :=
∑

µ∈Spec(A)

δ(λ− µ)dλ = ρ(λ)dλ

as measuring density of states: we we count the number of states per unit of energy:

|Spec(A) ∩ [a, b]| =
∫ b

a

dρ(λ).

More generally, we have ∑
µ∈Spec(A)

f(µ) =

∫
f(λ)dρ(λ), f ∈ C(R).

Another way to think about this is to order the eigenvalues (“states” in physics) from the

smallest one (“ground state”) onwards and to consider

ω(λ) := |Spec(A) ∩ (−∞, λ]|, ρ(λ) =
dω(λ)

dλ
.

We can then think of the measure dρ(λ) as a distribution ρ ∈ S ′(R) (see §2.2).

These definition is applicable for any operator with discrete spectrum but already care

is needed to guarantee that ρ ∈ S ′.

Example 7. Let P = −∆ +
∑n

j=1 ωjx
j, ωj > 0, be the harmonic oscillator in Rn. Show

that for f ∈ S ′, f(P ) ∈ L1(L2(Rn)) and that trf(P ) =
∫
f(λ)ρ(λ)dλ where ρ ∈ S ′(R).

This definition of density of states are not applicable to operators appearing in condensed

matter physics: already for P = −∆ we see that f(P ) is not of trace class. The same is

true for magnetic Schrödinger operators considered in §3. We have then consider density

of states per unit of energy (as above) per unit volume. That is done by renormalizing the

trace and introducing

t̃rf(P ) := lim
L→∞

tr(1[−L,L]nf(P ))

(2L)n
,

provided that the traces and the limit exist: we are restricting f(P ) to a box of size L,

taking the trace and then dividing by the volume of the box and letting L→∞.

Density of states plays an important role in the kinetic theory of solids as it allows

calculations of such quantities as the internal energy, specific heat capacity and thermal

conductivity. In this section, we will be interested in the internal energy and magnetization

That corresponds to choosing the function f in t̃rf(PB) using the Dirac–Fermi distribution

(see [Ka03, §D.1.2]): for chemical potential z0 and temperature T we take

f(λ) := fT,z0(λ) := T log

(
1 + exp

(
z0 − λ
T

))
. (4.1)
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From the mathematical point of view we will be interested in asymptotic behaviour of free

energy, Ω and magnetization m,

Ω(B) = Ω(B, T, z0, N) := Nz0 − f̃T,z0(PB), m(B) = ∂BΩ(B, T, z0, N). (4.2)

as T → 0 and B → 0. The chemical potential and the number of particles are related by

the condition that ∂z0Ω = 0 but we will make a simplifying assumption and fix N and z0

(the simplified relation between them can be derived by putting T = B = 0 – see [HS90b,

§2] for a finer analysis explaining while this approximation is justified). The goal will be

to see the oscillations in m(B) as a function of 1/B – see Figures 1, 2 and 3. For the

fascinating story of theoretical and experimental discoveries related to these oscillations we

refer to [Sh84, Chapter 1].

4.2. Density of states. Suppose we have a self-adjoint operator P , then for a bounded

measurable function f on R, it makes sense to define f(P ) : H → H thanks to spectral

theorem. If for f ∈ Cc(R), f(P ) is in trace class (defined in section 2.5), then we can

define trf(P ) and get a measure µ supported on the spectrum of P , defined via Riesz

representation theorem:

trf(P ) =

∫
f(λ)dρ(λ).

This measure µ is called the density of states for P . In general, however, we would not

have f(P ) ∈ L1, so we will study the regularized trace. In our example, when H = L2(Rn),

we will study

t̃rf(P ) = lim
L→∞

tr(1[−L,L]nf(P ))

(2L)n
. (4.3)

Let us first look at the example of P = −∆. In this case

f(−∆) = F−1f(|ξ|2)F

and the integration kernel of f(−∆) is given by

Kf(−∆)(x, y) =
1

(2π)n

∫
ei(x−y)·ξf(|ξ|2)dξ.

When restricting to the diagonal, Kf(−∆)(x, x) = 1
(2π)n

∫
f(|ξ|2)dξ is a constant and is not

integrable. However, when we multiply by a cutoff function χ(x) ∈ C∞0 (Rn), the integration

kernel of A = χ(x)f(−∆) is

KA(x, y) =
χ(x)

(2π)n

∫
ei(x−y)·ξf(|ξ|2)dξ ∈ S (Rn × Rn).

If we fix a torus Tn containing the support of χ, then

A : L2(Rn)→ C∞0 ((B(0, R)) ⊂ Hs(Tn), ∀s > 0.
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Choose s > n and use Example 6, we see A ∈ L1 and

1[−L,L]nf(−∆) = 1[−L,L]nχ(x)f(−∆) ∈ L1.

Thus

K1[−L,L]nf(−∆)(x, x) =
1[−L,L]n

(2π)n

∫
f(|ξ|2)dξ

and

tr(1[−L,L]nf(−∆)) =
(2L)n

(2π)n

∫
f(|ξ|2)dξ.

So the regularized trace is given by

t̃r(f(−∆)) =
1

(2π)n

∫
f(|ξ|2)dξ =

1

(2π)n

∫
R

∫
Rn
δ(s− |ξ|2)dξf(s)ds

=
vol(Sn−1)

(2π)n

∫
R

∫ ∞
0

δ(s− r2)rn−1drf(s)ds

=

∫
R
cns

n−2
2

+ f(s)ds =: ρ(f), cn :=
vol(Sn−1)

2(2π)n

(4.4)

so the density of states is the distribution cns
n−2
2

+ , where for γ > −1,

sγ+ :=

{
sγ, s > 0,

0 s ≤ 0.
(4.5)

4.3. Two dimensions. We study the desity of states for the 2-dimensional magnetic

Schrödinger operator

PB = D2
x1

+ (Dx2 +Bx1)2 = U∗(B(2n+ 1))U

where U : L2(R2)→ `2(N, L2(R)) is given by

Uu(n, ξ2) =
B1/4

√
2π

∫
u(x1, x2)un(B1/2x1 +B−1/2ξ2)e−ix2ξ2dx1dx2

and

U∗v(x1, x2) =
B1/4

√
2π

∑
n

∫
un(B1/2x1 +B−1/2ξ2)v(n, ξ2)eix2ξ2dξ2.

For f ∈ S (R), the integration kernel of f(PB) is

K(x, x′) =
B1/2

2π

∑
n

∫
un(B1/2x1 +B−1/2ξ2)un(B1/2x′1 +B−1/2ξ2)f(B(2n+ 1))ei(x2−x

′
2)ξ2dξ2.



26 ZHONGKAI TAO AND MACIEJ ZWORSKI

Figure 1. The first experimental observation of magnetic oscillations:

the de Haas–van Alphen experiment of putting bismuth in magnetic field.

Reproduced from [Sh84].

Restricting to the diagonal we get

K(x, x) =
B1/2

2π

∑
n

∫
|un(B1/2x1 +B−1/2ξ2)|2f(B(2n+ 1))dξ2 =

B

2π

∑
n

f(B(2n+ 1)).

As before we conclude the regularized trace is

t̃rf(PB) =
B

2π

∑
n

f(B(2n+ 1)). (4.6)

As discussed in §4.1 the free energy per volume is given by

Ω(z0, B,N, T ) = Nz0 − t̃rfz0,T (PB)

where fz0,T (x) = T log(1 + exp( z0−x
T

)) and z0 is determined by ∂Ω
∂z0

= 0. In the T → 0 limit,

fz0,T → (z0 − x)1
+, f ′z0,T → −(z0 − x)0

+, f ′′z0,T → δz0(x)

where

xγ+ = xγ1x>0, Re γ > −1. (4.7)
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Figure 2. The plot of ∂BΩ as a function of 1/B for the two dimensional

Hamiltonian. It is given by (4.8) where we put z0 = 0. It is compared to the

approximation (4.9).

From (4.6) we get

Ω = Nz0 −
B

2π

∑
n

fz0,T (B(2n+ 1))

and

m(B) = ∂BΩ(B) = − 1

2π

∑
n

fz0,T (B(2n+ 1))− B

2π

∑
n

(2n+ 1)f ′z0,T (B(2n+ 1)).

In the T → 0 limit we have

m(B) =
1

2π

∑
z0−B(2n+1)≥0

(−z0 + 2B(2n+ 1))

and

m(B) = ∂BΩ(B) =
M + 1

2π
(2B(M + 1)− z0) , M :=

[
z0 −B

2B

]
. (4.8)

One can show without much trouble (see proof of [BeZw19, Theorem 3] for a slightly

more complicated case of relativistic Landau levels) that

m(B) =
1

2π
z0σ(z0B

−1 − 1) +O(B), σ(t) := [t/2]− t/2 + 1/2. (4.9)
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Figure 3. The plot of ∂BΩ/
√
B as a function of 1/B (m := ∂BΩ is the

“magnetization”). We also show one term and two terms approximation

using Fourier series/Poisson summation formula. Oscillations are smoother

in 3D when a potential is present, that is, when we are dealing with metals.

4.4. Three dimensions. The 3-dimensional case is similar to 2-dimensional case and we

get

t̃rf(PB) =
B

(2π)2

∑
n

∫
f(B(2n+ 1) + ξ2

3)dξ3. (4.10)

As a sanity check we verify that t̃rf(PB)→ t̃rf(−∆) as B → 0. Observe as B → 0, (4.10)

is a Riemann sum and converges to

1

2(2π)2

∫
f(s+ ξ2

3)dsdξ3 =
1

2(2π)2

∫
f(ρ2 + ξ2

3)2ρdρdξ3 =
1

(2π)3

∫
f(ρ2 + ξ2

3)ρdρdθdξ3

=
1

(2π)3

∫
f(|ξ|2)dξ.

As in (4.4) we obtain a formula for the density of states:

t̃rf(PB) =

∫
f(λ)ρB(λ)dλ, ρB(λ) =

B

(2π)2

∞∑
n=0

(λ− (2n+ 1)B)
− 1

2
+ . (4.11)

We will follow [HS90b, §2] (which in turn follows presentations in the physics literature

such as [Ca64]) and describe asymptotics of m(B) = ∂BΩ(B), Ω(B) := Ω(B, 0, N, z0) – see

(4.2). That means using a specific f = fT,z0 and considering T → 0.

4.4.1. Formula for mB and statement of the result. We proceed as in §4.3 to we obtain

from (4.11) a formula for mB. (Strictly speaking, we need to differentiate Ω with respect
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to B for T > 0 and then take the limit T → 0+.) This gives

m(B) =
1

(2π)2

∞∑
n=0

(
2z0(z0 − (2n+ 1)B)

1
2
+ − (10/3)(z0 − (2n+ 1)B)

3
2
+

)
. (4.12)

The sum in (4.12) can be expressed using the Riesz means of the harmonic oscillator,

rγ(s) :=
∞∑
n=0

(s− (2n+ 1))γ+, γ > 0, (4.13)

as follows

m(B) =
1

(2π)2

∞∑
n=0

(
−(10/3)B

3
2 r 3

2

(z0

B

)
+ 2z0B

1
2 r 1

2

(z0

B

))
. (4.14)

The asymptotics of rγ presented in the next section will give

Theorem 2. For m(B) given by (4.12) with z0 > 0 we have, as B → 0,

B−
1
2m(B) =

2z0

(2π)2
Γ
(

3
2

) ∞∑
k=1

(−1)k(πk)−
3
2 cos

(
kπz0

B
− 3π

4

)
+O(B

1
2 ). (4.15)

This result is illustrated in Figure 3. The asymptotics of the next section provide an

expansion of the error term in (4.15) as well. However, when the constant z0 is replaced

by z0(B) (determined by ∂z0Ω = 0) additional terms appear – see [HS89, Proposition 2.2].

4.4.2. Asymptotics of Riesz means. This is a nice exercise in classical analysis which is a

good illustration of various asymptotic methods.

We start with the following application of the Fourier inversion formula (2.5):

Lemma 4.1. In the notation of (4.7) and for Re γ > 0,

σγ+ =
Γ(γ + 1)

2πi

∫ c+i∞

c−i∞
u−γ−1eσudu, (4.16)

for any c > 0, and u 7→ u−γ−1 defined on C \ (−∞, 0].

Proof. For c > 0, f(σ) := σγ+e
−cσ is integrable and

f̂(s) =

∫ ∞
0

σγe−σ(c+is)dσ = (c+ is)−γ−1

∫ ∞
0

((c+ is)σ)γe−σ(c+is)d(σ(c+ is))

= (c+ is)−γ−1

∫
C

τ γe−τdτ = Γ(γ + 1)(c+ is)−γ−1.

where C is the contour [0,∞) 3 σ 7→ τ = σ(c + is), which we deform to [0,∞) and apply

the definition of the Γ-function.
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Figure 4. On the left the contour used for the evaluation of the Fourier

transform of σ 7→ σγ+e
−σs in the proof of Lemma 4.1. On the right the

contours in (4.16) and the Hankel contour in (4.17).

Since s 7→ (c + is)−γ−1 in integrable, the Fourier inversion formula ((2.5) with n = 1)

now gives

σγ+e
−cσ =

Γ(γ + 1)

2π

∫ ∞
−∞

(c+ is)−γ−1eσ(is+c)e−σcds,

where the integral converges since −Re γ − 1 < −1. Cancelling e−σc on each side and

putting u = c+ is (with du = ids) gives (4.16). �

Remark 2. By putting σ = 1, (4.16) gives the following formula for the reciprocal of the

Γ function:
1

Γ(z + 1)
=

1

2πi

∫ c+i∞

c−i∞
u−z−1eudu, Re z > 0.

To obtain a formula valid for all z ∈ C we need to take advantage of exponential decay

of eu when Reu → −∞. For that we deform the contour to a Hankel contour, C shown

in Figure 4. The contour deformation is easily justified when Re z > 0 and, by analytic

continuation, we obtain a formula valid for all z ∈ C:

1

Γ(z + 1)
=

1

2πi

∫
C

u−z−1eudu, z ∈ C. (4.17)

We can now obtain asymptotics of the Riesz means:
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Figure 5. Contour deformation used in the proof of Lemma 4.2

Lemma 4.2. For rγ(s) defined by (4.13) for γ > 0 we have, for every M ,

rγ(s) = Γ(γ + 1)

(
∞∑
k=1

(−1)k(πk)−γ−1 cos
(
kπs− (γ+1)π

2

)
+ 1

2

M∑
j=0

γj
Γ(γ + 2− 2j)

sγ+1−2j

)
+O(sγ−1−2M),

where γj come from the Taylor expansion t/ sinh t =
∑∞

j=0 γjt
2j, |t| < π/2, γ0 = 1.

Proof. Using Lemma 4.1 and the fact that
∑∞

n=0 e
t(s−2n−1) = ets/(2 sinh t), we rewrite rγ as

rγ(s) =
Γ(γ + 1)

4πi

∫ c+∞

c−i∞
est(sinh t)−1t−γ−1dt.

The residue theorem and contour deformation show that

rγ(s) = Γ(γ + 1)
∞∑
k=1

(−1)k(πk)−γ−1 cos
(
kπs− (γ+1)π

2

)
+ Iγ(s),
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where, with the Hankel contour C of Remark 2,

Iγ(s) :=
Γ(γ + 1)

4πi

∫
C

est(sinh t)−1t−γ−1dt.

This we deform to

C̃ (ε) := C+(ε) + C−(ε) + C (ε),

where C± = (−∞,−ε]± i0 with positive (−) and negative (+) orientations and C (ε) is the

circle of radius ε centered at 0 with positive orientation – see Figure 5.

Using exponential decay of est on C±(ε) we see that

Iγ(s) = Iγ(s, ε) +O(e−εsε−γ−1), Iγ(s, ε) :=
Γ(γ + 1)

4πi

∫
C (ε)

est(sinh t)−1t−γ−1dt. (4.18)

We now expand t/ sinh t in Taylor series at 0 so that in the notation of the lemma,

Iγ(s, ε) =
Γ(γ + 1)

2

M∑
j=0

γj
1

2πi

∫
C (ε)

estt2j−γ−2dt+O(ε2M−γ−1eεs).

We now use (4.17) by inserting the “missing” contours C±(ε), estimating their contributions

as in (4.18) and changing variables u = ts:

1

2πi

∫
C (ε)

etst2j−γ−2dt =
1

2πi

∫
C̃ (ε)

etst2j−γ−2dt+O(e−εsε−γ−2)

= sγ+1−2jΓ(γ + 2− 2j)−1 +O(e−εsε−γ−2).

Inserting this in (4.18) gives an expansion for rγ(s) with an error

O(eεsε2M−γ−1 + e−εsε−γ−2).

This can be optimized by choosing ε = ε(s) so that e−2εs = ε2M and gives an error estimate

O(ε(s)M−γ−2) = O(s−M/2), M � 1 (we note that s−1 = ε(s)/M | log(ε(s))| &M ε(s)1−δ, for

any δ > 0). By changing M this concludes the proof. �

Proof of Theorem 2. We need to show the cancellation of the leading non-oscillatory con-

tributions in (4.14):

−
Γ(5

2
)

Γ(7
2
)

10
3
B

3
2 (z0/B)

3
2

+1 + 2
Γ(3

2
)

Γ(5
2
)
z0B

1
2 (z0/B)

1
2

+1 = z
5
2
0 B
−1(−2

5
10
3

+ 4
3
) = 0,

where we used Γ(z + 1) = zΓ(z). The next term in the expansion of rγ, γ = 1
2
, 3

2
provides

the O(B
1
2 ) error in (4.15). �
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5. Bloch–Floquet theory

5.1. Motivation. We will now consider electrons in a periodic structure such as a crystal

or a metal. In this case, electrons are interacting with each other and are subjected to

forces from the atoms forming the periodic structure (which we assume do not move or

interact with each other).

An extremely successful model for that is given by a periodic Schrödinger operator

P = −∆ + V (x), V ∈ C∞(Rn;R), V (x+ γ) = V (x), γ ∈ Γ, (5.1)

where Γ =
⊕n

j=1 γjZn, {γj}nj=1 linearly independendent, is a lattice in Rn (we will concen-

trate on n = 2). This is a Hamiltonian in which there is no interaction between electrons

and it corresponds to a pseudo-particle rather than the actual electrons in the metal. We

will indicate why this approximation is acceptable in §5.2.

We will then diagonalize operators such as (5.1) and develop band theory.

5.2. Hohenberg-Kohn theorem and the passage to non-interacting pseudopar-

ticles. In physical modeling transition to non-interacting pseudo-particles modeling the

actual quantum mechanical system is now most frequently done using the density func-

tional theory. It is an approach to studying the Schrödinger equation by writing quantities

of interest, such as energies, in terms of the particle density, instead of in terms of the

wave function. This can simplify computations considerably, especially when the number

of particles is large.

In an N -body system we are primarily interested in the ground state that is an N -body

wave function ψ (see Theorem 3) which is a function of N (2D or 3D) variables, for which

〈ψ|Ĥ|ψ〉 = min
‖ϕ‖=1

〈ϕ|Ĥ|ϕ〉.

In the non-interacting system (especially when considering electrons which are fermions –

we will neglect such issues here), a composite ψ can be build of non-interacting particles

at different energy levels (not the ground state of the full Hamiltonian). The game here is

to replace the actual ground state by a ground state of a non-interactive system with the

same density.

To explain this we present here an extract from the notes by Kiril Datchev

https://www.math.purdue.edu/~kdatchev/dftintro.pdf

(see also arXiv:2207.05794). They can be consulted for a more detailed discussion and

references.

https://www.math.purdue.edu/~kdatchev/
https://www.math.purdue.edu/~kdatchev/dftintro.pdf
http://arxiv.org/abs/2207.05794
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A very general Hamiltonian describing an N -electron system is given by

Ĥ = T̂ + V̂ee + V̂ ,

where

T̂ = −1

2

N∑
j=1

∇2
j , V̂ee =

∑
1≤i<j≤N

1

|~ri − ~rj|
, V̂ =

N∑
i=1

v(~ri) =
N∑
i=1

∫
d3r δ(~r − ~ri)v(~r),

and where v is the potential coming from the external forces on the electrons. Here T̂ is the

kinetic energy term, V̂ee is the repulsive Coulomb potential energy between the electrons,

and V̂ is the potential energy due to external forces. We are ignoring the sizes of the nuclei,

the movements of the nuclei, spin, and relativistic effects.

For example, consider a system of N electrons in a molecule made up of M atoms. Then

v is the attractive Coulomb potential energy arising from the M atomic nuclei, given by

v(~r) =
M∑
k=1

−Zk
|~r − ~Rk|

, (5.2)

where ~Rk is the position of the kth nucleus and Zk is the number of protons it has.

The density is defined by

n(~r) = 〈ψ|n̂(~r)|ψ〉 =

∫
d3r1

∫
d3r2 · · ·

∫
d3rN ψ

∗(~r1, . . . , ~rN)
N∑
i=1

δ(~r − ~ri)ψ(~r1, . . . , ~rN).

Note that
∫
d3r n(~r) = N , and, for any region U , the quantity

∫
U
d3r n(~r) gives the expected

value of the number of electrons to be found in U .

The basic case is the hydrogen atom, whereN = M = Z1 = 1. The ground state energy of

the electron is precisely −0.5 Hartrees, the corresponding wavefunction is ψ(r) = e−r/
√
π,

the density is n(r) = e−2r/π, and the probability density of the electron being at distance

r from the nucleus is 4πr2n(r) and it achieves its maximum at precisely r = 1 Bohr radius.

The point of density functional theory is, instead of writing and computing in terms of

ψ, to write and compute in terms of n. The basic result is the Hohenberg–Kohn Theorem

which says that if n(~r) is a ground state density, then no information is lost by doing this.

5.2.1. The Hohenberg–Kohn Theorem. Consider two N -electron systems, with Hamiltoni-

ans Ĥ1 and Ĥ2 defined by:

Ĥk = T̂ + V̂ee + V̂k,
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with

V̂k =
N∑
i=1

vk(~ri) =
N∑
i=1

∫
d3r δ(~r − ~ri)vk(~r),

and where each vk is continuous except perhaps at some isolated points where it may go

to infinity (the nuclei).

Theorem 3. Suppose each Hamiltonian Ĥk has at least one normalizable ground state |ψk〉,
and these ground states lead to identical densities

n(~r) = 〈ψ1|n̂(~r)|ψ1〉 = 〈ψ2|n̂(~r)|ψ2〉,

where

〈ψk|n̂(~r)|ψk〉 =

∫
d3r1

∫
d3r2 · · ·

∫
d3rN ψ

∗
k(~r1, . . . , ~rN)

N∑
i=1

δ(~r − ~ri)ψk(~r1, . . . , ~rN).

Then v1 − v2 is a constant.

Proof. By the variational principle,

〈ψ1|Ĥ1|ψ1〉 ≤ 〈ψ2|Ĥ1|ψ2〉. (5.3)

Since

〈ψk|V̂1|ψk〉 =

∫
d3r1

∫
d3r2 · · ·

∫
d3rN ψ

∗
k(~r1, . . . , ~rN)

N∑
i=1

∫
d3r δ(~r − ~ri)v1(~r)ψk(~r1, . . . , ~rN)

=

∫
d3r v1(~r)n(~r),

and the right hand side is independent of k, (5.3) simplifies to

〈ψ1|T̂ + V̂ee|ψ1〉 ≤ 〈ψ2|T̂ + V̂ee|ψ2〉.

In the same way, starting from 〈ψ2|Ĥ2|ψ2〉 ≤ 〈ψ1|Ĥ2|ψ1〉, we get

〈ψ2|T̂ + V̂ee|ψ2〉 ≤ 〈ψ1|T̂ + V̂ee|ψ1〉.

Hence both sides are equal and it follows that both |ψ1〉 and |ψ2〉 are ground states of both

Hamiltonians. Then the result follows from the Lemma below. �

Lemma 5.1. If there exists a state |ψ〉 which is an eigenstate of both Hamiltonians Ĥ1 and

Ĥ2, then v1 − v2 is a constant.
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Proof. We have

Ĥ1|ψ〉 = E1|ψ〉 and Ĥ2|ψ〉 = E2|ψ〉,

for some E1 and E2. Subtracting, we get

(V̂1 − V̂2 − E1 + E2)|ψ〉 = 0,

and hence

W (~r1, . . . , ~rN)ψ(~r1, . . . , ~rN) = 0, where W (~r1, . . . , ~rN) =
N∑
i=1

(v1(~ri)− v2(~ri))−E1 +E2.

(5.4)

From this we will conclude that W (~r1, . . . , ~rN) = 0 for all points (~r1, . . . , ~rN). This will

complete the proof because then
∑N

i=1(v1(~ri)−v2(~ri))−E1 +E2 = 0 which implies v1(~ri)−
v2(~ri) is independent of ~ri. The tricky part here is that we must rule out the possibility that

ψ = 0 and W 6= 0. We will use the fact (due to quantum tunneling/unique continuation)

that
∫
U
|ψ|2 > 0 for any region U .

To carry this out, multiply (5.4) by ψ∗(~r1, . . . , ~rN) and integrate over an arbitrary region

U to obtain ∫
U

W |ψ|2 = 0,

for any region U . We have

0 =

∫
U

W |ψ|2 ≤ max
U

W

∫
U

|ψ|2,

which implies maxU W ≥ 0, and similarly

0 =

∫
U

W |ψ|2 ≥ min
U
W

∫
U

|ψ|2,

which implies minU W ≤ 0. Hence

min
U
W ≤ 0 ≤ max

U
W. (5.5)

Fix any point (~r1, . . . , ~rN), and consider regions U containing that point and getting smaller

and smaller. As the diameter of U goes to zero, both minU W and maxU W converge to

W (~r1, . . . , ~rN) because W is continuous. Hence, (5.5) becomes

W (~r1, . . . , ~rN) ≤ 0 ≤ W (~r1, . . . , ~rN),

which implies W (~r1, . . . , ~rN) = 0. Since the point (~r1, . . . , ~rN) was arbitrary, it follows that

W = 0 everywhere. �
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5.2.2. The Kohn–Sham method. The Kohn–Sham method computes densities and ener-

gies using a fictitious N -particle non-interacting system, designed so that its ground state

density is the same as the ground state density for the N -particle interacting system Ĥ.

More precisely, let vs(~r) be the potential (called the Kohn–Sham potential) such that if

ε1, . . . , εN are the N lowest energies and ϕ1, . . . , ϕN corresponding normalized states (called

Kohn–Sham orbitals) for the single particle problem(
− 1

2
∇2 + vs(~r)

)
ϕi(~r) = εiϕi(~r),

then

n(~r) =
N∑
i=1

|ϕi(~r)|2,

where this n is the same as the one for the ground state of the problem we are studying. By

the Hohenberg–Kohn theorem, this requirement determines the potential up to an overall

constant.

5.3. Periodic structure and the Bloch transform. In this section we discuss the Bloch

transform for periodic structures.

Let Γ ⊂ Rn be a lattice of rank n. The dual lattice Γ∗ is defined as

Γ∗ = {k ∈ Rd : k · γ ∈ 2πZ,∀γ ∈ Γ}.

For periodic functions u ∈ C∞(Rn/Γ), we can define the Fourier series as follows.

û(k) =
1

|Rn/Γ|1/2

∫
Rn/Γ

u(x)e−ik·xdx, k ∈ Γ∗.

We recall the properties of Fourier series.

• If u ∈ C∞(Rn/Γ), then for any N ∈ N, there exists CN > 0 such that |û(k)| ≤
CN(1 + |k|)−N . In this case, u(x) =

1

|Rn/Γ|1/2
∑
k∈Γ∗

û(k)eik·x.

• u ∈ C∞(Rn/Γ), we have Plancherel identity ‖u‖L2(Rn/Γ) = ‖u‖`2(Γ∗). Thus the

Fourier series extends to a unitary operator on L2.

Here we just show a simple proof, due to Paul Chernoff, of the Fourier inversion formula

for n = 1 and Γ = 2πZ case (it easily generalizes). First we note that it suffices to show

u(0) = 0 implies
∑

k∈Γ∗ û(k) = 0. But u(0) = 0 implies u(x) = (eix − 1)g(x) for some

g(x) ∈ C∞(R/2πZ). Thus∑
k∈Γ∗

û(k) =
∑
k∈Γ∗

(ĝ(k − 1)− ĝ(k)) = 0.
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Here we used the fact, that g is smooth so that |ĝ(k)| ≤ CN(1 + |k|)−N .

Now for any θ ∈ Rn/Γ∗, let

Hθ = {u ∈ L2
loc(Rn) : u(x− γ) = eiγ·θu(x), ∀γ ∈ Γ}.

We consider the space L2(Rn/Γ∗;Hθ), that is measurable functions g : Rn/Γ∗ × Rn → C
such that

g(θ, x− γ) = eiγ·θg(θ, x),

∫
Rn/Γ∗

∫
Rn/Γ
|g(θ, x)|2dxdθ <∞.

Now we can state our theorem.

Theorem 4. For u ∈ S (Rn), let

Bu(θ, x) =
1

|Rn/Γ∗|1/2
∑
γ∈Γ

e−iγ·θu(x− γ). (5.6)

Then B extends to a unitary operator

L2(Rn)→ L2(Rn/Γ∗;Hθ).

Moreover, B∗ = B−1 = C where

Cg(x) =
1

|R/Γ∗|1/2

∫
Rn/Γ∗

g(θ, x)dθ.

Proof. First we check

‖Bu‖2
L2 =

∑
γ,γ′∈Γ

1

|Rn/Γ∗|

∫
Rn/Γ∗

∫
Rn/Γ

e−i(γ−γ
′)·θu(x− γ)u(x− γ′)dxdθ

=
∑
γ∈Γ

∫
Rn/Γ
|u(x− γ)|2dx =

∫
Rn
|u(x)|2dx = ‖u‖2

L2(Rn).

Then we check B is invertible with inverse C.

BCg(θ, x) =
1

|Rn/Γ∗|
∑
γ∈Γ

e−iγ·θ
∫
Rn/Γ∗

g(τ, x− γ)dτ =
1

|Rn/Γ∗|
∑
γ∈Γ

∫
Rn/Γ∗

g(τ, x)eiγ·(τ−θ)dτ

= g(θ, x).

CBu(x) =
1

|Rn/Γ∗|
∑
γ∈Γ

∫
Rn/Γ∗

e−iγ·θu(x− γ)dθ = u(x).

�
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Sometimes we also use the modified Bloch transform

B̃u(θ, x) = eix·θBu(θ, x)

such that

B̃u(θ + k, x− γ) = eik·xB̃u(θ, x).

5.4. Bloch–Floquet spectrum: diagonalization of periodic Hamiltonians. Now

suppose we have a differential operator P (x,D) =
∑
|α|≤2 aα(x)Dα such that P (x+γ,D) =

P (x,D) for any γ ∈ Γ. Then

BP (x,D)B∗v(θ, x) = P (x,Dx)v(θ, x)

and

B̃P (x,D)B̃∗v(θ, x) = eix·θP (x,Dx)e
−ix·θv(θ, x) = P (x,Dx − θ)v(θ, x).

Example 8. For P = Dx, we have B̃P B̃∗ = Dx − θ acts on H1(R/2πZ). The spectrum is

give by −θ + Z.

Let U : L2(R)→ L2(R/Z; `2(Z)),

Uu(θ,m) =
1√
2π

∫ 2π

0

B̃u(θ, x)e−imxdx.

If we let Pθ = UPU∗ = m− θ, then

Spec(P ) =
⋃

θ∈R/Z

Spec(Pθ) = R.

Recall for s ∈ R, the Sobolev space Hs(Rn/Γ) is defined as

Hs(Rn/Γ) = {u ∈ S ′ : u(x− γ) = u(x), ∀γ ∈ Γ, and
∑
k∈Γ∗

|(1 + |k|2)sû(k)|2 <∞}.

The sum in the definition of Hs defines the square of the norm in Hs.

We leave an exercise for the reader to check that for s ∈ N,

Hs(Rn/Γ) = {u ∈ L2(Rn/Γ) : ∂αxu ∈ L2,∀|α| ≤ s},
H2s(Rn/Γ) = {u ∈ L2(Rn/Γ) : ∆pu ∈ L2,∀p ≤ s}.

We recall the elliptic regularity lemma.

Lemma 5.2. Let P = −∆ +
∑
|α|≤1 aα(x)Dα

x be a period second order differential operator

on Rn/Γ, then there exists C > 0 such that for any u ∈ C∞(Rn/Γ),

‖u‖H2 ≤ C‖Pu‖L2 + C‖u‖L2 , L2 = L2(Rn/Γ), H2 = H2(Rn/Γ).
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Proof. First,

1

2
‖Pu‖2

L2 +
1

2
‖u‖2

L2 ≥ |(Pu, u)| ≥ −
∫
Rn/Γ

∆uūdx−

∣∣∣∣∣∣
∫
Rn/Γ

∑
|α|≤1

aα(x)Dα
xuūdx

∣∣∣∣∣∣
≥
∫
Rn/Γ
|Du|2dx− 1

2

∫
Rn/Γ
|Du|2dx− C‖u‖2

L2

≥ 1

2
‖Du‖2

L2 − C‖u‖2
L2 .

Moreover, we also have

‖Pu‖2
L2 ≥ ‖∆u‖2

L2 − C‖Du‖2
L2 − C‖u‖2

L2 .

Thus

‖u‖H2 = ‖∆u‖2
L2 + ‖u‖2

L2 ≤ ‖Pu‖2
L2 + C‖Du‖2

L2 + C‖u‖2
L2

≤ (C + 1)‖Pu‖2
L2 + 2C(C + 1)‖u‖2

L2 ,

which concludes the proof. �

Now suppose the periodic elliptic operator in Lemma 5.2 gives self-adjoint operators

P (x,Dx − θ) : H2(Rn/Γ)→ L2(Rn/Γ), then

(P (x,Dx − θ) + i)−1 : L2(Rn/Γ)→ H2(Rn/Γ)

is compact, and thus has discrete spectrum, with eigenvalues converging to 0. So it is easy

to see

SpecL2(Rn/Γ)(P (x,Dx − θ)) = {Ej(θ)}∞j=0

where

E0(θ) ≤ E1(θ) ≤ · · ·

are real eigenvalues, going to ∞ as j →∞. Using Bloch transform on sees

SpecL2(Rn)(P ) =
⋃

θ∈Rn/Γ∗
SpecL2(Rn/Γ)(P (x,Dx − θ)) =

⋃
θ∈Rn/Γ∗

{Ej(θ)}.

Example 9. Let P = −∆ and Γ = (2πZ)n. Then Pθ = (Dx − θ)2 and Spec(Pθ) =

{(−θ +m)2 : m ∈ Zn}. The picture for the bands is shown in Picture 6.

Let us look at two more interesting one dimensional examples.
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Figure 6. The band structure for the free Laplacian with Γ = (2πZ)n,

n = 1, 2. For θ in the fundamental domain of Rn/Γ∗, Γ∗ = Z2, we plot

|p− θ|2, p ∈ Zn. That gives 0 ≤ E1(θ) ≤ E2(θ) ≤ · · · . Note that θ → Ej(θ)

are not smooth because of the lack of separation between the bands.
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Example 10. The Kronig–Penney model is an explicitly solvable model of a one dimen-

sional periodic system (see [Wo78] for a brief account):

P := D2
x +

∑
m∈Z

qδ(x−m). (5.7)

We then consider Bloch eigenfunctions and eigenvalues as §5.4:

Pw(θ, x) = E(θ)w(θ, x), w(θ, x− 1) = eiθw(θ, x).

They are explicitly given as follows:

w(θ, x) = e−iθxu(θ, x), u(θ, x) :=
∑
m∈Z

u1(θ, x−m),

where

u1(θ, x) = c1(θ)(eiθx sinα(θ)x+ eiθ(1+x) sin(α(θ)(1− x)))1[0,1],

q sinα(θ) + 2α(θ) cosα(θ) = 2α(θ) cos θ, Imα(θ) ≥ 0, E(θ) = α(θ)2,
(5.8)

where c1(θ) is the normalization constant guaranteeing ‖u1(θ, •)‖L2(R/Z) = 1. The transce-

dental equation for α(θ) in (5.8) has a discrete set of solutions (with imaginary values of α

occurring when q is negative) – see Figure 7. We see that u1(θ, 0) = eiθ sinα(θ) = u1(θ, 1)

which means that

u(x+m, θ) = u(x, θ), u(x, θ + 2π`) = e2πix`u(x, θ), `, θ ∈ Z,

u(•, θ) ∈ C(R;C) ∩H1
loc(R;C), eiθxu(x, •) ∈ C∞(R;C).

(5.9)

The discontinuities of x→ ∂xu(x, θ) are needed to produce the δ-function potential:

P (θ)u(θ, x) :=

(
(Dx − θ)2 +

∑
m∈Z

qδ0(x−m)

)
u(θ, x) = E(θ)u(θ, x). (5.10)

The next example uses perturbation theory to see band splitting when a periodic poten-

tial is turned on.

Example 11. Let n = 1, λ ∈ R, Pλ = D2
x + λ cosx. We are interested in the spectrum

of Pλ when λ > 0. We will consider it as a perturbation problem and use the Grushin

problem method to study the perturbation. See Section 2.6 for more details.

Let P λ
θ = (Dx − θ)2 + λ cosx. We will consider the following Grushin problem.

Pλθ (z) =

(
P λ
θ − z R−
R+ 0

)
: H2(Rn/Γ)× Ck → L2(Rn/Γ)× Ck. (5.11)
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Figure 7. The first 7 bands for (5.7) with q = 10. They are computed

using the transcendental equation in (5.8).

First we consider the case when z0 is a simple eigenvalue with eigenfunction u0 (‖u0‖L2 = 1).

Then as in Proposition 2.14, we may take k = 1 and

R+u = 〈u, u0〉, R−u− = u−u0.

When λ = 0, this gives a well-posed Grushin problem. Let {uj}∞j=0 be an orthonormal basis

such that Puj = zjuj, then

E(z)v =
∑
j 6=0

1

zj − z
〈v, uj〉uj, E+(z)v+ = v+u0,

E−(z)v = 〈v, u0〉u0, E−+(z)v+ = (z − z0)v+.

Now we consider a perturbation by Q = cosx, via the Grushin problem(
P − z + λQ R−

R+ 0

)−1

=

(
Eλ Eλ

+

Eλ
− Eλ

−+

)
.

By Proposition 2.12 we have

Eλ
−+(z) = z − z0 +

∞∑
k=1

(−λ)kE−Q(EQ)k−1E+. (5.12)

So z(λ) = z0 + λ〈Qu0, u0〉+O(λ2). As a corollary, we get the Feynman–Hellmann formula

z′(0) = 〈Qu0, u0〉.

It also has a direct proof assuming z(λ) is smooth in λ: first write down the eigenvalue

equation P λuλ = z(λ)uλ, then differentiate on λ. We get

Qu0 + Pu̇0 = z′(0)u0 + z0u̇0.
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Moreover, 〈Pu̇0, u0〉 = 〈u̇0, Pu0〉 = z0〈u̇0, u0〉. Pairing with u0 gives

z0 = 〈Qu0, u0〉.

Now we want to study how the bands of Pθ = (Dx − θ)2 + λ cosx split. There are two

cases where we have a double eigenvalue for λ = 0:

• θ = 0, m1 = m, m2 = −m, where m ∈ N+, P λ=0
θ has eigenvalue z0 = m2;

• θ = 1
2
, m1 = m, m2 = −m+ 1, m ∈ N+, P λ=0

θ has eigenvalue (m− 1/2)2.

In the first case, we consider the Grushin problem (5.11) with k = 2. Let ej(x) = 1√
2π
eijx

be eigenfunctions of Dx, we let

u− =

(
u−−
u−+

)
, v+ =

(
v+−
v++

)
,

and

R−u− = u−−e−m + u−+em, R+u =

(
〈u, e−m〉
〈u, em〉

)
.

This gives a well-posed Grushin problem with E− = R+, E+ = R−, and

Eθ
−+ =

(
z − (−m− θ)2 0

0 z − (m− θ)2

)
.

By Proposition 2.12 we get

Eθ,λ
−+(z) =

(
z − (−m− θ)2 0

0 z − (m− θ)2

)
+

m∑
k=1

λ2k

(
〈e−m, Q(EQ)2k−1e−m〉 0

0 〈em, Q(EQ)2k−1em〉

)

+
λ2m

4m

m−1∏
j=−m+1

((j − θ)2 − z)−1

(
0 1

1 0

)
+O(λ2m+2).

Note for z ∈ R,

〈e−m, Q(EQ)2k−1e−m〉 = 〈e−m, Q(EQ)2k−1e−m〉
= 〈em, Q(EQ)2k−1e−m〉 = 〈em, Q(EQ)2k−1em〉.

Thus we will see a splitting of the bands of size ≈ λ2maround z0 = m2.
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Figure 8. The band structure for P = D2
x+λ cosx: we show Ej(θ), −0.5 <

θ ≤ 0.5 for j ≤ 5. Despite appearances there are gaps between all bands as

soon as λ > 0. See the movie for an animated version with 0 ≤ λ ≤ 2.

In the second case, we still have k = 2, but eigenfunctions become e−m+1 and em, so

R−u− = u−−e−m+1 + u−+em, R+u =

(
〈u, e−m+1〉
〈u, em〉

)
.

This still gives a well-posed Grushin problem with E− = R+, E+ = R−, and

Eθ
−+ =

(
z − (−m+ 1− θ)2 0

0 z − (m− θ)2

)
.

https://math.berkeley.edu/~zworski/cos_movie.mp4
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By Proposition 2.12 we get

Eθ,λ
−+(z) =

(
z − (−m+ 1− θ)2 0

0 z − (m− θ)2

)
+

m∑
k=1

λ2k

(
〈e−m+1, Q(EQ)2k−1e−m+1〉 0

0 〈em, Q(EQ)2k−1em〉

)

+
λ2m−1

22m−1

m−1∏
j=−m+2

((j − θ)2 − z)−1

(
0 1

1 0

)
+O(λ2m+1).

Note for z ∈ R,

〈e−m+1, Q(EQ)2k−1e−m+1〉 = 〈eixe−m+1, e
ixQ(EQ)2k−1e−m+1〉

= 〈em, Q(EQ)2k−1eixe−m+1〉 = 〈em, Q(EQ)2k−1em〉.

So we see a splitting of bands of size ≈ λ2m−1 around z0 = (m− 1/2)2. In particular, when

m = 1, we have

Eθ,λ
−+(z) =

(
z − θ2 0

0 z − (1− θ)2

)
+
λ

2

(
0 1

1 0

)
+O(λ2).

For θ = 1
2
, one gets

z±(λ) =
1

4
± λ

2
+O(λ2).

See Figure 8 for the splitting of the bands (with a movie).

5.5. Density of states for periodic Hamiltonians. In §4.2 we provided motivating

discussion of the density of states and considered it for constant magnetic field without

an external potential. We now use the the explicit diagonalization given by the Bloch

transform to describe it in terms of Bloch–Floquet spectrum. We recall,

B : L2(Rn)→ Ln(Rn/Γ∗;Hθ), u 7→ 1

|Rn/Γ∗|1/2
∑
γ∈Γ

e−iγ·θu(x− γ)

and

U : Ln(Rn/Γ∗;Hθ)→ Ln(Rn/Γ∗; ln(N)), Uu(θ, k) = 〈u(θ, •), ϕk(θ, •)〉Hθ
where ϕk(θ, x) is the k-th eigenfunction of Pθ : Hθ → Hθ. That gives UBP (UB)∗v(θ, k) =

Ek(θ)v(θ, k) and hence

UBf(P )(UB)∗v(θ, k) = f(Ek(θ))v(θ, k).
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So

f(P )w(x) =
∑
k

B∗(f(Ek(θ))ϕk(θ, x)〈Bw(θ, •), ϕk(θ, •)〉Hθ)

=
1

|Rn/Γ∗|
∑
k,γ

∫
Rn/Γ∗

f(Ek(θ))ϕk(θ, x)

∫
Rn/Γ

e−iγ·yw(y − γ)ϕk(θ, y)dydθ

=
1

|Rn/Γ∗|
∑
k

∫
Rn/Γ∗

f(Ek(θ))ϕ(θ, x)

∫
Rn
w(y)ϕ(θ, y)dydθ =

∫
Rn
K(x, y)w(y)dy

where

K(x, y) =
1

|Rn/Γ∗|
∑
k

∫
Rn/Γ∗

f(Ek(θ))ϕk(θ, x)ϕk(θ, y)dθ.

Note K(x, x) is Γ-periodic, and thus the regularized trace (4.3) is given by

t̃rf(P ) =
1

|Rn/Γ|

∫
Rn/Γ

K(x, x)dx =
1

|Rn/Γ||Rn/Γ∗|
∑
k

∫
Rn/Γ∗

∫
Rn/Γ

f(Ek(θ))|ϕ(θ, x)|ndxdθ

=
1

(2π)n

∑
k

∫
Rn/Γ∗

f(Ek(θ))dθ =:

∫
R
f(λ)ρ(λ)dλ,

where the last integral is meant as distributional pairing and it defines the density of states,

ρ ∈ S ′(R). It is given by

ρ(λ) =
1

(2π)n

∑
k

∫
Rn/Γ∗

δ(λ− Ek(θ))dθ =
1

(2π)n
d

dλ

(∑
k

∫
λk(θ)≤λ

dθ

)
In particular, if EN(θ) < λ0 < EN+1(θ) for all θ ∈ Rn/Γ∗, then∫ λ0

−∞
ρ(λ)dλ =

N

|Rn/Γ|
gives the number of of states per unit volume in agreement with the discussion in §4.2.

We also note that if λ is a regular value of E(θ), we can also write

ρ(λ) =
1

(2π)n

∑
k

∫
Ek(θ)=λ

dS

|∇Ek(θ)|
.

Example 12. We can compute the density of states for the Kronig–Penney Hamiltonian

in Example 10. That amounts to computing dθ/dE inside the spectrum and for that we

can use the implicit formula (5.8):

cos θ =
q sin

√
E

2
√
E

+ cos
√
E.
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Figure 9. The plot of the density of states (up to a multiplicative constant)

for the Konig–Penney potential. We see the singularities at the edges of the

first 4 bands – see Figure 7.

The spectral bands are defined by the condition that

−1 ≤ q sin
√
E

2
√
E

+ cos
√
E ≤ 1,

(see Figure 7) in which case,

dθ

dE
=

1

4
(1− (q sin

√
E/
√
E + cos

√
E)2)−

1
2

(
(q + 2E) sin

√
E/E

3
2 − q cos

√
E/E

)
.

This is shown in Figure 9.
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5.6. Isolated bands for time reversible operators: trivial topology. We first study

the case when there is an isolated band, that is let Ij = {Ej(θ) : θ ∈ Rn/Γ∗}, we assume

Ek(θ) is a simple eigenvalue of P on Hθ,

Ik ∩ Ij = ∅ for any j 6= k.
(5.13)

Let Π(θ) : Hθ → ker(PHθ − Ek(θ)) ∼= C and Π̃(θ) = eix·θΠ(θ)e−ix·θ : L2(Rn/Γ∗) →
ker(P (x,Dx − θ)− Ek(θ)), we claim

Proposition 5.3.

Π(θ) =
1

2πi

∮
γ

(z − P |Hθ)−1dz (5.14)

where γ is a positively oriented closed contour separating Ik with other bands.

Proof. For two functions f, g, define

f ⊗ g := f〈u, g〉.

Then the spectral theorem shows that

(z − P |Hθ)−1 =
∑
j

ϕj(·, θ)⊗ ϕj(·, θ)
z − Ej(θ)

.

This implies that

1

2πi

∮
γ

(z − P |Hθ)−1dz = ϕk ⊗ ϕk.

�

Remark 3. In general, if we have any operator P and a simple closed curve γ such that

γ ∩ Spec(P ) = ∅, then

Π =
1

2πi

∮
γ

(z − P )−1dz
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is a projection. We can take another curve γ̃ which is homotopic to γ inside C \ Spec(P ),

and γ inside the interior of γ̃. Then

Π2 =
1

(2πi)2

∮
γ̃

∮
γ

(z − P )−1(ζ − P )−1dzdζ

=
1

(2πi)2

∮
γ̃

∮
γ

(ζ − z)−1((z − P )−1 − (ζ − P )−1)dzdζ

=
1

(2πi)2

∮
γ̃

∮
γ

(ζ − z)−1(z − P )−1dzdζ

=
1

2πi

∮
γ

(z − P )−1dzdζ

= Π.

If P is self-adjoint, then by functional calculus, Π is the spectral projector to the spectrum

inside γ. This is because

f(x) =
1

2πi

∮
γ

(z − x)−1dz =

{
1, x is inside γ,

0, x is outside γ.

We can think of Π as the spectral projector even for non-self-adjoint operators.

The family Π(θ) we defined is analytic in θ.

Lemma 5.4. The map

θ 7→ Π(θ) : Rn/Γ∗ → B(Hθ)

is a real analytic family of operators, that is there exists ε > 0 such that this map extends

to a holomorphic map

Rn/Γ∗ + iB(0, ε) 3 θ 7→ Π(θ).

Proof. It suffices to check for

Π̃(θ) =
1

2πi

∮
γ

(z − P (x,Dx − θ))−1dθ,

whose holomorphicity is clear from the definition. �

Remark 4. Here we are talking about the holomorphicity in a Banach space, so we recall

the following definition.

Suppose we have two Hilbert spaces H1, H2, and a map θ 7→ B(θ) from Cn → B(H1, H2).

Then we say B(θ) is holomorphic if the following equivalent conditions are satisfied.

• For any ϕ ∈ H1, ψ ∈ H2, the map θ 7→ 〈B(θ)ϕ, ψ〉 is holomorphic;
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• The derivative in the weak sense ∂θjB(θ) = 0;

• ∂B
∂θj

:= lim
z→0

B(θ + zej)−B(θ)

z
exists in the norm topology.

The reader can check the equivalence using uniform boundedness principle.

The eigenspace Hθ thus defines a complex line bundle over the torus Rn/Γ∗. We refer to

Section 2.7 for basic properties of line bundles.

The following theorem tells us when there is time reversal symmetry, the line bundle is

actually trivial.

Theorem 5. Suppose P (x,D)u = P (x,D)u, then there exists ϕ ∈ C∞(Rn/Γ∗;Hθ) such

that

• Pϕ(θ) = Ek(θ)ϕ(θ), and ‖ϕ(θ)‖ = 1, that is ϕ(θ) is a normalized eigenvector of P

with eigenvalue Ek(θ).

• ϕ(−θ) = ϕ(θ).

• In addition, θ 7→ ϕ(θ) extends to a holomorphic map on Rn/Γ∗ + iB(0, ε)

Remark 5. In other words, this theorem shows that if a line bundle L over a torus satisfies

L∗ ∼= L, then L has to be trivial. This reflects the fact that H2(Rn/Γ∗;Z) =
∧2 Γ is torsion-

free. We will give an elementary proof following the proof of [HS89, Lemma 1.1].

Proof. We first note that is that if ϕ(θ) ∈ Hθ then ϕ(θ) ∈ H−θ. Simplicity of Ek(θ) and

the property Pu = Pū show that

Ek(θ) = Ek(−θ), ϕ(θ) ∈ ker(P |H−θ − Ek(θ)).

Using this we will proceed by induction on the dimension n to show there is a continuous

section. Then we will regularize it to get a real analytic section. Without loss of generality,

we may assume Γ = (2πZ)n and Γ∗ = Zn.

Step 1: Let n = 1. By Proposition 2.16, we can choose a continuous section ψ̃(θ) such

that Pψ̃(θ) = Ek(θ)ψ̃(θ) and ‖ψ̃(θ)‖ = 1 for 0 ≤ θ ≤ 1/2. We define ψ̃(θ) := ψ̃(−θ)
for −1/2 ≤ θ ≤ 0. One can check this defines a section except we want to glue at

θ = 1/2 and θ = −1/2. Since ‖ψ̃(−1/2)‖ = ‖ψ̃(1/2)‖ = 1, there exists α ∈ R such that

ψ̃(−1/2) = e−iαψ̃(1/2). We then let

ψ(θ) = e−i(θ+1/2)αψ̃(θ),

so that ψ(1/2) = ψ(−1/2). It glues to a global section on R/Z.

Step 2: By induction hypothesis, we may assume there exists a continuous section ψ′(θ′)

on Rn−1/Zn−1 × {0} such that ψ′(θ′) = ψ′(−θ′). Moreover, Pψ′(θ′) = Ek(θ
′, 0)ψ′(θ′) and
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‖ψ′(θ′)‖ = 1. By Proposition 2.16, there exists a continuous extension to this section

Ψ(θ) : (Rn−1/Zn−1)θ′ × [0, 1/2]θn → kerHθ(P − Ek(θ)), Ψ(θ′, 0) = ψ′(θ′).

We now define Ψ on Rn−1/Zn−1 × [−1/2, 0] by Ψ(−θ) = Ψ(θ), and we want Ψ(θ′, 1/2) =

Ψ(θ′,−1/2) as before. In general one only has

Ψ(θ′, 1/2) = eiα(θ′)Ψ(θ′,−1/2)

where α(θ′) ∈ R such that

α(θ′ + γ) ≡ α(θ′) mod 2πZ, γ ∈ Zn−1.

Taking the conjugate we have

Ψ(−θ′,−1/2) = e−iα(θ′)Ψ(−θ′, 1/2)

or equivalently

Ψ(θ′,−1/2) = e−iα(−θ′)Ψ(θ′, 1/2).

Thus eiα(θ′) = eiα(−θ′), and

α(θ′) ≡ α(−θ′) mod 2πZ.

Since α is continuous at 0, we conclude α(θ′) = α(−θ′). Since

α

(
−1

2
ej + ej

)
= α

(
1

2
ej

)
= α

(
−1

2
ej

)
,

we conclude α(θ′ + γ) = α(θ′) for γ ∈ Zn−1. Now define

ψ(θ) := e−i(θn+1/2)α(θ′)Ψ(θ),

then

ψ(θ′, 1/2) = e−iα(θ′)Ψ(θ′, 1/2) = Ψ(θ′,−1/2) = ψ(θ′,−1/2).

Thus ψ gives a continuous global section over Rn/Zn.

Step 3: Having obtained a continuous section ψ : R/Γ∗ → C∞(Rn) ∩Hθ, we want to reg-

ularlize it to get a real analytic section. Let χ(θ) = (2π)−n/2e−θ
2/2 and χε(θ) = ε−nχ(θ/ε),

we define

ψε(θ, x) =

∫
Rn
χε(θ − θ′)eix·(θ

′−θ)ψ(θ′, x)dθ′.

One checks

ψε(θ, x− γ) =

∫
Rn
χε(θ − θ′)ei(x−γ)·(θ′−θ)ψ(θ′, x− γ)dθ′ = eiγ·θψε(θ, x),
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so ψε(θ, ·) ∈ Hθ. Now ψε(θ, ·) is a real analytic section and ψε(θ, ·) → ψ(θ) in L2 norm as

ε→ 0. Taking ε > 0 small enough, we define

ϕ(θ) =
ϕ0(θ)(∫

Rn/Γ∗ ϕ0(θ)ϕ0(−θ)dx
)1/2

, ϕ0(θ) = Π(θ)ψε(θ).

By Lemma 5.4, ϕ(θ) gives a real analytic section satisfying all the required properties. �

5.7. Wannier functions and spectral localization to an isolated band. Given the

global section in Theorem 5, we see that

(BΠkC)L2(Rn/Γ∗;Hθ) = {u(θ, x) = f(θ)ϕ(θ, x) : f ∈ L2(Rn/Γ∗)}.

Thus

ΠkL
2(Rn) =

{∫
Rn/Γ∗

f(θ)ϕ(θ, ·)dθ : f ∈ L2(Rn/Γ∗)

}
.

Expanding f(θ) into Fourier series, we obtain f(θ) =
∑

γ∈Γ aγe
iγ·θ and

1

|Rn/Γ∗|

∫
Rn/Γ∗

f(θ)ϕ(θ, ·)dθ =
∑
γ∈Γ

aγϕγ(θ)

where

ϕ0(x) =
1

|Rn/Γ∗|

∫
Rn/Γ∗

ϕ(θ, x)dθ (5.15)

and ϕγ(x) = ϕ0(x− γ). We conclude

Proposition 5.5. {ϕγ(x) : γ ∈ Γ} gives an orthonormal basis of ΠkL
2(Rn). This basis

gives an isomorphism ΠkL
2(Rn) ∼= `2(Γ).

One can also check those properties directly. The basis ϕγ are called Wannier functions.

Theorem 5 has the following corollary about exponential decay of Wannier functions.

Proposition 5.6. There exists a constant C > 0 such that for any α ∈ Nn there is Cα > 0

with

|∂αϕ0(x)| ≤ Cαe
−|x|/C . (5.16)

Proof. Recall

ϕ0(x− γ) =
1

|Rn/Γ∗|

∫
Rn/Γ∗

eiγ·θϕ(θ, x)dθ.

Using analyticity we can deform the contour from Rn/Γ∗ to Rn/Γ∗+iγ/|γ|ε, so we conclude

that ϕ0(x− γ) = O(e−ε|γ|). These estimates are uniform for x in the fundamental domain

of Γ and (5.16) follows. �
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6. The tight binding model

6.1. Motivation and examples.

6.2. Semiclassical derivation in dimension one.

6.3. Higher dimensional examples.

7. Topology for band structures

7.1. Line bundles through an example: the Bloch sphere. In this section we intro-

duce the concept of a line bundle over a surface, working with the specific example over

2-dimensional sphere S2 = {x ∈ R3 : |x| = 1}.

7.1.1. Definition of a line bundle. First we recall the definition in Section 2.7 specialized

to line bundles.

Definition 7.1. Let L,X be two topological spaces, and π : L→ X be a continuous map.

Then π : L→ X is called a (continuous) complex line bundle if

• For any x ∈ X, π−1(x) is a 1-dimensional vector space over C;

• There is an open covering {Uj} of X such that there is a continuous map hj :

π−1(Uj)→ Uj × C which is a linear isomorphism on each fiber.

π−1(Uj) Uj × C

Uj

π
pr1

hj

If L,X are smooth manifolds, π and hj are all smooth maps, then π : L→ X is called a

smooth complex line bundle.

If L,X are complex manifolds, π and hj are holomorphic maps, then π : L→ X is called

a holomorphic line bundle.

If Ui∩Uj 6= ∅, then hi ◦h−1
j : Ui∩Uj×C→ Ui∩Uj×C is given by (x, λ) 7→ (x, gij(x)λ).

The maps gij : Ui ∩ Uj → C∗ are called transition functions. Transitions function satisfy

the following compatibility properties.

• gii(x) = 1;

• gij(x)gji(x) = 1;

• gij(x)gjk(x)gki(x) = 1.
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Conversely, if we are given a family of transition functions satisfying those compatibility

properties, then we can recover the line bundle. The line bundle being smooth/holomorphic

is equivalent to the transition functions being smooth/holomorphic.

We also define sections of a line bundle, as a generalization of functions.

Definition 7.2. Let π : L → X be a line bundle, a section is a map s : X → L such

that π ◦ s = idX . It is called a continuous (smooth, holomorphic) section if s : X → L

is continuous (smooth, holomorphic). The family of continuous (smooth, holomorphic)

sections is denoted C(X;L) (C∞(X;L), O(X;L)).

Using local charts X =
⋃
Uj, a section can also be described by functions sj : Uj → C

such that gijsj = si.

7.1.2. The Bloch sphere. A concrete example of a line bundle, will be a bundle over S2

given by an eigenspace of a self-adjoint family of operators parametrized by S2. As we

will see it is equivalent to the tautological line bundle over the projective space and, after

taking unit vectors, to the Hopf fibration of S3.

The operator is defined using the Pauli matrices:

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 i

−i 0

)
, σ3 =

(
1 0

0 −1

)
.

From them we build a family of operators parameterized by x ∈ S2:

H(x) =
∑
j

xjσj =

(
x3 x1 + ix2

x1 − ix2 −x3

)
. (7.1)

It is clear that H(x) = H(x)∗ : C2 → C2 (as Hilbert space equipped with the standard

inner product) and it is easy to check that Spec(H(x)) = {±1}.
On S2 we use two coordinate charts given by stereographic projections: let NP be the

“north pole” given by x3 = 1 and SP the “south pole” , x3 = −1. We then have

U0 := S2 \ NP 3 x 7→ z(x) =
x1 + ix2

1− x3

∈ C

and

U1 := S2 \ SP 3 y 7→ w(y) = w =
y1 − iy2

1 + y3

∈ C.

The transition map between them is w = z−1.
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We are interested in the line bundle given by Vx = ker(H(x)− 1) ⊂ C2, considered as a

subbundle of the rank 2 trivial bundle S2 × C2. We have

Vx = C
(
z

1

)
, x 6= NP, VNP = C

(
1

0

)
.

The sphere S2 can be identified with CP1 defined as the set of complex lines inside C2.

In projective coordinates,

CP1 = {[z0 : z1] : z0 6= 0 or z1 6= 0, zj ∈ C}.

Here the projective coordinate [z0 : z1] means [z0 : z1] = [z′0 : z′1] if and only if there exists

λ ∈ C∗ such that (z0, z1) = λ(z′0, z
′
1). In local coordinates, we can use

[z0 : z1] 7→
{
z = z1/z0, z0 6= 0;

z = z0/z1, z1 6= 0.

The line bundle V is called the tautological line bundle because its fiber is nothing but the

line that [z0 : z1] represents in CP1. The trivialization map is given by projection to the

second/first coordinate:

h0([z0 : z1]) : λ

(
z1

z0

)
7→ λz0, z0 6= 0;

h1([z0 : z1]) : λ

(
z1

z0

)
7→ λz1, z1 6= 0;

Thus g1 ◦ g−1
0 : λz0 7→ λz1 and the transition function g10([z0 : z1]) = z1/z0 = z on U0 ∩U1.

This indeed gives V a holomorphic line bundle structure.

Sections of V is then given by s0, s1 : C → C such that s1(1/z) = g10(z)s0(z) = zs0(z)

for z ∈ C∗.

Example 13. While V has a lot of smooth sections, the only holomorphic section of it is

0. This is because if we expand

s0(z) =
∞∑
k=0

akz
k, s1(w) =

∞∑
l=0

blw
l,

then s1(1/z) = zs0(z) implies that

a0z + a1z
2 + · · · = b0 + b1z

−1 + · · ·

that is ak = bl = 0 for any k, l. There are other holomorphic line bundles with transition

function g10(z) = z−k, that is s1(1/z) = z−ks0(z) (they are called O(k)-bundles). Only

when k ≥ 0, there exists nonzero holomorphic sections.
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Figure 10. Part of the foliation (7.2) with R3 ' S3\NP folliated by circles

made out of linked key rings. See also an animated version.

Remark 6. The bundle V is intimately related to the Hopf fibration of S3. For that we

consider S3 = {(z0, z1) ∈ C2 : |z0|2 + |z1|2 = 1} ⊂ C2, ι : Vx ↪→ C2 the inclusion and

S1 ' Vx ∩ S3 ι−→ S3 f−→ CP 1 ' S2, f(z0, z1) = [z0 : z1], f ◦ ι = id. (7.2)

The circles Vx ∩ S3 foliate the sphere S3 in a nontrivial way illustrated in Figure 10.

7.1.3. Connections and curvature. Now we define connections, which are generalizations of

the exterior derivative.

https://www.youtube.com/watch?v=AKotMPGFJYk
https://en.wikipedia.org/wiki/Hopf_fibration
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Definition 7.3. Let L→ X be a smooth line bundle, a connection D on L is a linear map

D : C∞(X;L)→ C∞(X;L⊗ T ∗X)

such that D(fs) = fDs+ s⊗ df for any f ∈ C∞(X) and s ∈ C∞(X;L).

In local coordinates, a section s is represented by a family of functions sj : Uj → C such

that si(x) = gij(x)sj(x). Suppose the section Ds is represented by Djsj, then by Leibniz

rule we may assume

Djsj(x) = dsj(x) + θj(x)sj(x), θj ∈ C∞(Uj;T
∗X).

The compatibility condition is

gij(dsj + θjsj) = dsi + θisi = d(gijsj) + θigijsj = gij(dsj + θisj) + sjdgij,

that is θj = θi + g−1
ij dgij. A family of {θj} satisfying the compatibility condition will give

a connection on L.

Given a connection D, we can define its curvature:

Proposition 7.4. In local coordinates, we define Θ|Uj := dθj, then Θ gives a globally

defined closed 2-form on X.

Proof. It is clear that it is closed. We only need to check it is the compatible on Ui ∩ Uj:

dθj = dθi + d(g−1
ij dgij) = dθi + d(d(log gij)) = dθi.

�

Θ is called the curvature form of the connection. It will depend on the choice of connec-

tion, but its cohomology class does not.

Proposition 7.5. Suppose D1, D2 are two connections on L, Θ1,Θ2 are two corresponding

curvature forms. Then there exists η ∈ C∞(X;T ∗X) such that Θ1 = Θ2 + dη.

Proof. On Ui ∩ Uj, Θ1 − Θ2 = d(θ1 − θ2). We claim θ1 − θ2 defines a global 1-form η on

X. It suffices to check on Ui ∩ Uj θ1i − θ2i = θ1j − θ2j, but this follows from θ1j − θ1i =

θ2j − θ2i = g−1
ij dgij �

As a corollary, when X is a 2-dimensional compact smooth manifold with a smooth line

bundle L, one can define a number

c1(L) =
i

2π

∫
X

Θ. (7.3)

This is called the Chern number of the line bundle and is independent of the choice of the

connection, thus a topological invariant. We will prove it is an integer.
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Example 14. Let us come back to our example of the Bloch sphere. Recall we have the

tautological line bundle V given by ker(H(x)−1) on the sphere S2. Denote i : V → S2×C2

the inclusion to trivial bundle. For a section s ∈ C∞(S2;V ), i ◦ s gives a smooth function

S2 → C such that i ◦ s(x) ∈ ker(H(x)− 1). We can define a connection on V via

Ds(x) = Πx(d(i ◦ s)) (7.4)

where Πx is the orthogonal projection from C2 to Vx = ker(H(x)− 1) under the standard

Hermitian inner product on C2. It is easy to check it is a connection:

D(fs)(x) = Πx(d(fi ◦ s)) = Πx(i ◦ s⊗ df + fd(i ◦ s)) = s⊗ df + fDs.

We compute the curvature of this connection using a different basis (that is a different

trivialization). Let

u0(x) =
1

(1 + |z|2)1/2

(
z

1

)
, u1(x) =

1

(1 + |w|2)1/2

(
1

w

)
,

then H(x)uj(x) = uj(x) and |uj(x)| = 1. We have

d(sjuj) = ujdsj + sjduj

and

Π(d(sjuj)) = 〈ujdsj + sjduj, uj〉uj = ujdsj + sj〈duj, uj〉uj.

So Djsj = dsj + sj〈duj, uj〉.

We should note that the definition (7.4) does not rely on the special structure of V but

only on the fact that we have an inclusion of V in the trivial bundle S2 × C2. If we have

an inclusion in a more general trivial bundle S2 × H where H is a Hilbert space, we can

still use the definition (7.4).

This is a special case of a Hermitian connection the definition of which we now recall:

Definition 7.6. A Hermitian metric on a line bundle π : L → X is a smooth family of

Hermitian metrics | · |x on each fiber π−1(x).

In local coordinates, this can be written as |v|2x = hj(x)|v|2. The compatibility condition

gives

hj(x)|sj(x)|2 = hi|si(x)|2 = hi|gij(x)|2|sj(x)|2,

that is hj = hi|gij|2. There are always many Hermitian structures on a line bundle by a

partition of unity argument.
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Definition 7.7. Let D be a connection on the line bundle L→ X. D is called a Hermitian

connection if

d(〈s(x), s′(x)〉x) = 〈Ds(x), s′(x)〉x + 〈s(x), Ds′(x)〉x, ∀s, s′ ∈ C∞(X;L).

Equivalently, |s(x)|x is preserved under the parallel transport induced by D (parallel trans-

port is defined via the equation Ds(t)(γ̇(t)) = 0).

Let us choose a local frame uj such that |uj| = 1, then

d〈sj, s′j〉 = 〈dsj, s′j〉+ 〈sj, ds′j〉

and

〈Dsj, s′j〉+ 〈sj, Ds′j〉 = 〈dsj + θjsj, s
′
j〉+ 〈sj, ds′j + θjs

′
j〉.

Thus D being Hermitian means 〈θjsj, s′j〉 = 〈sj, θjs′j〉, that is θj = −θj.
If L is a holomorphic line bundle, we say D is compatible with the holomorphic structure

if D0,1 = ∂. There is a unique Hermitian connection on L compatible with the holomorphic

structure, called the Chern connection.

Given a connection D on L and a curve γ(t) on X, one can define the parallel transport

of s via the equation Ds(t)(γ̇(t)) = 0. Suppose D is Hermitian and γ is closed, that is

γ(0) = γ(1) = x ∈ X, then |s(0)|x = |s(1)|x, and there exists θ ∈ R such that s(1) = eiθs(0).

The factor eiθ is called the holonomy of the connection D on the curve γ, denoted by

holD(γ). If γ is a simple closed curve inside a single chart Uj, then the equation

s′j(t) + θj(γ(t))sj(t) = 0

can be solved explicitly and gives

holD(γ) = exp

(
−
∫
γ

θj

)
= exp

(
−
∫

Ω

Θ

)
(7.5)

where Ω is a region enclosed by γ. The last term on the right is independent of the choice

of charts and one can verify this formula works even if γ is not contained in a single chart

Uj by a subdivision argument.

Exercise 7.8. Let us consider the Hermitian connection defined in (7.4). On can compute

on U0

θ = 〈du0, u0〉 =
1

2(1 + |z|2)
(z̄dz − zdz̄)

and

Θ = dθ =
dz̄ ∧ dz

(1 + |z|2)2
.
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For example, on the circle given by z(t) =
sinϕeit

1− cosϕ
(0 < ϕ < π), we can compute

holD(γ) = exp

(∫
|z|>sinϕ/(1−cosϕ)

dz̄ ∧ dz
(1 + |z|2)2

)
= exp

(
2πi

∫ ∞
sin2 ϕ/(1−cosϕ)2

ds

(1 + s)2

)
= exp(πi(1− cosϕ)).

Now we prove the Chern number is an integer.

Theorem 6. c1(L) defined in (7.3) is an integer.

Proof. Let x ∈ X. Choose small neighbourhoods Ωx converging to x and γ = ∂Ωx, then

holD(γ) = exp

(
−
∫

Ωx

Θ

)
= exp

(∫
X\Ωx

Θ

)
.

Thus exp
(∫

X
Θ
)

= 1 and
∫
X

Θ ∈ 2πiZ. �

If we are on the sphere S2, there is another simple proof: notice for the equator γ,∫
X

Θ =

∫
γ

θ0 − θ1 =

∫
γ

g−1
10 dg10 =

∫
γ

d log g10 ∈ 2πiZ.

For the tautological line bundle V with connection Θ defined in (7.4), we have∫
S2

Θ =

∫
C

1

(1 + |z|2)2
dz̄ ∧ dz = 2πi.

Thus c1(V ) = −1.

7.2. Line bundles over tori. Let Γ ⊂ Rn be a lattice and X = Rn/Γ be an n-dimensional

torus. We are interested in line bundles over the torus.

First we recall the notion of pullback. Let f : Y → X be a continuous map, then one

can define the pullback bundle f ∗L to be

f ∗L = Y ×X L = {(y, v) ∈ Y × L : f(y) = π(v)}.

Suppose {Ui} is a covering of X such that π−1(Ui) is trivial, then {f−1(Ui)} is a cov-

ering of Y such that f ∗L|f−1(Ui) is trivial. So f ∗L is a line bundle over Y . When f is

smooth/holomorphic, one can check f ∗L is smooth/holomorphic.

When we look at a line bundle L → X over the torus X = Rn/Γ, there is a natural

quotient map p : Rn → Rn/Γ. By Corollary 2.18, p∗L→ Rn must be a trivial line bundle,

so we identify p∗L with Rn × C. Now Γ has a natural action on p∗L by

γ · (y, v) = (y + γ, v),
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lifting the action on the base, that is

Γ× p∗L p∗L

Γ× Y Y

L is exactly the quotient bundle under the Γ-action

L = {(y, λ) ∈ Y × L : p(y) = π(v)}/(y + γ, v) ∼ (y, v)) = p∗L/Γ.

Since we identify p∗L with the trivial bundle Rn × C, the action of Γ can be written as

γ · (x, λ) = (x+ γ, eγ(x)λ). (7.6)

Those eγ(x)’s are called multipliers. Because (γ1 + γ2) · (x, λ) = γ1 · (γ2 · (x, λ)), they must

satisfy

eγ1+γ2(x) = eγ1(x+ γ2)eγ2(x), e0(x) = 1. (7.7)

We can then describe sections of L as follows.

C∞(X;L) = {u ∈ C∞(Rn) : u(x+ γ) = eγ(x)u(x), ∀γ ∈ Γ}. (7.8)

Since the choice of trivialization p∗L→ Rn × C is not unique, if we change eγ(x) to

ẽγ(x) = eg(x+γ)eγ(x)e−g(x),

we will get an isomorphic line bundle L. Indeed, the family of line bundles over X up to

isomorphism is given by

{eγ(x) : eγ1+γ2(x) = eγ1(x+ γ2)eγ2(x)}/eγ(x) ∼ ẽγ(x) = eg(x+γ)eγ(x)e−g(x).

Let L → X = Rn/Γ be a smooth line bundle, and h be a Hermitian metric on L. h then

induces a metric on p∗L ∼= Rn × C such that

h(x) = h(x+ γ)|eγ(x)|2. (7.9)

Conversely, any smooth function h(x) : Rn → R+ satisfying the above condition defines a

Hermitian metric on L.

Similarly, connection D on L induces a connection on the pullback bundle p∗L ∼= Rn×C
such that

(p∗D)p∗s = p∗(Ds).

Suppose (p∗D)s = ds + θs for some θ ∈ C∞(Rn;T ∗Rn). Then θ has to satisfy for s ∈
C∞(X;L)

d(eγ(x)s(x)) + θ(x+ γ)eγ(x)s(x) = ds(x+ γ) + θ(x+ γ)s(x+ γ)

= eγ(x)(ds(x) + θ(x)s(x)),
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that is,

θ(x+ γ) = θ(x)− eγ(x)−1deγ(x).

The curvature is given by Θ = dθ. When n = 2, let Ω = {sγ1 + tγ2 : 0 ≤ s, t ≤ 1} be the

fundamental domain, one can check that the Chern number is an integer directly in this

case. We use (7.7) to see that∫
X

Θ =

∫
∂Ω

θ =

∫
[0,1]γ1

(θ(x)− θ(x+ γ2))−
∫

[0,1]γ2

(θ(x)− θ(x+ γ1))

=

∫ 1

0

(eγ2(tγ1)−1deγ2(tγ1)− (eγ1(tγ2)−1deγ1(tγ2))

= log eγ2(γ1)− log eγ2(0)− log eγ1(γ2) + log eγ1(0)

≡ log eγ1+γ2(0)− log eγ1+γ2(0) = 0 mod 2πiZ.

(7.10)

We can simplify the multipliers a bit when n = 2.

Proposition 7.9. If Γ = Zγ1 ⊕ Zγ2, we can always choose eγ1(x) = 1.

Proof. Recall a (complex) line bundle over the circle S1 is always trivial, thus by an easy

adaptation Proposition 2.16, any (complex) line bundle over S1×R is also trivial. Consider

the projection p : R2/γ1Z → X = R2/Γ. The pullback p∗L must be a trivial line bundle.

As before, there is a natural action of γ2Z on p∗L such that L = p∗L/γ2Z. Suppose in a

trivialization p∗L ∼= R2/γ1Z× C, the action is given by

nγ2 · (x, λ) = (x+ nγ2, enγ2(x)λ).

Then we can describe L by multipliers enγ2(x) and eγ1(x) = 1. �

Remark 7. In higher dimensions, it is not true that any line bundle over (R/Z)k × Rl is

trivial. However, one can still play a similar game by choosing the generators carefully.

There is also an analogous version in holomorphic case. For more details, see Griffiths–

Harris [GH14, Section 2.6].

As an application, we prove that if c1(L) = 0 then L is trivial (Note this is not true in

the holomorphic setting).

Proposition 7.10. Let n = 2, Γ = γ1Z⊕ γ2Z. If c1(L) = 0, then L is trivial.

Proof. By Proposition 7.9, we may assume eγ1(x) = 1. Then c1(L) = 0 implies that∫ 1

0

eγ2(tγ1)−1deγ2(tγ1) = 0. (7.11)
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Since d(eγ2(x)−1deγ2(x)) = 0, we can find f ∈ C∞(R2) such that df = eγ2(x)−1deγ2(x).

Modifying f by a constant gives eγ2(x) = exp(f(x)). Since

eγ2(x+ γ1) = eγ2(x+ γ1)eγ1(x) = eγ1+γ2(x) = eγ1(x+ γ2)eγ2(x) = eγ2(x),

eγ2(x) is periodic in γ1 and f(x + γ1) = f(x) + 2πik for some k ∈ Z. But (7.11) implies

k = 0 and f(x) is γ1 periodic. Now we claim we can find g ∈ C∞(R2/γ1Z) such that

g(x+ γ2)− g(x) = f(x)

Let χ(x) ∈ C∞(R2/γ1Z) be a cutoff function such that suppχ ⊂ {x = a1γ1 + a2γ2 : a2 >

−1} and χ(x) = 1 on {x = a1γ1 + a2γ2 : a2 > 0}. Let

g(x) =
∞∑
n=1

χ(x− nγ2)f(x− nγ2)− (1− χ(x+ (n− 1)γ2))f(x+ (n− 1)γ2),

then g ∈ C∞(R2/γ1Z) since this is a finite sum. Moreover,

g(x+ γ2)− g(x) = χ(x)f(x) + (1− χ(x))f(x) = f(x).

Now we let

ẽγ(x) = e−g(x+γ)eγ(x)eg(x),

Then ẽγ1(x) = eg(x)−g(x+γ1) = 1 and ẽγ2(x) = e−f(x)eγ2(x) = 1. Thus L is isomorphic to the

trivial line bundle. �

When n = 2, we identify R2 with C, so that C/Γ is a complex manifold. It is called an

elliptic curve (for reasons related to elliptic functions and elliptic integrals). It is a fact

that every holomorphic line bundle over C is trivial. So we can do the same thing as above

and get a family of holomorphic multipliers eγ(z) : C → C∗. Note that there are many

different holomorphic structures on a smooth line bundle over an elliptic curve (in fact,

they all differ by a translation).

Given a Hermitian connection h(z), we can write down the Chern connection directly:

θ(z) = ∂z(log h(z))dz = h(z)−1∂zh(z)dz (7.12)

It is direct to check it is Hermitian and D0,1 = ∂. We check it is compatible:

θ(z + γ) = ∂z log(h(z + γ))dz = ∂z log(h(x)|eγ(x)|−2)dz = θ(z)− eγ(z)−1∂zeγ(z)dz.

A classical subject from 19th century is elliptic functions and theta functions. By Li-

ouville’s theorem, the only holomorphic function on C/Γ is constant. So people study

meromorphic functions on C/Γ, which are called elliptic functions, and holomorphic sec-

tions of a line bundle, which are called theta functions.
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Definition 7.11. Let z, τ ∈ C, Im τ > 0. The Jacobi theta function is

θ(z; τ) =
∑
n∈Z

exp(πin2τ + 2πinz).

Let l ∈ N, a, b ∈ 1
l
Z, the theta function with rational characteristics a, b is

θa,b(z; τ) =
∑
n∈Z

exp(πi(n+ a)2τ + 2πi(n+ a)(z + b)).

Since Im τ > 0, the series converges absolutely and gives a holomorphic function. Here z

is the variable on the universal cover C of C/Γτ , and τ should be thought of as the variable

that parameterize the family of elliptic curves C/Γτ with Γτ = Z + Zτ . The Jacobi theta

function is quasi-periodic

θ(z + 1; τ) = θ(z; τ), θ(z + τ ; τ) = e−πiτ−2πizθ(z; τ).

In general,

θ(z +m+ nτ ; τ) = e−πin
2τ−2πinzθ(z; τ).

Let em+nτ (z) = exp(−πin2τ − 2πinz), then one checks

em2+n2τ (z +m1 + n1τ)em1+n1τ (z)

= exp(−πin2
2τ − 2πin2(z +m1 + n1τ)− πin2

1τ − 2πin1z)

= exp(−πi(n1 + n2)2τ − 2πi(n1 + n2)z)

= em1+m2+(n1+n2)τ (z).

So {em+nτ (z)} defines a holomorphic line bundle over C/Γτ and θ(z; τ) is a nonzero holo-

morphic section of it.

One can check the metric given by h(x) = exp(−2π| Im z|2/| Im τ |) satisfies the compat-

ibility condition (7.9). The corresponding Chern connection is given by θ(z) = π(z−z̄)
Im τ

dz

with curvature Θ = π
Im τ

dz ∧ dz̄. So

c1(L) =
i

2π

∫
X

Θ = 1.

So the Jacobi theta function is a nontrivial holomorphic section of a line bundle of degree 1.

In fact, Riemann–Roch theorem tells us this is the unique nontrivial holomorphic section

of this line bundle (up to scalar).

In general, there are more complicated line bundles of higher degrees. The theta functions

with rational characteristics θa,b(lz; τ) satisfies

θa,b(l(z + 1); τ) = θa,b(lz; τ), θa,b(l(z + τ); τ) = e−πil
2τ−2πil2zθa,b(lz; τ).
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Thus they describe a holomorphic line bundle with e1(z) = 1 and eτ (z) = e−πil
2τ−2πil2z. A

simple calculation shows this line bundle has Chern number l2, and again Riemann–Roch

theorem implies that it has l2 linearly independent holomorphic sections. Indeed, one can

check directly that a basis is given by {θa,b(z) : a, b ∈ 1
l
Z/Z}. We provide an elementary

proof below.

Proposition 7.12. Suppose Im τ > 0 and Γ = Z⊕ Zτ , and X = C/Γ is a complex torus.

Let L be a line bundle over X defined by multipliers

e1(z) = eiα, eτ (z) = eiβ−2πimz, α, β ∈ C,m ∈ Z.

Then the dimension of holomorphic sections of L (denoted by O(X;L)) is equal to

dimCO(X;L) =


m, if m > 0;

0, if m < 0;

0 or 1, if m = 0, depending on whether L is trivial.

Remark 8. Note by (7.10), m = c1(L) is the Chern number of the line bundle.

Proof. Let w be a holomorphic section of L, we write

w(z) = eiαzu(z),

then u(z + 1) = u(z), u(z + τ) = ei(β−ατ)−2πimzu(z). We can then expand u into Fourier

series

u(z) =
∑
n∈Z

an(y)e2πinz.

Since u(z) is holomorphic, an(y) is also holomorphic, and an(y) = an are constants. The

condition u(z + τ) = ei(β−ατ)−2πimzu(z) gives

ane
2πinτ = ei(β−ατ)an+m.

If m = 0 and β − ατ ∈ 2πτZ (i.e. when L is trivial), then one has a nonzero solution

an = δn,r for β − ατ = 2πirτ . Otherwise we get an = 0 for all n.

For m 6= 0, the solution is determined by a choice of a0, a1, · · · , a|m|−1. If m < 0, the

solution an would grow exponentially (|an| ≥ 1
C
en

2/C) and the series would diverge. Thus

there is no nonzero holomorphic sections when m < 0. If m > 0, then the solution an decays

exponentially (|an| ≤ Ce−n
2/C) and gives holomorphic sections. So dimO(X;L) = m for

m > 0. �
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8. Topology in physics: the adiabatic theorem and decay of Wannier

functions

Here we present two examples of consequences of non-trivial topology in physics. The

first concerns adiabatic evolution. We first revisit the Bloch sphere (see §5.3) and see the

emergence of holonomy in adiabatic evolution in that case. We then consider general line

bundles over R2/Γ∗ (the Brillouin zone) given by Bloch eigenfunctions and show how their

nontriviality affects decay of Wannier functions (see §5.6 for the first instance they appeared

here, albeit in trivial topology).

8.1. Adiabatic theorems and parallel transport. In this section we introduce the

adiabatic theorem. To gain respect for the general case proved in §8.2 below we first look

at a special case of the Bloch operator (7.1).

Proposition 8.1. Let x(t) = (r cos t, r sin t, (1−r2)1/2) be a curve on the sphere. Consider

the initial value problem {
iε∂twε = (H(x(t))− 1)wε,

wε|t=0 ∈ Vx(0).

Then there exists w(t) ∈ Vx(t) independent of ε, such that

wε(t) = w(t) +O(ε). (8.1)

Remark 9. If we write the equation as{
i∂twε = H(x(εt))wε,

wε|t=0 ∈ Vx(0),

then we will conclude wε(t) = e−itw(εt) + O(ε). The −1 term will just affect the phase.

The adiabatic theorem describes behavior of a system under a slowly varying Hamiltonian.

Proof. Let

u1 =
1

(1 + ρ2)1/2

(
ρeit

1

)
, u2 =

1

(1 + ρ2)1/2

(
1

−ρe−it
)

be the normalized eigenvectors. Let wε(t) = c1(t)u1(t) + c2(t)u2(t). Then

ċ1(t) = −c1〈u̇1, u1〉 − c2〈u̇2, u1〉,

ċ2(t) = −c1〈u̇1, u2〉 − c2〈u̇2, u2〉+
2i

ε
c2.
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In other words,

ċ1(t) = −ic1
ρ2

1 + ρ2
+ ic2

ρ

1 + ρ2
e−it,

ċ2(t) = −ic1
ρ

1 + ρ2
eit + c2

(
2i

ε
+

iρ2

1 + ρ2

)
.

Let a1(t) = c1(t) and a2(t) = e−itc2(t), then

ȧ1(t) = −ia1
ρ2

1 + ρ2
+ ia2

ρ

1 + ρ2
,

ȧ2(t) = −ia1
ρ

1 + ρ2
+ a2

(
2i

ε
+

iρ2

1 + ρ2
− i
)
.

This is an ordinary differential equation with constant coefficients. The matrix(
−i ρ2

1+ρ2
i ρ

1+ρ2

−i ρ
1+ρ2

2i
ε

+ iρ2

1+ρ2
− i

)
has eigenvalue λ1 = 2i/ε + iρ2/(1 + ρ2) − i + O(ε) and λ2 = −iρ2/(1 + ρ2) + O(ε) and

eigenvectors v1 =

(
0

1

)
+O(ε), v2 =

(
1

0

)
+O(ε). Thus

(
a1(t)

a2(t)

)
= exp

(
t

(
−i ρ2

1+ρ2
i ρ

1+ρ2

−i ρ
1+ρ2

2i
ε

+ iρ2

1+ρ2
− i

))(
1

0

)
= exp((−iρ2/(1 + ρ2))t)

(
1

0

)
+O(ε).

In conclusion

wε(t) = exp((−iρ2/(1 + ρ2))t)u1(t) +O(ε), (8.2)

which gives (8.1). �

The general adiabatic theorem describes a system with slowly varying Hamiltonian. It

was first proposed by Born and Fock, and later proved mathematically by Kato [Ka58]

Theorem 7. Let P (s), s ∈ [0, 1] be a smooth family of bounded self-adjoint operators on

a Hilbert space H, and λ(s) be a smooth family of simple eigenvalues of P (s) such that

dist(λ(s), Spec(P (s)) \ {λ(s)}) > δ > 0 is bounded from below. Consider the following

initial data problem {
iε∂tuε = P (t)uε,

uε(0) = u0 ∈ ker(P (0)− λ(0)).
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Then there exists u(t) ∈ ker(P (t)− λ(t)) independent of ε such that

uε(t) = exp

(
− i
ε

∫ t

0

λ(s)ds

)
u(t) +OH(ε).

We postpone the proof until §8.2.

Remark 10. The boundedness assumption of P (t) is not essential, and the proof adapts

to unbounded cases under reasonable assumptions. We only prove the bounded case for

simplicity.

In order to understand the next theorem, we need to introduce parallel transport.

Definition 8.2. Let π : L→ X be a line bundle over a smooth manifold X, and γ(t) be a

smooth curve on X. The parallel transport of s0 ∈ π−1(γ(0)) is a section s(t) of L along

γ(t) such that

Ds(t)(γ̇(t)) = 0. (8.3)

Suppose L ⊂ X ×H and the connection D is inherited from H as in (7.4). Then if we

choose a local orthonormal frame u1, D is given by ds1 +〈du1, u1〉s1. The parallel transport

equation can be rewritten as〈
d

dt
(s1(t)u1(γ(t))), u1(γ(t))

〉
= 0.

Let s(t) = s1(t)u1(γ(t)), it is equivalent to 〈 d
dt
s(t), s(t)〉 = 0 or 〈s(t + δ), s(t)〉 = 〈s0, s0〉 +

O(δ2).

The following theorem of Barry Simon [Si83] gives an interpretation of the adiabatic

theorem in terms of parallel transport.

Theorem 8. Suppose X is a smooth manifold, γ(s) is a smooth curve on X. Let P (s) =

P (γ(s)) is a family of operators satisfying the same conditions in Theorem 7. Let Vx =

ker(P (x)−λ(x)) be the line bundle defined by the eigenspace of P (s) and D be the inherited

connection from H. Then u(t) given in Theorem 7 is the parallel transport of u0 along γ(t).

Proof. We may assume λ(x) = 0 and ignore the phase. Then u(s) = limε→0 uε(s). To prove

u(s) is the parallel transport, it suffices to show 〈 d
ds
u(s), u(s)〉 = 0. For taht, in turn, it

suffices to show for any ϕ ∈ C∞0 ((0, 1)) we have∫
ϕ(s)

〈
d

ds
u(s), u(s)

〉
ds = 0.
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We calculate∫
ϕ(s)

〈
d

ds
u(s), u(s)

〉
ds = lim

ε→0

∫
ϕ(s)

〈
d

ds
u(s), uε(s)

〉
ds

= lim
ε→0
−
∫
ϕ′(s) 〈u(s), uε(s)〉 ds−

∫
ϕ(s)

〈
u(s),

d

ds
uε(s)

〉
ds

= −
∫
ϕ′(s)ds+ lim

ε→0

i

ε

∫
ϕ(s) 〈u(s), P (s)uε(s)〉 ds

= lim
ε→0

i

ε

∫
ϕ(s) 〈P (s)u(s), uε(s)〉 ds

= 0.

We conclude 〈 d
ds
u(s), u(s)〉 = 0 and this finishes the proof. �

Remark 11. A quick formal argument indicating validity of Theorem 8 goes as follows:〈
d

ds
u(s), u(s)

〉
= lim

ε→0

〈
d

ds
uε(s), u(s)

〉
= − lim

ε→0

i

ε
〈P (s)uε(s), u(s)〉

= − lim
ε→0

i

ε
〈uε(s), P (s)u(s)〉 = 0.

But we need to justify the change of order for limit and derivative. Thus we need the help

of a test function ϕ ∈ C∞0 in the actual proof.

As a corollary, we conclude

Corollary 8.3. In Theorem 8, if γ(0) = γ(1) and λ = 0, then u(1) = holD(γ)u(0).

Remark 12. One can check that the answer in (8.2) agrees with the computation in

Example 7.8. In (8.2), ρ = sinϕ/(1− cosϕ) and

holD(γ) = exp

(
− 2πiρ2

1 + ρ2

)
= exp

(
2πi

1 + ρ2

)
= exp

(
2πi(1− cosϕ)2

(1− cosϕ)2 + sin2 ϕ

)
= exp(πi(1− cosϕ)).

8.2. Proof of the Adiabatic Theorem. In this section we give the proof of Theorem 7.

The main idea is a new unitary evolution called the adiabatic evolution.

Proof of Theorem 7. Step 1: We may assume λ(t) = 0 without loss of generality. Let U(t)

be the unitary evolution defined by P :

iε∂tU(t) = P (t)U(t), U(0) = id, (8.4)

then uε(t) = U(t)u0. Following Kato [Ka58] we define the adiabatic evolution to be

iε∂tUA(t) = (P (t) + iε[Π̇(t),Π(t)])UA(t), UA(0) = id
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where

Π(t) :=
1

2πi

∮
γ

(z − P (t))−1dz

is the projection to the eigenspace with eigenvalue λ(t) = 0 (γ is a simple closed curve

such that λ(t) lies inside and Spec(P (t)) \ {λ(t)} lies outside). Note this defines a unitary

evolution because [Π̇(t),Π(t)] is anti-self-adjoint. We claim

Π(t)UA(t) = UA(t)Π(0).

This is because

iε
d

dt
(UA(t)∗Π(t)UA(t))

= UA(t)∗(−P (t)Π(t)− iε[Π̇(t),Π(t)]Π(t) + iεΠ̇(t) + Π(t)P (t) + iεΠ(t)[Π̇(t),Π(t)])UA(t)

= iεUA(t)∗(Π̇(t) + 2Π(t)Π̇(t)Π(t)− Π̇(t)Π(t)− Π(t)Π̇(t))UA(t) = 0.

In the last step we use

Π̇(t) =
d

dt
(Π(t)2) = Π̇(t)Π(t) + Π(t)Π̇(t)

and consequently Π(t)Π̇(t)Π(t) = 2Π(t)Π̇(t)Π(t) = 0. As a consequence,

u(t) := UA(t)u0 = Π(t)UA(t)u0 ∈ ker(P (t)− λ(t)).

Moreover, since P (t)UA(t)Π(0) = P (t)Π(t)UA(t) = 0, we have

iε∂tu(t) = (P (t) + iε[Π̇(t),Π(t)])UA(t)u0 = iε[Π̇(t),Π(t)]u(t),

that is, ∂tu(t) = [Π̇(t),Π(t)]u(t) which shows that u(t) is independent of ε.

Step 2: It remains to prove uε(t)− u(t) = OH(ε). We need to estimate

UA(t)− U(t) = U(t)

∫ t

0

d

ds
(U(s)∗UA(s))ds

=
U(t)

iε

∫ t

0

U(s)∗(−P (s) + P (s) + iε[Π̇(s),Π(s)])UA(s)ds

= U(t)

∫ t

0

U(s)∗[Π̇(s),Π(s)]UA(s)ds.

(8.5)

The key now is to find a smooth family operator s 7→ X(s) such that

[Π̇(s),Π(s)] = [X(s), P (s)]. (8.6)

That is because we then have a chance of gaining an epsilon in (8.5) as (8.4) and (8.6) give

U(s)∗[X(s), P (s)]U(s) = ε (i∂s[U(s)∗XU(s)]− iU(s)∗[∂sX(s)]U(s)) . (8.7)
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We claim that

X(s) :=
1

2πi

∮
γ

(z − P (s))−1Π̇(s)(z − P (s))−1dz

gives (8.6). Indeed,

[X(s), P (s)] =
1

2πi

∮
γ

(z − P (s))−1[Π̇(s), P (s)](z − P (s))−1dz

= − 1

2πi

∮
γ

(z − P (s))−1[Π̇(s), z − P (s)](z − P (s))−1dz

=
1

2πi

∮
γ

[Π̇(s), (z − P (s))−1]dz

= [Π̇(s),Π(s)].

So we can write the integrand in (8.5) as

U(s)∗[X(s), P (s)]UA(s) = iε∂s(U(s)∗X(s)UA(s))− iεU(s)∗Ẋ(s)UA(s)

− iεU(s)∗X(s)[Π̇(s),Π(s)]UA(s),

Inserting this into (8.5) gives

‖UA(t)− U(t)‖ ≤ ε‖U(t)∗X(t)UA(t)−X(0)‖

+ ε

∫ t

0

(‖Ẋ(s)‖+ ‖X(s)[Π̇(s),Π(s)]‖)ds = O(ε).

Thus uε(t)− u(t) = (U(t)− UA(t))u0 = OH(ε), as claimed. �

8.3. The line bundle of eigenfunctions over R2/Γ∗. Suppose that

P (x,D) =
∑
j=1

(Dxj + Aj(x))2 + V (x),

Aj(x+ γ) = Aj(x), V (x+ γ) = V (x), γ ∈ Γ, x ∈ R2.

(8.8)

We also assume that for some k (5.13) holds. We then define

L :=
{

[θ, v] ∈ (R2 × L2(R2/Γ))/ ∼ : v ∈ kerL2(R2/Γ)(P (x,D − θ)− Ek(θ))
}
,

[θ, v] = [θ′, v′] ⇐⇒ (θ, v) ∼ (θ′, v′) ⇐⇒ ∃ p ∈ Γ∗, θ′ = θ + p, v′ = τ(p)v,
(8.9)

where [τ(p)v](x) = ei〈x,p〉v(x).

The reason for τ(p) is the fact that it provides unitary equivalence

P (x,D − θ − p) = τ(p)P (x,D − θ)τ(p)∗, θ ∈ R2, p ∈ Γ∗.

In particular, for u ∈ H2(R/Γ),

P (x,D − θ)u(x) = Eϕ(x) ⇐⇒ P (x,D − θ − p)[τ(p)u](x) = E[τ(p)u](x).
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We have

Lemma 8.4. Definition (8.9) gives a complex line bundle over C/Γ∗,

π : L→ C/Γ∗, π : [θ, v]→ [θ] ∈ C/Λ. (8.10)

Proof. Let Rn 3 θ 7→ u(θ, •) ∈ C∞(R2/Γ) be a smooth family of solutions to P (x,D −
θ)u(θ, x) = Ek(θ)u(θ, x), ‖u(θ, •)‖L2(R2/Γ) = 1.

The action of the discrete group Γ∗, p : (θ, v) 7→ (θ + p, τ(p)v) on the (trivial) complex

line bundle

L̃ := {(θ, τu(θ)) : θ ∈ C, τ ∈ C} ' Cθ × Cτ , (8.11)

is free and proper, and the quotient map is given by F (θ, τu(θ)) = [θ, τu(θ)]. Hence its

quotient by that action, L, is a smooth manifold of dimension two. With π given by (8.10),

π−1([θ]) ' kerL2(R2/Γ)(P (x,D − θ) − Ek(θ)) and has a vector space structure and local

coordinates θ provide the needed trivializations. �

From the presentation in §7.2 we see that we can use u(θ, x), θ ∈ F , F a fundamental

domain of Γ∗, as a frame and then for θ ∈ F , the connection is given by D(su) = (ds+ηs)u,

η := 〈dθu(θ, •), u(θ, •)〉L2(Rn/Γ) = 〈∂θ1u, u〉dθ1 + 〈∂θ2u, u〉dθ2, θ ∈ F. (8.12)

This is the Berry connection in the setting of Floquet eigenfunctions over R2/Γ∗. This

gives the following formula for the curvature, called the Berry curvature in this setting:

Θ = dη = −2i Im〈∂θ1u(θ, •), ∂θ2u(θ, •)〉L2(R2/Γ)dθ1 ∧ dθ2, θ ∈ F. (8.13)

(The other terms give 〈∂2
θ1θ2

u, u〉dθ2 ∧ dθ1 + 〈∂2
θ2θ1

u, u〉dθ1 ∧ dθ2 = 0.) We then have

c1(L) =
1

π

∫
F

Im〈∂θ1u, ∂θ2u〉dθ1dθ2. (8.14)

In particular if the integral on the right hand side does not vanish then the line bundle is

non-trivial.

Theorem 5 shows that in case of time reversal symmetry, in particular when Aj ≡ 0 in

(8.8), the line bundle L is trivial and c1(L) = 0. A yet stronger statement follows from

symmetries of V :

Proposition 8.5. Suppose that P = −∆ + V (x) and that (5.13) holds for E(θ) = Ek(θ).

If for some x0,

V (x0 + x) = V (x0 − x), (8.15)

then the Berry curvature given by (8.13) satisfies

Θ ≡ 0. (8.16)
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Proof. We can assume that x0 = 0. In view of (8.13),

Ω = −
∫
R2/Γ

dθu(θ, x) ∧ dθu(θ, x)dx.

Since we assumed that the eigenvalue E(θ) is simple, V (x) = V (x) and V (x) = V (−x)

imply that

u(θ, x) = α1(θ)u(−θ, x), u(−θ, x) = α2(θ)u(θ,−x), |αj(θ)| = 1.

Hence with α(θ) := α1(θ)α2(θ),

u(θ, x) = α(θ)u(θ,−x), α ∈ C∞(Rn/Γ∗). (8.17)

The periodicity and smoothness of α hold as for p ∈ Γ∗ we have

α(θ + p) =

∫
R2/Γ

u(θ + p, x)u(θ + p,−x)dx =

∫
R2/Γ

ei〈x,p〉u(θ, x)ei〈−x,p〉u(θ,−x) = α(θ).

This gives

Ω = −
∫
R2/Z2

dθu(θ, x) ∧ dθ(α(θ)u(θ,−x))dx

= −α(θ)

∫
R2/Z2

dθu(θ, x) ∧ dθu(θ,−x)dx+ dα(θ) ∧
∫
R2/Z2

u(θ,−x)dθu(θ, x)dx.

The first term vanishes since∫
R2/Z2

dθu(θ, x) ∧ dθu(θ,−x)dx =

∫
R2/Z2

dθu(θ,−x) ∧ dθu(θ, x)dx

= −
∫
R2/Z2

dθu(θ, x) ∧ dθu(θ,−x)dx.

For the second term we notice that∫
R2/Z2

u(θ,−x)dθu(θ, x)dx = 1
2
dθ

∫
R2/Z2

u(θ,−x)u(θ, x)dx = 1
2
dθ(α(θ)−1),

so that

dα(θ) ∧
∫
R2/Z2

u(θ,−x)dθu(θ, x)dx = 1
2
dα(θ) ∧ dθ(α(θ)−1) = 0,

and the conclusion (8.16) follows. �
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8.4. Berry connection and curvature via perturbation theory. In the notation of

§8.3 and assuming (5.13) again we can express the connection (8.12) and its curvature using

formulas from second order perturbation theory. Since we will consider other energy levels

we now write u = uk nad E = Ek – see (5.13).

We first note that (P (x,D − θ)− Ek(θ))uk(θ, x) = 0 implies that

(P (x,D − θ)− Ek(θ))∂θ`uk(θ) = ∂θ`Ek(θ)uk(θ)− 2(Dx` − θ`)uk(θ).

Since the inner product of the left hand side with uk vanishes we see that the right is also

orthogonal to uk (and that ∂θ`Ek(θ) = 2〈(Dx` − θ`)uk(θ), uk(θ)〉). This means that, for

α(θ) ∈ R,

∂θ`uk(θ) = 〈∂θ`uk(θ), uk(θ)〉uk(θ) + 2
∑
j 6=k

〈Dx`uk(θ), uj(θ)〉
Ek − Ej

uj(θ).

Then, for the curvature (8.13) we get Θ = H(θ)dθ1 ∧ dθ2 where

H(θ) := −2i Im〈∂θ1uk(θ), ∂θ2uk(θ)〉

= −8i
∑
j 6=k

Im
(
〈Dx1uk(θ), uj(θ)〉〈Dx2uk(θ), uj(θ)〉

)
(Ek − Ej)2

.
(8.18)

8.5. Decay of Wannier functions. We again suppose that (5.13) holds and we denote

by Πk = 1Ik(P ), the spectral projection associated to the isolated band Ik. In §5.7 we

discussed the basis of ΠkL
2(R2) for time reversible operators P , Pu = Pū (for instance,

P = −∆ + V , with V real valued). We now consider a more general case.

Definition 8.6. Suppose that the condition (5.13) holds. Then ϕ0 is a Wannier function

associated to the band Ik if {ϕ0(x− γ)}γ∈Γ form an orthonormal basis of of 1Ik(P )L2(R2).

We note that that

ϕ(θ, •) := |Rn/Γ∗|1/2Bϕ0(θ, •) ∈ kerHθ(P − Ek(θ)).

The condition that {ϕ0(x− γ)}γ∈Γ forms an orthonormal basis implies ‖ϕ(θ, •)‖Hθ = 1:

let F be a fundamental domain of Rn/Γ,

‖ϕ(θ, •)‖2
Hθ =

∑
γ,γ′∈Γ

∫
F

ei(γ
′−γ)·θϕ0(x− γ)ϕ0(x− γ′)dx

=
∑
γ∈Γ

eiγ·θ
∫
Rn
ϕ0(x)ϕ0(x− γ)dx =

∫
Rn
|ϕ0(x)|2dx = 1.
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Conversely, (see §5.6) any normalized family ϕ(θ, x) ∈ L2(R2/Γ∗θ;Hθ) satisfying Pϕ(θ) =

Ek(θ)ϕ(θ) and ‖ϕ(θ)‖Hθ = 1 produces a Wannier function

ϕ0(x) := ϕ0(x) =
1

|Rn/Γ∗|

∫
Rn/Γ∗

ϕ(θ, x)dθ. (8.19)

Hence we always have a Wannier function once (5.13) is satisfied.

The simplicity assumption in (5.13) then shows that ϕ(θ, •) is uniquely determined up

to a multiplicative (measurable) factor f(θ), |f(θ)| = 1, and that

B1Ik(P )L2(R2) = {g(θ)ϕ(θ, x) : g ∈ L2(R2/Γ∗)}.

We also note that for α, β ∈ Γ,

1

|R2/Γ∗|
〈e−i〈α,θ〉ϕ, e−i〈β,θ〉ϕ〉L2(R2/Γ∗;Hθ) =

1

|R2/Γ∗|

∫
R2/Γ∗

∫
R2/Γ

e−i〈α−β,θ〉|ϕ(θ, x)|2dxdθ

=
1

|R2/Γ∗|

∫
R2/Γ∗

e−i〈α−β,θ〉dθ = δαβ.

Writing g(θ) =
∑

α∈Γ aαe
−i〈α,θ〉, {aα} ∈ `2(Γ), we see from this that

{ϕ0(x− γ)}γ∈Γ is an orthonormal basis of 1Ik(P )L2(R2). (8.20)

We now make a general statement about the relation between regularity of in θ and

decay in x (which holds in any dimension):

Lemma 8.7. Suppose u ∈ S (R2) and that B̃ is the modified Bloch transform (see §5.3).

Then Dθj B̃u = B̃(xju) and∫
R2/Γ

∫
R2/Γ∗

|Dθj B̃u(θ, x)|2dθdx = CΓ

∫
R2

|xju(x)|2dx. (8.21)

For v ∈ S ′(R2 × R2/Γ) satisfying v(θ + p, x+ γ) = τ(p)v(θ, x), we then define

‖v‖2
Hk
τ (R2/Γ∗×R2/Γ) :=

∑
|α|≤k

∫
R2/2Γ∗

|Dα
θ v(θ, x)|2dθ, (8.22)

provided that the right hand side (with distributional derivatives on R2 × R2/Γ and the

integral over a fundamental domain of a larger lattice 2Γ) is finite. It follows that

‖B̃u‖Hk
τ (R2/Γ∗×R2/Γ) ' ‖〈x〉ku‖L2(R2), (8.23)

and that B̃u ∈ Hk
τ (R2/Γ∗ × R2/Γ) if and only if 〈x〉ku ∈ L2(R2).
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Proof. For u ∈ S (R2) we have

B̃u(θ, x) = cΓ

∑
γ∈Γ

ei〈x−γ,θ〉u(x− γ) ∈ C∞(R2
θ, C

∞(R2/Γx)).

Then

Dθj B̃u(θ, x) = cΓ

∑
γ∈Γ

ei〈x−γ,θ〉(xj − γj)u(x− γ) = B̃[•ju](θ, x),

and (8.21) and (8.22) follow. A density argument then gives the last conclusion. �

Let us assume that Γ = Z2 and that c1(L) 6= 0. Then, using the results of §7.2 we choose

ϕ(θ, x) such that

ϕ(θ + p, x) = ep(θ)[τ(p)ϕ](θ, x), p ∈ Z2, ee1(θ) 6= 1, ee2(θ) = 1. (8.24)

Using Definition 8.6 we now formulate

Theorem 9. Suppose that P is given by (8.8) and that for some k, (5.13) holds. Let L be

the line bundle over R2/Γ∗ given by (8.9). Then the following are equivalent:

(1) there exists a Wannier function satisfying |∂αϕ0(x)| ≤ Cαe
−c|x|, c > 0;

(2) there exists a Wannier function satisfying
∫
R2 |x|2|ϕ0(x)|2dx <∞;

(3) c1(L) = 0.

Remark 13. A more general version of this result valid for multiple bands and dimension

three was provided in [Mo*18]. It is also optimal as far as the exponent 2 in (2) is concerned.

Localization of Wannier functions and its link to topology is related to interesting physical

phenomena such as superconductivity – see [Va18].

Remark 14. We have shown that for line bundles over tori c1(L) = 0 is equivalent to

L being trivial (in fact, in full generality, c1(L) is the only topological invariant of a line

bundle, see [BoTu82]). Hence, the theorem states that having a decaying Wannier function

is equivalent to triviality of the line bundle of L, that is for having a smooth family R2 3 θ 7→
ϕ(θ) ∈ C∞(R2/Γ), satisfying τ(p)ϕ(θ) = ϕ(θ + p), ‖ϕ(θ)‖L2(R2/Γ) = 1, P (x,Dx − θ)ϕ(θ) =

Ek(θ)ϕ(θ).

Proof of Theorem 9. The implication (1) ⇒ (2) is obvious. To see that (2) ⇒ (3) we use

(8.23) to see that ϕ(θ, x) := |Rn/Γ∗|1/2B̃ϕ0 ∈ H1
τ . But this means that θ 7→ e−i〈x,θ〉ϕ(θ, x)

form R/Γ∗ → kerHθ(P − Ek(θ)) ⊂ Hθ is an H1 section satisfying ‖ϕ(θ)‖L2(R2/Γ) = 1. We

then use the following lemma:

Lemma 8.8. Let L be a smooth complex line bundle over R2/Γ∗, and there exists a unitary

H1 section s : R2/Γ∗ → L, then L is trivial.
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Proof. Let 1 =
∑

j χj be a partition of unity on R2/Γ∗ such that suppχj ⊂ Uj and L is

trivial over Uj (see Definition 7.1). We then choose ϕj : π−1(Uj)→ Uj×C be a trivialization.

Let ψ ∈ C∞c (B(0, 1);R) with
∫
ψ(x)dx = 1 and put ψε(x) = ε−2ψ(x/ε). Then

sε :=
∑
j

ϕ∗j (ψε ∗ sj) ∈ C∞(R2/Γ∗;L), sj := ϕj∗(χjs), ‖sε − s‖H1 → 0, ε→ 0.

We now denote by |v| the Hermitian length of v ∈ L defined using the L2 norm (see §8.3)

and introduce a distance function, d : L × L → [0,∞), on L (for instance by introducing

a Riemannian metric). We can now estimate the distance between sε(x) ∈ L and the

compact subset {v ∈ L : |v| = 1} of L:

d(sε(x), {v ∈ L : |v| = 1})2 ≤ min
|x−y|<ε

d(sε(x), s(y))2 ≤ Cε−2

∫
|x−y|<ε

d(sε(x), s(y))2dy

≤ C
∑
j

ε−2

∫
|x−y|<ε

(
|ψε ∗ sj(x)− sj(y)|2 + |x− y|2

)
dy,

,

(8.25)

where the O(|x − y|2) term came from the change of the Hermitian metric on different

fibers. Its overall contribution after integration is O(ε2).

To estimate the first term, we recall the Poincaré inequality (see for instance [Ev10,

§5.8.1])

ε−2

∫
|x−y|<ε

|[sj]x,ε − sj(y)|2 dy ≤ C

∫
|x−y|<ε

|∇sj(y)|2dy,

where

[sj]x,ε :=
1

πε2

∫
|x−y′|<ε

sj(y
′)dy′

is the average of sj over the disc B(x, ε). We also note that by the Cauchy–Schwarz

inequality and properties by ψε we have

|ψε ∗ (sj − [sj]x,ε)(x)|2 =

∣∣∣∣∫
|x−y|<ε

ψε(x− y)(sj(y)− [sj]x,ε)dy

∣∣∣∣2
≤ Cε−2

∫
|x−y|<ε

|sj(y)− [sj]x,ε|2dy.
(8.26)
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Thus,

ε−2

∫
|x−y|<ε

|ψε ∗ sj(x)− sj(y)|2dy

= ε−2

∫
|x−y|<ε

|ψε ∗ (sj − [sj]x,ε)(x)− (sj(y)− [sj]x,ε)|2dy

≤ C1|ψε ∗ (sj − [sj]x,ε)(x)|2 + 2ε−2

∫
|x−y|<ε

|sj(y)[sj]x,ε|2dy

≤ C2ε
−2

∫
|x−y|<ε

|sj(y)− [sj]x,ε|2dy

≤ C3

∫
|x−y|<ε

|∇sj(y)|2dy → 0, ε→ 0,

where we used (8.26) to obtain the penultimate inequality.

Returning to (8.25), we have shown that d(sε(x), {v ∈ L : |v| = 1}) → 0 as ε → 0, and

hence sε is a smooth, nonvanishing section of L. Thus L must be trivial. �

It remains to show that (3)⇒ (1). From Proposition 7.10 we see that the line bundle L

is trivial. That implies existence of a C∞ non-vanishing section, that is of a smooth map

θ 7→ ϕ(θ, x), ‖ϕ(θ)‖L2(R2/Γ) = 1 (see above). But then the regularization procedure in the

proof of Theorem 5 gives us a real analytic section ϕ̃(θ). (The only modification needed is

in the normalization where we need to divide by the square root of 〈ϕ0(θ), ϕ0(θ̄)〉L2(R2/Γ)

to guarantee holomorphy.) Exponentially decaying Wannier function is then obtained as

in Proposition 5.16. �

9. Two examples of topology in band theory

Here we present two cases of non-trivial line bundles arising in condensed matter physics.

The first one is motivated by the work of Thouless [Th83] and has physical implications

which we do not discuss but provide references for. The second comes from considering 2D

Landau Hamiltonians of §3 with rational magnetic fluxes. It turns out that in that case

one can use magnetic translations to develop an analogue of Bloch–Floquet theory and that

leads to non-trivial topology.

9.1. Thouless pumping. Suppose that P := D2
x + V (x) where V (x + 2π) = V (x), V ∈

C∞(R;R) (regularity is irrelevant here and could for instance consider the Kronig–Penney
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model of Example 10). Following §5.4 we have

Spec(P ) =
∞⋃
j=1

Ij, Ij := {Ej(θ) : θ ∈ R/Z}.

Suppose that E(θ) = Ek(θ) and (5.13) holds, that is the band Ik is isolated. It follows from

Theorem 5 that there exists ϕ(θ, x) ∈ C∞(R× R) satisfying

((Dx − θ)2 + V (x))u(θ, x) = E(θ)u(θ, x), u(θ + p, x+ 2π`) = eipxu(θ, x), p, ` ∈ Z.

(We have u(θ, x) = eixθϕ(θ, x), where ϕ is the (normalized) Bloch eigenfunction of Theorem

5.) We then consider the periodic family of operators

P (λ) := D2
x + V (x− λ), P (θ, λ) := (Dx − θ)2 + V (x− λ).

The eigenfunction corresponding to E(θ) is given by u(θ, λ)(x) = u(θ, x− λ) and

u(θ + p, x+ 2π`) = e−iλpτ(p)u(θ, λ), [τ(p)v](x) := eixpv(x). (9.1)

As in §8.3, we consider the following natural line bundle defined in a way similar to (8.9):

LT :=
{

(λ, [θ, v]) ∈ R× (R× L2(R/Z))/ ∼ : v ∈ kerL2(R/Z)(P (θ, λ)− Ek(θ))
}
,

[θ, v] = [θ′, v′] ⇐⇒ (θ, v) ∼ (θ′, v′) ⇐⇒ ∃ p ∈ Z θ′ = θ + p, v′ = τ(p)v.
(9.2)

We define the connection using the Hermitian structure inherited from L2(R/2πZ) – see

(7.4): for (θ, λ) ∈ (0, 1)× (0, 2π), using the frame s(θ, λ) = ((θ, λ), f(θ, λ)u(θ, λ)),

Ds(θ, λ) = ((θ, λ), (dθ,λf + 〈dθ,λu, u〉f)u(θ, λ)).

The curvature is then given by

Θ = ∂λ〈uθ, u〉dλ ∧ dθ + ∂θ〈uλ, u〉dθ ∧ dλ
= (〈uλ, uθ〉 − 〈uθ, uλ〉)dθ ∧ dλ = 2i Im〈uλ, uθ〉dθ ∧ dλ

(9.3)

The Chern number is given as in (8.14) but with θ1 = λ and θ2 = θ. Since

∂λu(θ, x− λ) = −∂xu(θ, x− λ)

and u is periodic in x, we get

c1(LT) =
i

2π

∫
[0,1]×[0,2π]

Θ

= − 1

π

∫ 1

0

∫ 2π

0

(∫ 2π

0

Im
(
∂xu(θ, x− λ)∂θu(θ, x− λ)

)
dx

)
dλdθ

= −2

∫ 2π

0

∫ 1

0

Im
(
∂xu(θ, x)∂θu(θ, x)

)
dxdθ.

(9.4)
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We now observe (see (9.3)) that

−2 Im(∂xu(θ, x)∂θu(θ, x))dθ ∧ dx = id(uθūdθ + uxūdx),

so that the Stokes theorem gives

c1(LT ) = i

∫ 1

0

([uθū](θ, 0)− [uθū](θ, 2π))dθ + i

∫ 2π

0

([uxū](1, x)− [uxū](0, x))dx.

We now use (9.1) to see that

u(θ, 2π) = u(θ, 0), u(1, x) = eixu(0, x).

This gives

[uθū](θ, 0)− [uθū](θ, 2π) = 0, [uxū](1, x)− [uxū](0, x)] = i|u(0, x)|2.

Since
∫ 2π

0
|u(0, x)|2dx = 1 (u is normalied in L2) we conclude that

c1(LT ) = −1. (9.5)

In particular the line bundle LT is nontrivial.

Remark 15. We could also evaluate c1(LT ) using multpliers (7.7) as in (7.10). From (9.1)

we get that e(k,2π`)(θ, λ) = eipλ and that give (9.5).

For physical aspects of this example, involving the concept of polarization and Thouless

pumping, see [MoMo18, §4.1] and [Va18, §1.1.2]. For a youtube presentation see https://

topocondmat.org/w3_pump_QHE/pumps.html (thanks to Zhen Huang for this suggestion).

Mathematical treatment of the more subtle case of D2
x +W (x) +V (x−λ), W (x+ 2π) =

W (x), was recently given in [Dr21]. An argument similar to the one presented here appeared

in [Go20] (thanks to Alexis Drouot for these references). Those results were motivated by

the study of spectral flows rather than by Thouless pumping.

9.2. Landau levels revisited. We now return to §3.4 and consider the two dimensional

Landau Hamiltonian in the symmetric gauge and recall that with w = x1 + ix2,

PB = A∗BAB +B, AB := e−B|w|
2/4(2Dw̄)eB|w|

2/4 = 2Dw̄ − 1
2
iBw. (9.6)

The infinitely degenerate ground states are given by

u(w, w̄) = f(w)e−
B|w|2

4 , f ∈ O(C),

∫
|f(w)|2e−

B|w|2
2 dm(w) <∞. (9.7)

To describe this space using Bloch–Floquet theory we need operators which commute with

PB and replace γ 7→ u(x− γ), γ ∈ Γ.

https://topocondmat.org/w3_pump_QHE/pumps.html
https://topocondmat.org/w3_pump_QHE/pumps.html
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Definition 9.1. Let Γ be a lattice in C. For magnetic field B and γ ∈ Γ a magnetic

translation by γ is defined on L2(C, dm(w)) as

TBγ u(w) = e
1
4
B(wγ̄−w̄γ)u(w − γ). (9.8)

We immediately check that

ABT
B
γ = TBγ AB, (TBγ )∗ = TB−γ, TBγ T

B
γ′ = e

1
2
B(γ′γ̄−γ̄′γ)TBγ′T

B
γ , (9.9)

and

PBT
B
γ = TBγ PB, γ ∈ Γ. (9.10)

Remark 16. This definition, due to Zak (see [HS89] and references given there), can be

generalized to all dimensions so that (9.10) holds. We restrict ourselves to R2 ' C to keep

the presentation simple.

The problem with a generalization of Bloch–Floquet theory is that the magnetic trans-

lations do not commute – see (9.9). However if

1
2
B(γ′γ̄ − γ̄′γ) ∈ 2πiZ, γ, γ′ ∈ Γ, (9.11)

then TBγ T
B
γ′ = TBγ′T

B
γ and we can define

H B
k := {u ∈ L2

loc(C) : ∀ γ ∈ Γ TBγ u = e
i
2

(k̄γ+kγ̄)u}, k ∈ C.

The point is that {TBγ }γ∈Γ is an abelian group on two generators and it irreducible repre-

sentations are one dimensional and are given by

γ 7→ πk(γ) : C→ C, πk(γ)z = e
i
2

(kγ̄+k̄γ)z, k ∈ C/Γ∗.

For u ∈ S (C), the magnetic Bloch transform is given by,

BBu(k, x) :=
1

|C/Γ∗| 12
∑
γ

e−
i
2

(k̄γ+kγ̄)TBγ u(x) ∈ L2(C/Γ∗; H B
k ). (9.12)

It extends to a unitary operators as for u ∈ S (C) we have∑
γ∈Γ

∑
γ′∈Γ

∫
C/Γ

1

|C/Γ∗|

(∫
C/Γ∗

e−
i
2

(k̄(γ−γ′)+k(γ̄−γ̄′)dm(k)

)
e

1
4

(w(γ̄−γ̄′)−w̄(γ−γ′))u(w − γ)u(w − γ′)dm(w)

=
∑
γ∈Γ

∑
γ′∈Γ

∫
C/Γ

δγγ′e
1
4

(w(γ̄−γ̄′)−w̄(γ−γ′))u(w − γ)u(w − γ′)dm(w) =

∫
C
|u(w)|2dm(w).

As is easily seen from (9.12), the inverse of BB is given by

CBv(x) :=
1

|C/Γ∗|1/2

∫
C/Γ∗

v(k, x)dm(k).
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(See also the proof of Theorem 4.) Hence, as in §5.4,

BBPBCBv(k, x) = [PBv(k, •)](x),

We are interested in the space corresponding to the ground state:

V B
k := kerH B

k
(PB −B) = kerH B

k
AB. (9.13)

It is convenient now to specialize to specific lattices of the form

Γ = Z⊕ τZ, Im τ > 0, Γ∗ =
2πi

Im τ
Γ.

(A general lattice is given by ω1Z⊕ω2Z = ω1(Z⊕ (±ω2/ω1)Z) and we can arrange the sign

of Im τ , τ = ω2/ω1). The condition (9.11) becomes

NB :=
B

2π
Im τ ∈ Z. (9.14)

Theorem 10. Suppose that (9.14) holds. Then the vector subspace of H B
k corresponding

to the ground state of B (see (9.13)) is finite dimensional and

dim kerH B
k

(PB −B) = NB.

Proof. In (9.7) it is convenient to write f(w) = g(w) exp(Bw2/4), so that for u ∈H B
k ,

TB1 u(w) = e
i
2
B Imwu(w − 1) = e

i
2
B Imwe−

1
4
B(w−1)(w̄−1)e

1
4
B(w−1)2g(w − 1)

= e
i
2
B Imwe

1
4
B(−1+(w+w̄))e

1
4
B(1−2w)e−

1
4
B|w|2+ 1

4
Bw2

g(w − 1)

= e−
1
4
B|w|2+ 1

4
Bw2

g(w − 1).

Since TB1 u = eiReku = eiReke−
1
4
B|w|2+ 1

4
Bw2

g(w), we conclude that

g(w − 1) = eiRekg(w). (9.15)

Similarly,

TBτ u(w) = e
i
2
B Im(wτ̄)u(w − τ) = e

i
2
B Im(τ̄w)e−

1
4
B(w−τ)(w̄−τ̄)e

1
4
B(w−τ)2g(w − τ)

= e
i
2
B Im(wτ̄)e

1
4
B(−|τ |2+(τ̄w+τw̄)e

1
4
B(τ2−2τw)e−

1
4
B|w|2+ 1

4
Bw2

g(w − τ)

= e
i
2
B Im τ(τ−2w)e−

1
4
B|w|2+ 1

4
Bw2

g(w − τ).

Again, TBτ u(w) = e
i
2

(k̄τ+kτ̄)u(w), we obtain

g(w − τ) = e
i
2

(k̄τ+kτ̄)− i
2
B Im τ(τ−2w)g(w) = e

i
2

(k̄τ+kτ̄)−iπNB(τ−2w)g(w) (9.16)

This means that we can consider g as a section of a holomorphic line bundle over C/Γ.

Proposition 7.12 tells us holomorphic sections form a vector space of dimension NB.
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One can also see the dimension from Riemann–Roch theorem. Residue theorem shows

that the number of zeros of g is given by NB and the theorem follows from the Riemann–

Roch theorem: suppose g1 and g2 satisfy (9.15) and (9.16). Then g1(w)/g2(w) is a mero-

morphic function on C/Γ with at most NB poles at locations (counted with multiplicities)

of the zeros NB. But that space has dimension NB. �

Suppose NB = 1. In that case we obtain a vector bundle over C/Γ∗. To set it up we

take the map

τk : H B
k →H B

0 , u(w) 7−→ τku(w) := e
i
2

(w̄k+wk̄)u(w),

τkPBτ
∗
k = PB(k) := (AB − k)∗(AB − k) +B.

(9.17)

We also note that for p ∈ Γ∗, we have a unitary map

τp : H B
0 →H B

0 , τ ∗pPB(k)τp = PB(k + p). (9.18)

As in §8.3 this leads to a definition of a natural line bundle over C/Γ∗:

LB :=
{

[k, v] ∈ (C×H B
0 )/ ∼ : v ∈ kerH B

0
(PB(k)−B)

}
,

[k, v] = [k′, v′] ⇐⇒ (k, v) ∼ (k′, v′) ⇐⇒ ∃p ∈ Γ∗, k′ = k + p, v′ = τpv,
(9.19)

Remark 17. Under an assumption stronger than (9.11) (or equivalently (9.14)),

1
2

ImB(γ1γ̄2) ∈ 2πZ, γj ∈ Γ, (9.20)

we can identify H B
0 with L2-sections of a line bundle over C/Γ:

H B
0 ' L2(C/Γ;EB), (9.21)

where EB → C/Γ is the line bundle defined using (7.6) with multipliers eγ(z) := e
i
2
B Im(zγ̄).

We first check that this function satisfies the cocycle condition (7.7):

eγ1+γ2(z) = e
i
2
B Im(z(γ̄1+γ̄2) = e

i
2
B Im((z+γ2)γ̄1)e

i
2

Im(zγ̄2)e−
i
2
B Im(γ2γ̄1) = eγ1(z + γ2)eγ2(z),

where the last equality comes from (9.20). Now, u ∈H B
0 means that (see (9.8)) u(z+γ) =

eγ(z)u(z) which in view of (7.8) gives (9.21).

We have

Theorem 11. Definition (9.19) gives a holomorphic line bundle with a hermitian metric

defined by ‖v‖2
H B

0
and the Chern number c1(LB) = −1.

Proof. Let us consider the function g in the proof of Theorem 10 for k = 0. It satisfies

g ∈ O(C), g(z + 1) = g(z), g(z + τ) = e−iπ(2z+τ)g(z).
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This means that up to a multiplicative constant

g(z) = θ(z, τ) :=
∑
n∈Z

exp(πin2τ + 2πinz),

that is g is the theta function from Definition 7.11. (Uniqueness follows an argument similar

to the proof of Proposition 7.12 – see [Mu83, §I.1]; we also comment that the zero of g(z)

in the fundamental domain spanned by 1 and τ is at 1
2
(τ + 1) – see [Mu83, I, Lemma 4.1].)

We now define

Fk(z) := e−
i
2

(z−z̄)k θ(z − ik/B, τ)

θ(z, τ)
,

so that

Fk(z + 1) = Fk(z), Fk(z + τ) = e−
i
2

(τ−τ̄)ke−2πk/BFk(z) = e(Im τ−2π/B)kFk(z) = Fk(z).

where we used (9.14) with NB = 1. Let u ∈ kerH B
0

(AB), u(z) = e−
1
4
B|z|2e

1
4
Bz2g(z). Then

u(k, z) := Fk(z)u(z) ∈ kerH B
0

(AB − k), u(k + p, z) = ep(k)−1τpu(k, z), (9.22)

where τp was defined in (9.17) and for p = iB(n+mτ),

ep(k) := eπim
2τ+2πmk/B (9.23)

and we check that this a multiplier, that is, it satisfies (7.7).

The action of Γ∗, p : (k, v) 7→ (k + p, τpv) on the (trivial) complex line bundle

L̃ := {(k, τu(k)) : k ∈ C, τ ∈ C} ' Ck × Cτ , (9.24)

is free and proper, and the quotient map is given by πτ (k, τu(k)) = [k, τu(k)]. Hence its

quotient by that action, L, is a smooth complex manifold of dimension 2. We then define

the action of Γ∗ on L̃ as in (7.6):

p · (k, κu(k)) = (k + p, ep(k)κu(k + p)), p ∈ Γ∗,

so that

πτ (k, κu(k)) = πτ (k + p, ep(k)κu(k + p)).

This gives L the structure of a complex line bundle over C/Γ∗.
The hermitian structure is inherited from L2(C/Γ) and the resulting hermitian structure

on L̃ of (9.24). In coordinates (k, τ) on L̃, we get

h(k) = ‖u(k)‖2
H B

0
,

This gives us also a hermitian structure on L: from (9.22) we see that

h(k) = |ep(k)|2h(k + p), p ∈ Γ∗. (9.25)
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To h we associate the Chern connection (7.12) and the curvature Θ – see Proposition 7.4.

Then we use (7.10):

c1(LB) =
i

2π

∫
C/Γ∗

Ω = −1, (9.26)

completing the proof. �

Remark 18. Another way to compute the Chern number is to use (7.10):

c1(LB) =
i

2π
(log eiBτ (iB)− log eiBτ (0)− log eiB(iBτ) + log eiB(0)) =

i(iB)

B
= −1.

Remark 19. Since kerL2(C/Γ)(PB(k)−B) is one dimensional we can always choose a holo-

morphic gauge:

0 = Dk̄[(AB − k)v(k)] = (AB − k)[Dk̄v(k)] =⇒ Dk̄v(k) = a(k)v(k),

and a can be replaced by 0 by choosing changing v to v1 := e−ia(k)w̄/2v.

10. 2D periodic structures in constant magnetic field: effective

Hamiltonians

We now study the case with a smooth periodic potential V (x) ∈ C∞(R2) and V (x+γ) =

V (x) for any γ ∈ Γ. Let

PB,0 :=
2∑
j=1

(Dxj + Aj(x))2, A(x) = (−Bx2/2, Bx1/2),

PB = PB,V = PB,0 + V.

(10.1)

We will use our knowledge of the cases B = 0 and V = 0 and our goal is to consider the

problem perturbatively as B → 0. The perturbation is very singular but a careful study of

the case B = 0 combined with the magnetic translations will provide a needed framework.

We follow the proof given by Helffer–Sjöstrand [HS89]. For a presentation of more general

perturbations of periodic structures and references, see [DS99, Chapter 12] and [Te03].

10.1. Periodic potentials revisited. In order to consider magnetic field as a perturvation

we analyze a Grushin problem P := −∆ + V under the isolated band assumption (5.13).

Theorem 9 then shows that the topology of the band is trivial. In particular, we have

exponentially decaying Wannier functions ϕα(x) = ϕ0(x− α) such that |ϕ0(x)| ≤ Ce−|x|/C

for some C > 0.
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Proposition 10.1. With the notation introduced above, let

P(z) =

(
P − z R−
R+ 0

)
: H2(R2)× l2(Γ)→ L2(R2)× l2(Γ)

where R−u− :=
∑

α∈Γ u−(α)ϕα(x) and R+u(α) = 〈u, ϕα〉. Then for z ∈ nbhdC(Ik), P(x)

is invertibile with

P(z)−1 = E(z) :=

(
E(z) E+(z)

E−(z) E−+(z)

)
,

E−+(z)f(α) = zf(α)−
∑
γ

Ê(α− γ)f(γ).
(10.2)

where Ê(γ) = |R2/Γ∗|−1
∫
R2/Γ∗

e−iγ·θE(θ)dθ.

Proof. Let Π = Πk = 1Ik(P ) be the spectral projection to the band Ik. One can verify

directly that

E(z) = (I − Π)(P − z)−1(I − Π), E−(z) = R+, E+(z) = R−

and E−+(z) given above solve the equation. �

Since the magnetic field introduces a very strong perturbation near infinite, we will need

weighted estimates for E(z):

Proposition 10.2. Let f ∈ C2(R2;R) and ef (v, v+) = (ef(x)v(x), ef(α)v+(α)). If ‖f ′‖∞ +

‖f ′′‖∞ is sufficiently small, then efP(z)e−f is invertible with bounded inverse

‖efP(z)−1e−f‖L2×l2→H2×l2 ≤ C.

Proof. We estimate each term in

efP(z)e−f =

(
ef (P − z)e−f efR−e

−f

efR+e
−f 0

)
.

Notice ef (P − z)e−f =
∑

(Dxj + i∂xjf)2 + V (x)− z, we have

ef (P − z)e−f − (P − z) = i(∇f ·Dx +Dx · ∇f)− |∇f |2.

This is small in H2 → L2 norm once ‖f ′‖∞ + ‖f ′′‖∞ is small. The term on R+ gives

efR+e
−fu = ef(α)〈e−f(x)u(x), ϕα(x)〉 = 〈u, ef(α)−f(x)ϕα(x)〉

and (efR+e
−f −R+)u = 〈u, (ef(α)−f(x) − 1)ϕα(x)〉. So we can estimate

|(ef(α)−f(x) − 1)ϕα(x)| =
∣∣∣∣∫ 1

0

(f(α)− f(x))et(f(α)−f(x))dt

∣∣∣∣ |ϕα(x)|

≤ C‖f ′‖∞|α− x|e‖f
′‖∞|α−x|e−|x−α|/C .

(10.3)
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Now,

efR+e
−f − 1)u(α) =

∫
R2

K(α, x)u(x)dx, K(α, x) := (ef(α)−f(x) − 1)ϕα(x),

and we showed in (10.3) that if ‖f ′‖∞ < 1/C is sufficiently small,

|K(α, x)| ≤ Ce−c|x−α|, c > 0.

Hence efR+e
−f − R+ : L2 → l2 is bounded with a small norm by Schur’s inequality (see

(2.9), (2.10)).

Similarly we also obtain the smallness of ‖efR−e−f −R−‖l2→L2 . Since P(z) is invertible

and efP(z)e−f − P(z) has small norm as an operator H2 × l2 → L2 × l2, we conclude

efP(z)e−f is invertible with a bounded inverse. �

10.2. Functional spaces associated to PB. The operator PB,0 is essentially self-adjoint

as was discussed in Example 4. The domain was given by

D(PB,0) = {u ∈ L2(R) : PB,0u ∈ L2(R2)},

where PB,0u was considered as an element of S ′ after distributional differentiation (2.4).

It is convenient to give a different characterization of the domain using magnetic Sobolev

spaces which we define as follows. For α ∈ N2, we put

(Dx + A)α = (Dx1 −Bx2/2)α1(Dx2 +Bx1/2)α2 .

(We note that the order matters but the commutator of Dx1 −Bx2/2 and Dx2 +Bx1/2 is

given by multiplication by B.) With that notation we define

Hk
B(Rn) = {u ∈ L2(R2) : (Dx + A)αu ∈ L2(R2), |α| ≤ k}, k ∈ N,

where again the derivatives are taken in the sense of distributions. We note that C∞c (R2)

is dense in Hk
B(R2).

To relate H2
B to the domain of PB,0 we have

Lemma 10.3. There exist C1 such that for u ∈ C∞c (R2)

‖(Dx + A)αu‖L2 ≤ C1(‖PB,0u‖L2 + ‖u‖L2), |α| ≤ 2. (10.4)

Proof. This is based on the observation that for ξ0 := A(x0) := (−Bx0,2/2, Bx0,1/2) we

have

ei〈ξ0,x〉(Dx + A(x))αe−i〈ξ0,x〉 = (Dx + A(x− x0))α = (Dy + A(y))α, x = x0 + y,

and ei〈ξ0,x〉PB,0(x,Dx)e
−i〈ξ0,x〉 = PB,0(y,Dy).
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Local elliptic estimates (see the proof of Lemma 5.2 or [Zw12, Theorem 7.1] for a detailed

elementary presentation) then show that

‖(Dy + A(y))αv‖L2(B(0,1)) ≤ C0(‖PB,0(y,Dy)v‖L2(B(0,2)) + ‖v‖L2(B(0,2))), |α| ≤ 2.

Applying this to v(y) = ei〈ξ0,x0+y〉u(x0 + y), gives

‖(Dx + A(x))αu‖L2(B(x0,1)) ≤ C0(‖PB,0u‖L2(B(x0,2)) + ‖u‖L2(B(x0,2))), (10.5)

where the constant is independent of x0. We can now use a cover, say, R2 =
⋃
p∈ 1

4
Z2 B(p, 1),

so that (10.5) applied with x0 = p and summed over 1
4
Z2 gives (10.4) with C1 = 64C0. �

If u, PB,0 ∈ L2 then approximation by elements of C∞c shows that (10.4) remains valid

and that D(PB,0) = H2
B(R2). The estimate remains true when PB,0 is replaced by PB,V and

it can also be used to show that PB,V is essentially self-adjoint (apply the definitions from

§2.3) with the same domain.

10.3. Grushin problem for small constant magnetic fields. In the notation of §10.2

we consider the following Grushin problem:

PB(z) =

(
PB − z RB

−
RB

+ 0

)
: H2

B(R2)× l2(Γ)→ L2(R2)× l2(Γ) (10.6)

where

RB
−u−(x) :=

∑
α∈Γ

u−(α)TBα ϕ0(x), RB
+u(α) := 〈u, TBα ϕ0〉,

The boundedness of

RB
− : `2(Γ)→ L2(R2), RB

+ : L2(R2)→ `2(Γ),

follows from the Schur criterion (2.10) and the exponential decay of ϕ0(x):

RB
−u−(x) =

∑
α∈Γ

K(x, α)u−(α), K(x, α) := TBα ϕ0(x), |K(x, α)| ≤ Ce−c0|x−α|,

with the similar statement for RB
+.

We define

τBγ v(α) := e
1
4
B(αγ̄−ᾱγ)v(α− γ)

as the discrete analogue of (9.8) and

T Bγ :=

(
TBγ 0

0 τBγ

)
,

then

T Bγ PB(z) = PB(z)T Bγ . (10.7)
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This means that the operator obtained from the Grushin problem commutes with the

magnetic translation. We only need to check TBγ R
B
+ = RB

+T
B
γ as the other one is dual to

this one.

τBγ R
B
+u(α) = e

1
4
B(αγ̄−ᾱγ)〈u, ϕα−γ(x)〉 = e

1
4
B(αγ̄−ᾱγ)〈u, e

1
4
B(x(α−γ)−x̄(α−γ))ϕ0(x− α + γ)〉

= 〈e
1
4
B(xγ̄−x̄γ)u(x− γ), e

1
4
B(xᾱ−x̄α)ϕ0(x− α)〉

= 〈TBγ u, ϕα〉 = RB
+[TBγ u](α).

We now show that our Grushin problem is well posed:

Theorem 12. For z ∈ nbhdC(Ik) and |B| � 1, the operator

PB(z) : H2
B(R2)× l2(Γ)→ L2(R2)× l2(Γ)

is invertible with uniformly bounded inverse.

Proof. We choose a partition of unity θγ such that∑
γ∈Γ

θγ(x) = 1, θγ(x) = θ0(x− γ), θ0(x) ∈ C∞0 (R2; [0, 1]).

Let

Θγ(x) =

(
θγ(x) 0

0 δγ

)
(10.8)

and E0(z) = P0(z)−1, we construct the approximate inverse FB as

FB =
∑
γ∈Γ

T Bγ E0T B−γΘγ =
∑
γ∈Γ

T Bγ E0Θ0T B−γ.

We claim ‖FB‖L2×l2→H2
B×l2 ≤ C <∞. We need to estimate(

(D + A)α 0

0 1

)
FB =

∑
γ∈Γ

T Bγ
(

(D + A)α 0

0 1

)
E0Θ0T B−γ.

Let η > 0; denote

K =

(
eη〈·〉 0

0 eη〈·〉

)(
(D + A)α 0

0 1

)
E0Θ0.

By weighted estimate (Proposition 10.2), K : L2× l2 → L2× l2 is bounded for η sufficiently

small and |α| ≤ 2. We now choose θ̃0 ∈ C∞0 (R2) so that the corresponding Θ̃0 defined as

in (10.8) satisfies Θ̃0Θ0 = Θ0. We then have(
(D + A)α 0

0 1

)
FB =

∑
γ∈Γ

Aγ, Aγ := T Bγ
(
e−η〈·〉 0

0 e−η〈·〉

)
KΘ̃0T B−γ. (10.9)

To prove the boundedness of the sum of Aγ’s we need the classical Cotlar–Stein Lemma:
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Proposition 10.4. Suppose that Bj : H1 → H2, j ∈ N are bounded operators between

Hilbert spaces H1 and H2, and that there exists M > 0 such that for all j,∑
k∈N

‖B∗jBk‖
1
2 ≤M,

∑
k∈N

‖BjB
∗
k‖

1
2 ≤M,

then Bu :=
∑

j∈J Bju converges in H2 and defines an operator satisfying

‖B‖H1→H2 ≤M.

Proof. Let us first assume that Bj = 0 for j > J so that B is well defined. Since B∗B

is self-adjoint, the spectral theorem (Theorem 1) implies that ‖B‖2m = ‖(B∗B)m‖. In

addition,

(B∗B)m =
J∑

j1,...,j2m=1

B∗j1Bj2 . . . B
∗
j2m−1

Bj2m =:
J∑

j1,...,j2m=1

Bj1,...,j2m ,

where we note that we have 2m sums. The summands are estimated as follows:

‖Bj1,...,j2m‖ ≤ ‖B∗j1Bj2‖‖B∗j3Bj4‖ . . . ‖B∗j2m−1
Bj2m‖,

and

‖Bj1,...,j2m‖ ≤ ‖Bj1‖‖Bj2B
∗
j3
‖ . . . ‖Bj2m−2B

∗
j2m−1

‖‖Bj2m‖.
Since ‖Bj‖ = ‖B∗jBj‖

1
2 ≤ M , multiplying these estimates and taking square roots we

obtain

‖Bj1,...,j2m‖ ≤M‖B∗j1Bj2‖1/2‖Bj2B
∗
j3
‖1/2 . . . ‖B∗j2m−2

B∗j2m−1
‖1/2‖B∗j2m−1

Bj2m‖1/2.

The advantage lies in having products of 2m− 1 terms which we can sum separately:

‖B‖2m = ‖(B∗B)m‖ ≤
J∑

j1,...,j2m=1

‖Bj1,...,j2m‖

≤ M

J∑
j1,...,j2m=1

‖Bj1B
∗
j2
‖1/2 . . . ‖B∗j2m−1

Bj2m‖1/2 ≤MJM2m−1,

where the J factor came from having 2m sums and only 2m− 1 factors in the summands.

Hence

‖B‖ ≤ J
1

2mM −→M as m→∞. (10.10)

For the general case we take u ∈ H1 of the form u = B∗kv for some k and some v ∈ H2.

Then

‖
∞∑
j=1

Bju‖ = ‖
∞∑
j=1

BjB
∗
kv‖ ≤

∞∑
j=1

‖BjB
∗
k‖1/2‖BjB

∗
k‖1/2‖v‖ ≤M2‖v‖.

We conclude that
∑∞

j=1Bju converges for u ∈ Σ := span{B∗k(H2) | k = 1, . . . }.
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We have proved ‖
∑J

j=1 Bj‖ ≤M for any J , and that
∑∞

j=1 Bju converges for any u ∈ Σ.

Hence, the series converges for any u ∈ Σ (the closure of Σ in H1). In fact, if suffices to show

that for u ∈ Σ, we have the Cauchy sequence property: ‖
∑K

j=LBju‖ < ε, if L,K > N . For

that we choose u0 ∈ Σ such that ‖u− u0‖ < ε/(2M) and for which ‖
∑K

j=LBju0‖ < ε/2, if

L,K > N . Then

‖
K∑
j=L

Bju‖ ≤ ‖
K∑
j=L

Bju0‖+ ‖
K∑
j=L

Bj(u− u0)‖ < 1
2
ε+M‖u− u0‖ < ε,

where we used the fact for any finite sum of Bj we have the bound (10.10). It also follows

that

‖
∞∑
j=1

Bju‖ ≤ lim sup
J→∞

(
‖

J∑
j=1

Bju‖+ ‖
∞∑

j=J+1

Bju‖

)
≤M‖u‖.

If u is orthogonal to Σ, then u ∈ ker(Bk) for all k; in which case
∑∞

j=1Bju = 0. Hence the

series
∑∞

j=1 Bju converges in norm for all u ∈ H1 and defines an operator of norm bounded

by M . �

We want to apply this proposition with the index set N replaced by Γ and Bj given by

Aγ, γ ∈ Γ defined in (10.9). First of all, since K : L2 × l2 → L2 × l2 is bounded, each

Aγ : L2 × l2 → L2 × l2 is uniformly bound. Moreover,

AαA
∗
β = T Bα

(
e−η〈·〉 0

0 e−η〈·〉

)
KΘ̃0T B−αT Bβ Θ̃0K

∗
(
e−η〈·〉 0

0 e−η〈·〉

)
T B−β.

For |α − β| � 1, Θ̃0T B−αT Bβ Θ̃0 = 0 by the support property. So
∑

β∈Γ ‖AαA∗β‖
1
2 ≤ C for

some C > 0. On the other hand,

A∗αAβ = T Bα Θ̃0K
∗
(
e−η〈·〉 0

0 e−η〈·〉

)
T B−αT Bβ

(
e−η〈·〉 0

0 e−η〈·〉

)
KΘ̃0T B−β.

Thus

‖A∗αAβ‖ ≤ C‖e−η〈·〉T B−αT Bβ e−η〈·〉‖ ≤ C sup
x
e−η〈x〉e−η〈x−(β−α)〉 ≤ Ce−η|β−α|.

So we conclude
∑

β∈Γ ‖A∗αAβ‖
1
2 ≤ C for some C > 0. Using Proposition 10.4 and recalling

(10.9), we proved that(
(D + A)α 0

0 1

)
FB : L2 × l2 → L2 × l2, |α| ≤ 2

is bounded and therefore FB : L2 × l2 → H2
B × l2 is bounded.
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Now we compute

PBFB =
∑
γ∈Γ

T Bγ PBE0Θ0T B−γ = I +K, K =
∑
γ∈Γ

T Bγ (PB − P0)E0Θ0T B−γ. (10.11)

We claim ‖K‖L2×`2→L2×`2 = O(B) and thus FB is an approximate right inverse. In order

to estimate the norm K, we compute

PB − P0 =
∑
O(B)xiDxj +O(B)|x|2 +O(B)

and

|TBγ ϕ0 − Tγϕ0| = |e
B
4

(xᾱ−x̄α) − 1||ϕ0(x− α)| ≤ C|B||x− α||α|e−|x−α|/C

≤ C|Bα|e−|x−α|/C′ ,

|∂βx (TBγ ϕ0 − Tγϕ0)| ≤ Cβ(|Bα|+ |Bα||β|)e−|x−α|/C .

Thus as in the proof of Proposition 10.2, for ‖f ′‖∞ sufficiently small we have

e−f〈•〉−1(RB
+ −R0

+)ef = OL2→l2(B); e−f (RB
− −R0

−)〈•〉−1ef = Ol2→L2(B).

Now we write

(PB − P0)E0Θ0 =

(
e−η〈·〉 0

0 e−η〈·〉

)
KB, KB :=

(
eη〈·〉 0

0 eη〈·〉

)
(PB − P0)E0Θ0.

By Proposition 10.1, we conclude ‖KB‖L2×l2→L2×l2 = O(B). We now write

K =
∑
γ∈Γ

T Bγ
(
e−η〈·〉 0

0 e−η〈·〉

)
KBT B−γ.

Using Cotlar–Stein Lemma as before, we conclude ‖K‖L2×l2→L2×l2 = O(B). For B suffi-

ciently small ‖K‖ < 1 and we can define

EB = FB
∞∑
j=0

(−K)j so that PBEB = I.

A similar construction gives an approximate left inverse by defining

GB =
∑
γ∈Γ

ΘγT Bγ E0T B−γ =
∑
γ∈Γ

T Bγ Θ0E0T B−γ.

We will then get the left inverse E ′B such that E ′BPB = I. Since the left inverse and right

inverse must be equal, we conclude that E ′B = EB is the inverse of PB and the proof is

finished. �

We conclude this section with an analogue of Proposition 10.2:
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Proposition 10.5. For f with properties from Proposition 10.2 and PB given by (10.6)

then efPB(z)e−f is invertible with bounded inverse, and

‖efPB(z)−1e−f‖L2×l2→H2
B×l2 ≤ C.

The proof follows the same lines as the proof in the case of B = 0.

10.4. Stability of spectral gaps. In §10.3 we considered z in a neighbourhood of an

isolated band of P0 = −∆ + V (x). It is also natural to ask what happens when z0 /∈
Spec(−∆ + V (x)). In that case we proceed as in the proof of Theorem 12 but without

setting up a Grushin problem, that is using invertibility of (P0 − z0)−1. In the notation of

(10.8) we put

FB =
∑
γ∈Γ

TBγ (P0 − z0)−1Θ0T
B
−γ,

where TBγ are magnetic translations (9.8). A simpler version of the analysis of (10.11) then

shows that

(PB − z)FB = I +KB, KB = O(B) : L2(R2)→ L2(R2).

which provides us with a right inverse. Similarly we obtain a left inverse. This proves the

following theorem of Nenciu and of Simon. We note that no assumption on the spectrum

are made here. All we need is that z0 is outside the spectrum of P0.

Theorem 13. Suppose PB = (Dx1 −Bx2/2)2 + (Dx2 + iBx1/2)2 + V (x), V ∈ C∞(R2;R),

V (x+ γ) = V (x), γ ∈ Γ. Then for B sufficiently small

z0 /∈ Spec(P0) =⇒ z0 /∈ Spec(PB). (10.12)

A modification of the proof gives in fact a stronger statement than (10.12) (see [Sj89,

Proposition 2.4]): if z0 /∈ Spec(PB0) then there exists ε > 0 such that

|z0 − z|+ |B −B0| < ε =⇒ z0 /∈ Spec(PB).

10.5. Effective Hamiltonian for small magnetic fields. In view of Theorem 12 we

can define

PB(z)−1 =: EB(z) =

(
EB(z) EB

+ (z)

EB
− (z) EB

−+(z)

)
: L2(R2)× `2(Γ)→ H2

B(R2)× `2(Γ). (10.13)

In view of (2.15) the operator EB
−+(z) is the effective Hamiltonian in the sense that the

existence of its inverse controls invertibility of PB − z:

(PB − z)−1 = EB(z)− EB
+ (z)EB

−+(z)−1EB
− (z), z ∈ nbhdC(Ik). (10.14)

We now have an analogue of (10.2):
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Proposition 10.6. There exists (z,B, α) 7→ f(z, B, α), z ∈ nbhdC(Ik), B ∈ nbhdR(0),

α ∈ Γ, satisfying, uniformly in z and B,

|f(z,B, α)| ≤ Ce−c|α|, c > 0, (10.15)

such that, in the notation of (10.13),

[EB
−+(z)v](α) =

∑
β∈Γ

e
i
2
Bα∧βf(z,B, α− β)v(β). (10.16)

Proof. From (10.7) we conclude that for all γ ∈ Γ, τBγ E
B
−+(z) = EB

−+(z)τBγ . On the level

of the matrix elements of EB
−+(z) that means that

e
i
2
Bρ∧γ

∑
β

EB
−+(z, ρ− γ, β)v(β) =

∑
β

EB
−+(z, ρ, β)e

i
2
Bβ∧γv(β − γ)

=
∑
β

EB
−+(z, ρ, β + γ)e

i
2
Bβ∧γv(β),

that is,

e
i
2
Bρ∧γEB

−+(z, ρ− γ, β) = e
i
2
Bβ∧γEB

−+(z, ρ, β + γ),

or, by putting ρ = α− β and taking γ = −β,

EB
−+(z, α, β) = e−

i
2
B(α−β)∧(−β)+ i

2
Bβ∧(−β)EB

−+(z, α− β, 0) = e
i
2
Bα∧βEB

−+(z, α− β, 0).

Hence we can put

f(z,B, γ) := EB
−+(z, γ, 0).

To obtain exponential decay we note that Proposition 10.5 applied with f(x) = c0〈x〉,
0 < c0 � 1, shows that

ec0〈γ〉f(z, B, γ) = ec0〈γ〉EB
−+(z)(e−c0〈•〉δ0(•))(γ) ∈ `2(Γ).

In particular, the left hand side is bounded and that gives (10.15). �

10.6. Harper’s operator. We will show that f is a smooth function of B and hence the

first approximation of EB
−+(z) is given by

v(α) 7→ zv(α)−MBv(α), MBv(α) :=
∑
β∈Γ

e
i
2
Bα∧βÊ(α− β).

In the simplest tight binding model, Γ = Z2, Γ∗ = 2πZ2, and

Ê(n,m) = δn,1 + δn,−1 + δm,1 + δm,−1, (n,m) ∈ Z2,

which corresponds to E(θ) = 2(cos θ1 + cos θ2).
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Figure 11. Spectrum of Harper’s operator (10.19): the horizontal axis

represents magnetic flux through a fundamental domain which for Γ = Z2 is

equal to B; the vertical axis is the spectral parameter. The spectrum is a

Cantor set when B/2π /∈ Q and a union of q disjoint intervals when B/2π =

p/q ∈ Q. This picture is known as the Hofstadter butterfly. Reproduced from

the original figure by Douglas Hofstadter under Creative Commons License

CC BY-SA 3.0. The proof of the structure of the spectrum in the general

case is due to Avila and Jitomirskaya [AvJi09].
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Since (n,m) ∧ (n± 1,m) = ±m and (n,m) ∧ (n,m± 1) = ∓n, we see that

v(n,m)
MB−−→ e

i
2
Bmv(n− 1,m) + e−

i
2
Bmv(n+ 1,m) + e−

i
2
Bnv(n,m− 1) + e

i
2
Bnv(n,m+ 1).

We now introduce a unitary transformation

UB : `2(Γ)→ `2(Γ), UBv(n,m) := e
i
2
Bmnv(n,m),

so that

v(n,m)
U∗BMBUB−−−−−→ v(n− 1,m) + v(n+ 1,m) + e−iBnv(n,m− 1) + eiBnv(n,m+ 1).

We are interested in the spectrum of MB which is the same as the spectrum of M̃B :=

U∗BMBUB. We can consider this operator on the Fourier transform side θ ∈ R2/Γ∗ where

it becomes

u(θ) 7−→ 2 cos θ1 u(θ) + 2[cos(BDθ1 + θ2)u](θ), u ∈ L2(R2/Γ∗), Γ∗ = 2πZ2,

or, putting x = θ1 ∈ R/2πZ, τ = −θ2 ∈ R/2πZ,

HBw(x, τ) := [HB(τ)w(•, τ)](x),

HB(τ) := cos x+ cos(BDx − τ), HB(τ) : L2(R/2πZ)→ L2(R/2πZ).
(10.17)

This is the celebrated Harper operator.

We now claim that

B /∈ 2πQ =⇒ SpecL2(R/2πZ)(HB(τ)) = SpecL2(R/2πZ)(HB(0)), τ ∈ R. (10.18)

Proof of (10.18). This follows from two observations:

HB(kB) = UkHB(0)U∗k , k ∈ Z,

Uku(x) := eikxu(x), Uk : L2(R/2πZ)→ L2(R/2πZ),

and, using irrationality of B/2π (which implies ergodicity of θ 7→ θ +B mod 2π),

∀ ε∃ k ∈ Z∀n ∈ Z | cos(B(n+ k))− cos(Bn− τ)| < ε.

In particular ‖ cos(BDx+Bk)−cos(BDx−τ)‖L2(R/2πZ)→L2(R/2πZ) < ε. But this means that

for any ε > 0 there exists k ∈ Z such that

‖HB(τ)−HB(kn)‖L2(R/2πZ)→L2(R/2πZ) = ‖HB(τ)− UkHB(0)U∗k‖L2(R/2πZ)→L2(R/2πZ) < ε.

For bounded self-adjoint operators, Aj, j = 1, 2, ‖(Aj − λ)−1‖ = 1/d(λ, Spec(Aj)) (which

follows from the spectral theorem, Theorem 1), gives

‖A1 − A2‖ < ε =⇒ Spec(A1) ⊂ Spec(A2) + (−ε, ε).

We apply this this with

A1 = HB(τ), A2 = UkHB(0)U∗k , Spec(A2) = SpecL2(R/2πZ)(HB(0)).
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Since ε is arbitrary, (10.18) follows. �

In the notation of (10.17) it follows that, if B /∈ 2πZ,

SpecL2(R2/2πZ2)(HB) = SpecL2(R/2πZ)HB(τ), τ ∈ R,

as sets. In view of this we can consider (abusing notation slightly) the following operator

with the same spectrum:

HB : L2((R/2πZ)x × (R/BZ)τ )→ L2((R/2πZ)x × (R/BZ)τ ),

HBw(x, τ) = [HB(τ)w(•, τ)](x).

We can then define a (modified) Bloch transform in this context (see §5.3)

VB : L2(R)→H , H = {u ∈ L2
loc(R2) : u(x+ 2πm, τ + kB) = e−ixku(x, τ)},

VBu(x, τ) :=
∑
m∈Z

e−
i
B
τ(x−2πm)u(x− 2πm), (x, τ) ∈ R/2πZ× R.

As in §5.4,
1
2
V ∗BHBVB = cosx+ cos(BDx) : L2(R)→ L2(R). (10.19)

This is another version of Harper’s operator – see Figure 11. We note that it is given

as a semiclassical quantization of the (postulated) Bloch energy, E(x, ξ) where we replace

(θ1, θ2) by (x, ξ) ∈ T ∗R. The small magnetic field B plays the role of the semiclassical

parameter.

10.7. Smooth dependence on B. To study smoothness of B 7→ f(z,B), where f is given

in Proposition 10.6, it is natural to differentiate EB(z) = PB(z)−1 with respect to B. The

difficulty we encounter is the fact that spaces on which PB(z) act (and are invertible on)

depend on B. Using weighted estimates from Proposition 10.5 we can however consider

these operators as acting on smaller spaces which are independent of B:

Lemma 10.7. Let

H k :=
⋂
N

〈x〉−NHk(R2), L :=
⋂
N

〈α〉−N`2(Γ),

be Fréchet spaces with seminorms ‖u‖H k,N := ‖〈•〉Nu‖Hk , ‖v‖L ,N := ‖〈•〉Nv‖`2. Then, in

the notation of (10.6),

PB(z) : H 2 ×L →H 0 ×L , z ∈ nbhdC(Ik),

is a bounded operator, invertible for sufficiently small B, with a uniformly bounded inverse,

EB(z) : H 0 ×L →H 2 ×L , B ∈ nbhdR(0), z ∈ nbhdC(Ik).
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Proof. We first check that for any B and k, H k =
⋂
N〈x〉−NHk

B(R2). This follows from

‖〈x〉N(Dx + A(x))αu‖L2 ≤ C‖〈x〉N+|α|u‖H|α|

and

‖〈x〉NDα
xu‖L2 = ‖〈x〉N(Dx + A(x)− A(x))αu‖L2 ≤ C

∑
β≤α

‖〈x〉N+|α|(Dx + A(x))βu‖L2 .

To show boundedness and invertibility we then use Proposition 10.5 with

fN(x) = Nχ(εNx) log〈x〉, ‖efNu‖Hk ∼ ‖u‖H k,N .

Here we take χ ∈ C∞(R2; [0, 1]) equal to 0 for |x| < 1 and equal to 1 for |x| > 2. We then

choose εN so that NεN log(ε−1
N ) is sufficiently small as then ‖f ′N‖ + ‖f ′′N‖ � 1 as required

by the assumptions of Proposition 10.5. On one hand, we have

‖PB(z)u‖H0×L,N ∼ ‖efNPB(z)u‖L2×l2 = ‖efNPB(z)e−fN efNu‖L2×l2

≤ C‖efNu‖H2
B×l2 ≤ C‖efN+2u‖H2×l2 ∼ ‖u‖H2×L,N+2.

On the other hand, we have

‖EB(z)u‖H2×L,N ∼ ‖efNEB(z)u‖H2×l2 ≤ C‖efN+2EB(z)u‖H2
B×l2

= C‖efN+2EB(z)e−fN+2efN+2u‖H2
B×l2 ≤ C‖efN+2u‖L2×l2 ∼ ‖u‖H0×L,N+2,

which completes the proof. �

With this in place we can consider derivatives of PB(z):

Proposition 10.8. For z ∈ nbhdC(Ik),

nbhdR(0) 3 B 7→ PB(z) is in C∞(nbhdR(0),B(H 2 ×L ,H 0 ×L )).

Consequently, B 7→ EB(z) : H 0×L →H 2×L is also a smooth function of B ∈ nbhdR(0).

Proof. Recall

PB(z) =

(
PB − z RB

−
RB

+ 0

)
, RB

−u−(x) =
∑
α∈Γ

u−(α)TBα ϕ0(x), RB
+u(α) = 〈u, TBα ϕ0〉.

We need to check each individual block is smooth in B. First PB = (Dx1 − Bx2/2)2 +

(Dx2 +Bx1/2)2 is smooth in B since polynomials are smooth. For RB
− : L → H0, we note

∂BTαϕ0(x) =
i

2
Im(xᾱ)TBα ϕ0(x).
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Since |ϕ0(x)| ≤ Ce−|x|/C , the operator

∂BR
B
− : u−(α) 7→

∑
α∈Γ

u−(α)
i

2
Im(xᾱ)TBα ϕ0(x) : L → H0

is bounded by Schur’s criterion. Moreover,

(RB
− −RB0

− − (B −B0)∂BR
B0
− )u−(x)

=
∑
α∈Γ

u−(α)(TBα ϕ0(x)− TB0
α (x)− i

2
(B −B0) Im(xᾱ)TB0

α ϕ0(x))

=
∑
α∈Γ

u−(α)e−|x−α|/CO((B −B0)2).

Thus by Schur’s criterion again, ∂BR
B
− is indeed the derivative of RB

−. We can iterate this

argument to conclude RB
− ∈ C∞(nbhdR(0),B(L → H0)). The smoothness for RB

+ is similar.

The smoothness of EB(z) comes from the identity

EB∂BPB + (∂BEB)PB = 0

and thus ∂BEB = −EB(∂BPB)EB. �

As a corollary, f(z,B, α) is smooth in B and we can calculate derivatives ∂kBf(z, B, α).

By the weighted estimate, for 0 < δ � 1

‖eδ〈•〉∂BEB(z)e−δ〈•〉‖L2×l2→H2
B×l2 = ‖eδ〈•〉EB(z)(∂BPB(z))EB(z)e−δ〈•〉‖L2×l2→H2

B×l2

= ‖eδ〈•〉EB(z)e−δ〈•〉eδ〈•〉(∂BPB(z))e−δ〈•〉eδ〈•〉EB(z)e−δ〈•〉‖L2×l2→H2
B×l2 <∞,

we conclude ‖eδ〈•〉∂BEB
−+(z)e−δ〈•〉‖l2→l2 <∞ and eδ〈α〉∂Bf(z,B, α) ∈ l2(Γ). We can iterate

with more derivatives and conclude that

|∂kBf(z, B, α)| ≤ Cke
−c0|α|, B ∈ nbhdR(0), z ∈ nbhdC(Ik). (10.20)

10.8. The algebra of effective Hamiltonians. Recall the effective Hamiltonian EB
−+(z)

is given by operators of the form

MB(f)u(α) = f#Bu(α) :=
∑
β∈Γ

e
i
2
Bα∧βf(α− β)u(β), f ∈ l1(Γ).

We study operators of this form in this section. Note MB(f) : l1(Γ)→ l1(Γ) is a bounded

linear map, we define

AB := {MB(f) : f ∈ l1(Γ)}, ‖MB(f)‖ = ‖MB(f)‖l1→l1 = ‖f‖l1 .

We claim AB has the structure of a Banach ∗-algebra. Recall a Banach ∗-algebra is a

Banach algebra A over C such that
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• There is an involution operator ∗ : A→ A, i.e. x∗∗ = x.

• (x+ y)∗ = x∗ + y∗, (xy)∗ = y∗x∗ for any x, y ∈ A;

• (λx)∗ = λ̄x∗ for any λ ∈ C, x ∈ A.

If the ∗ operation satisfies the C∗ identity ‖x∗x‖ = ‖x‖2 for any x ∈ A, we say A is a

C∗-algebra. Classical examples of C∗-algebras include continuous functions over a compact

Hausdorff space, bounded operators on a Hilbert space and the C∗-enveloping algebra of

the convolution algebra of a locally compact group.

The multiplication and ∗ operation is naturally defined on AB, and we note

MB(f)∗ =MB(f̃), f̃(α) = f(−α); MB(f)MB(g) =MB(MB(f)g).

On checks

〈MB(f)u, v〉 =
∑
α,β∈Γ

e
i
2
Bα∧βf(α− β)u(β)v(α)

=
∑
α,β∈Γ

u(β)e
i
2
Bβ∧αf(α− β)v(α) = 〈u,MB(f̃)v〉

and

MB(f)MB(g)u(α) =
∑
β,ρ∈Γ

e
i
2
Bα∧βf(α− β)e

i
2
Bβ∧ρg(β − ρ)u(ρ)

=
∑
β,ρ∈Γ

e
i
2
Bα∧(γ+ρ)f(α− γ − ρ)e

i
2
B(γ+ρ)∧ρg(γ)u(ρ)

=
∑
ρ∈Γ

e
i
2
Bα∧ρ

(∑
γ∈Γ

e
i
2
B(α−ρ)∧γf(α− ρ− γ)g(γ)

)
u(ρ)

=MB(MB(f)g)u(α).

All the properties of ∗ follows from the definition. For the C∗ identity, one checks that

‖MB(f)∗MB(f)‖ = ‖f̃#Bf‖l1 =
∑
α∈Γ

∣∣∣∣∣∑
β∈Γ

e
i
2
Bα∧βf(β − α)f(β)

∣∣∣∣∣
≤
∑
α∈Γ

∑
β∈Γ

|f(β − α)||f(β)| = ‖f‖2
l1 .

The identity will never hold for general f ∈ l1(Γ), so AB is not a C∗-algebra. However, one

can define the reduced C∗-enveloping algebra C∗r (AB) as the closure of AB inside B(l2(Γ)).

It is, by definition, a natural C∗-algebra.

One note that if (B − B′)|R2/Γ| ∈ 4πZ, then AB ∼= AB′ . Since f#Bg = g#−Bf , AB is

commutative if and only if B|R2/Γ| ∈ 2πZ.
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Proposition 10.9. Suppose |f(α)| ≤ Ce−c|α| for α ∈ Γ, then MB(f)−1 : l2(Γ) → l2(Γ)

exists if and only if there exists g : Γ→ C such that |g(α)| ≤ Ce−c|α| and

f#Bg = g#Bf = δ0.

Proof. Suppose there exists such g, then it is obvious that MB(f)−1 = MB(g). On the

other hand, suppose MB(f) is invertible on l2(Γ). Since

[τBγ ,MB(f)] = 0,

we know MB(f)−1 =MB(g) for some g ∈ l∞(Γ). Moreover,

‖g‖l2 = ‖MB(g)δ0‖l2 <∞.

Choose ϕ : Γ→ R such that ϕ is constant near∞ and ‖ϕ‖Lip � 1, then by the exponential

decay of f , we have

‖eϕMB(f)e−ϕ −MB(f)‖l2→l2 � 1.

This implies that for some 0 < δ � 1, ‖eδ|α|g‖l2 <∞ and thus

|g(α)| ≤ Ce−δ|α|.

�

Recall τBγ f(α) = e
i
2
Bα∧γf(α− γ) =M−B(δγ)f(α). We have the commutator relation

τ−Bα τ−Bβ = eiBα∧βτ−Bβ τ−Bα .

This is the Weyl commutator relation, which motivates us to give a semiclassical interpre-

tation of the effective Hamiltonian.

10.9. Semiclassical structure of the effective Hamiltonian. The effective Hamilton-

ian EB
−+ can be interpreted as a semiclassical pseudodifferential operator, where B is con-

sidered as a semiclassical parameter.

Recall for a(x, ξ) ∈ C∞(R2) such that |∂αx,ξa(x, ξ)| ≤ Cα, we may define the Weyl quan-

tization of a as

Opw(a)u(x) = aw(x,D)u(x) =
1

2π

∫
R2

a

(
x+ y

2
, ξ

)
ei(x−y)·ξu(y)dydξ, u ∈ S(R).

We note that

eiBDxeixu(x) = ei(x+B)u(x+B), eixeiBDxu(x) = eixu(x+B).

So eiBDx , eix also satisfy the Weyl commutator relation

eiBDxeix = eiBeixeiBDx .
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We recall two basic lemmas on the Weyl quantization of exponential of more general

linear functions.

Lemma 10.10. For a, b ∈ R,

Opw(ei(ax+bξ)) = ei(ax+bDx)

where v(t, x) = eit(ax+bDx)u(x) is defined by{
(i∂t + ax+ bDx)v = 0,

v(0, x) = u(x).

Proof. Let v(t, x) = eit(ax+bDx)u(x). It is direct to check from the definition that v(t, x) =

eitax+ i
2
t2abu(x+ tb). On the other hand,

Opw(ei(ax+bξ))u(x) =
1

2π

∫
ei(a

x+y
2

+bξ+ξ(x−y))u(y)dydξ =
1

2π

∫
ei(

ax
2

+bξ+ξx)û
(
ξ − a

2

)
dξ

=
1

2π

∫
ei(

ax
2

+(b+x)(ξ+a/2))û(ξ)dξ = eiax+iab/2u(x+ b) = v(1, x).

�

Lemma 10.11.

ei(a1x+b1Dx)ei(a2x+b2Dx) = e
i
2

(b1a2−b2a1)ei((a1+a2)x+(b1+b2)Dx).

Proof. We check

ei(a1x+b1Dx)ei(a2x+b2Dx)u(x) = ei(a1x+b1Dx)eia2x+ia2b2/2u(x+ b2)

= eia1x+ia1b1/2eia2(x+b1)+ia2b2/2u(x+ b1 + b2)

= ei(a2b1−a1b2)/2ei(a1+a2)x+i(a1+a2)(b1+b2)/2u(x+ b1 + b2)

= ei(a2b1−a1b2)/2ei((a1+a2)x+(b1+b2)Dx)u(x).

�

Now for f ∈ l1(Z2), let

R(f) =
∑
α∈Z2

Opw(eiα1Bξ+iα2x)f(α) : L2(R)→ L2(R).

Since the generators satisfy the same Weyl commutator relation, we have

Proposition 10.12. For f, g ∈ `1(Z2), R(f) ◦ R(g) = R(f#Bg).
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Moreover, if |f(α)| ≤ Ce−c|α|, then R(f) = Opw(a(x,Bξ)) where

a(x, ξ) =
∑
α∈Z2

eiα1ξ+iα2xf(α) ∈ Cω(R2/2πZ2)

is a real analytic periodic function. Similarly, if |f(α)| ≤ CN〈α〉−N for any N ∈ N, then

a(x, ξ) is a periodic smooth function.

We can then interpret the spectrum of PB as a nonlinear spectrum problem for a semi-

classical pseudodifferential operator as follows.

Theorem 14. Suppose f : Z2 → C such that |f(α)| ≤ Ce−c|α|, then the following are

equivalent

(a) 0 /∈ Spec`2(Z2)(MB(f));

(b) 0 /∈ SpecL2(R)(R(f));

(c) R(f) : L2 → L2 is invertible, and there exists b ∈ Cω(R2/2πZ2) such that R(f)−1 =

Opw(b(x,Bξ)).

Proof. By Proposition 10.12, (a) implies (b). Also it is clear that (c) implies (a), since we

can take g to be the Fourier transform of b so that R(f)−1 = R(g). Proposition 10.12

again tells us MB(f)−1 is MB(g).

We are left with showing (b) implies (c). In order to do this, we need use Beals Lemma

(see [Zw12, Theorem 8.3]) which tells us R(f)−1 = Opw(b(x,Bξ)) for some b ∈ C∞(R2)

with |∂αx,ξb(x, ξ)| ≤ Cα. In order to show b(x, ξ) is periodic, we introduce k(x, ξ) = x0ξ−ξ0x

for (x0, ξ0) ∈ 2πZ2/B and conjugate using kw(x,BDx) by Lemma 10.11:

eik
w(x,BDx)ei(α2x+α1BDx)e−ik

w(x,BDx) = ei(α2Bx0+α1Bξ0)ei(α2x+α1BDx) = ei(α2x+α1BDx).

Thus [eik
w(x,BDx),R(f)] = 0 and [eik

w(x,BDx),R(f)−1] = 0. On ther other hand,

eik
w(x,BDx)bw(x,BDx)e

−ikw(x,BDx) = bw(x+Bx0, BDx +Bξ0).

So b(x, ξ) ∈ C∞(R2/2πZ2) is a periodic function. By Fourier series argument again,

b(x, ξ) =
∑
α∈Z2

g(α)ei(α1ξ+α2x) for a rapidly decaying g : Z2 → C. We have R(f)−1 = R(g)

and thus MB(f)−1 =MB(g) by Proposition 10.12. By Proposition 10.9, |g(α)| ≤ Ce−c|α|

has exponential decay. Thus b ∈ Cω(R2/2πZ2) is real analytic. �

10.10. Computation of the semiclassical effective Hamiltonian. In this section we

want to compute the semiclassical expansion of the symbol b(x, ξ) ∈ Cω(R2/2πZ2) defined

via Theorem 14 and Proposition 10.6:

b(z, x, ξ;B) = b0(z, x, ξ) +Bb1(z, x, ξ) +O(B2).
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By Proposition 10.8, b(z, x, ξ;B) is smooth in B and z. Taking B = 0 we conclude b0(x, ξ) =

z − E(ξ, x) from Proposition 10.1. In order to compute b1, we differentiate in B. Since

∂BEB(z) = −EB(z)(∂zPB(z))EB(z), we have

∂BE
B
−+(z)|B=0 = −E−∂BPBE+ − E−+(z)∂BR

B
+E+ − E−∂BRB

−E−+(z).

Recall PB = (Dx1 −Bx2/2)2 + (Dx2 +Bx1/2)2 + V (x), so

∂BPB = x1Dx2 − x2Dx1 + 1
4
B|x|2.

Moreover, E−v(α) = R+v(α) = 〈v, ϕα〉 and E+v+(x) = R−v+(x) =
∑
α∈Γ

v+(α)ϕα(x). Thus

the first term is given by

−E−(∂BPB|B=0)E+δ0(α) = −
∫
R2

(x1Dx2 − x2Dx1)ϕ0(x)ϕα(x)dx. (10.21)

The second term is

−E−+(z)(∂BR
B
+)|B=0E+δ0(α) =

i

2

∑
β∈Γ

(zδβ(α)− Ê(α− β))

∫
R2

(x ∧ β)ϕ0(x)ϕβ(x)dx

(10.22)

and the third term is

−E−(∂BR
B
−|B=0)E−+(z)δ0(α) = − i

2

∑
β∈Γ

∫
R2

(x ∧ β)(zδ0(β)− Ê(β))ϕβ(x)ϕα(x)dx.

(10.23)

When Γ = Z2 we can write

b1(z, x, ξ) =
∑
α∈Z2

∂BE
B
−+(z)|B=0δ0(α)eiα1ξ+iα2x.

The first term (10.21) gives

−
∑
α∈Z2

∫
R2

(y1Dy2 − y2Dy1)ϕ0(y)ϕα(y)eiα1ξ+iα2xdy = −
∫
R2

(y1Dy2 − y2Dy1)ϕ0(y)ϕ((ξ, x), y)dy.

The second term (10.22) gives

i

2

∑
α,β∈Z2

(zδβ(α)− Ê(α− β))eiα1ξ+iα2x

∫
R2

(y ∧ β)ϕ0(y)ϕβ(y)dy

=
i

2
(z − E(ξ, x))

∫
R2

ϕ0(y)(y1Dx − y2Dξ)ϕ((ξ, x), y)dy
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and the third term (10.23) gives

− i

2

∑
α,β∈Z2

eiα1ξ+iα2x

∫
R2

(y ∧ β)(zδ0(β)− Ê(β))ϕβ(y)ϕα(y)dy

=
i

2

∑
β∈Z2

∫
R2

(y ∧ β)Ê(β)ϕβ(y)ϕ((ξ, x), y)dy

=
i

2(2π)2

∫
R2

∫
R2/2πZ2

E(θ)(y1Dθ2 − y2Dθ1)ϕ(θ, y)ϕ((ξ, x), y)dθdy.

We conclude that b1(z, x, ξ) is given by

∫
R2

(y1Dy2 − y2Dy1)ϕ0(y)ϕ((ξ, x), y)dy

+ i
2
(z − E(ξ, x))

∫
R2

ϕ0(y)(y1Dx − y2Dξ)ϕ((ξ, x), y)dy

+
i

2(2π)2

∫
R2

∫
R2/2πZ2

E(θ)(y1Dθ2 − y2Dθ1)ϕ(θ, y)ϕ((ξ, x), y)dθdy

=
1

2(2π)2

∫
R2

∫
R2/2πZ2

(−2(y1Dy2 − y2Dy1 + i(y1Dθ2 − y2Dθ1)E(θ))ϕ(θ, y)ϕ(τ, y)dθdy

+ i
2
(z − E(ξ, x))

∫
R2

ϕ0(y)(y1Dx − y2Dξ)ϕ((ξ, x), y)dy.

(10.24)

We are interested in the case when b(z, x, ξ;B) = 0. Then z = E(ξ, x) + O(B) and the

second term on the right hand side of (10.24) is of higher order.

Denote τ = (ξ, x) and (a1, a2) ∧ (b1, b2) = a2b1 − a1b2. In this notation the y-integral of

the first term can be rewritten as

1

2(2π)2

∑
γ∈Z2

∫
[0,1)×[0,1)

(2(y − γ) ∧Dy − i(y − γ) ∧DθE(θ))ϕ(θ, y − γ)ϕ(τ, y − γ)dy

=
1

2(2π)2

∑
γ∈Z2

∫
[0,1)×[0,1)

(2(y − γ) ∧Dy − i(y − γ) ∧DθE(θ))eiγ·(θ−τ)ϕ(θ, y)ϕ(τ, y)dy

= 1
2

∫
[0,1)×[0,1)

(y −Dθ)δ(θ − τ) ∧ (2Dy −∇E(θ))ϕ(θ, y)ϕ(τ, y)dy.
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Integrating in θ gives∫
R2/Z2

(y +Dτ ) ∧ (Dy − 1
2
∇E(τ))ϕ(τ, y)ϕ(τ, y)dy

= 1
2
∇E(τ) ∧

∫
R2/Z2

(y +Dτ )ϕ(τ, y)ϕ(τ, y)dy +

∫
R2/Z2

(y +Dτ ) ∧Dyϕ(τ, y)ϕ(τ, y)dy

= 1
2
∇E(τ) ∧ 〈Dτu(τ, •), u(τ, •)〉+ 〈Dτ ∧ (−τ +Dy)u(τ, •), u(τ, •)〉,

where u(τ, y) = ei〈τ,y〉ϕ(τ, y) – see §8.3. The term wedged with ∇E(τ) is essentially the

Berry connection (8.12). We conclude

b1(x, ξ, z)|b0(x,ξ)=z = 1
2
∇E(τ) ∧ 〈Dτu(τ, •), u(τ, •)〉
+ 〈(τ −Dy) ∧Dτu(τ, •), u(τ, •)〉, τ = (ξ, x).

(10.25)

Here we used the fact that τ ∧Dτ = −Dτ ∧ τ .

Remark 20. Under the symmetry assumption V (x) = V (−x) (see Proposition 8.5) the

second term in (10.25) can be simplified. We write

b̃1(x, ξ, z) := 〈(τ −Dy) ∧Dτu(τ, •), u(τ, •)〉, τ = (ξ, x),

and we first note that (see §8.4)

1
2
∇τE(τ) = −

∫
(Dy − τ)u(τ, y)u(τ, y)dy = −

∫
(Dy − τ)u(τ, y)u(τ,−y)α(τ)dy,

where we used (8.17). Hence

0 = 1
2
Dτ ∧∇τE(τ) = −Dτ ∧

∫
(Dy − τ)u(τ, y)u(τ,−y)α(τ)dy

= b̃1 −
∫

(Dy − τ)u(τ, y) ∧Dτu(τ,−y)α(τ)dy − 1
2
∇τE(τ) ∧ α(τ)−1Dτα(τ)

= b̃1 +

∫
u(τ, y)[(τ −Dy) ∧Dτu](τ,−y)α(τ)dy − 1

2
∇τE(τ) ∧ α(τ)−1Dτα(τ)

= 2b̃1 − 1
2
∇τE(τ) ∧ α(τ)−1Dτα(τ).

We conclude that

b̃1 = 1
4
∇τE(τ) ∧ α(τ)−1Dτα(τ).

We use this to show that reflection symmetry (8.15) implies that b1|b0=z ≡ 0. In fact,∫
R2/Z2

Dτu(τ, x)u(τ, x)dx =

∫
R2/Z2

Dτα(τ)u(τ,−x)α(τ)u(τ,−x)dx

= −
∫
R2/Z2

Dτu(τ, x)u(τ, x)dx+ α(τ)Dτα(τ)−1.
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Moreover, Dτ

∫
R2/Z2 u(τ, x)u(τ, x)dx = 0 implies that∫

R2/Z2

Dτu(τ, x)u(τ, x)dx =

∫
R2/Z2

Dτu(τ, x)u(τ, x)dx.

Thus ∫
R2/Z2

Dτu(τ, x)u(τ, x)dx = −1
2
α(τ)−1Dτα(τ)

and (10.25) gives

b1(x, ξ, z)|b0(x,ξ)=z = 1
2
∇E(τ) ∧

(
−1

2
α(τ)−1Dτα(τ) + 1

2
α(τ)−1Dτα(τ)

)
= 0.

Remark 21. The second term in the Bohr–Sommerfeld expansion, relevant to de Haas–van

Alphen oscillations, is given by

π −
∫
E(ξ,x)=µ

b1(µ, x, ξ)|dt|, (10.26)

where t corresponds to the parametrization of E = µ (we assume here that ∇E 6= 0 when

E = µ) given by the Hamilton vector field (see (2.2)):

(ẋ(t), ξ̇(t)) = Hb0(x(t), ξ(t)) = (∂ξE(ξ(t), x(t)),−∂xE(ξ(t), x(t))).

This means that

(∂ξE, ∂xE) ∧ (a1, a2)dt = 〈(∂xE,−∂ξE), (a1, a2)〉

or ∫
E(ξ,x)=µ

b1(µ, x, ξ)dt =

∫
E(ξ,x)=µ

〈(τ −Dy) ∧Dτu(τ, •), u(τ, •)〉|dt|+ 1
2i

∫
γµ

η,

where η =
∫
R2/Z2 dθu(θ, y)u(θ, y)dy is the Berry connection (8.12). The cycle γµ is given

by E(θ) = µ with the orientation determined by the direction of the Hamilton vector field

Hb0 . Since under the symmetry assumption (8.15), dη = 0, in that case we get a nontrivial

contribution only when γµ is not topologically non trivial.

11. 2D periodic structures in constant magnetic field: density of states

11.1. Regularized traces B 6= 0. In this section we consider the density of states in

the previous model. Now we move to the case that B 6= 0 and small. First we show the

existence of t̃rf(PB). Suppose

f(PB)w(x) =

∫
R2

K(x, y)w(y)dy.
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Since [TBγ , PB] = 0, we have [TBγ , f(PB)] = 0, i.e. K(x + γ, y + γ) = e
i
2
B(x−y)∧γK(x, y).

This implies that K(x + γ, x + γ) = K(x, x) for any γ ∈ Γ. This implies the existence of

the limit

t̃rf(PB) = lim
L→∞

1

(2L)2

∫
[−L,L]2

K(x, x)dx =
1

|R2/Γ|

∫
R2/Γ

K(x, x)dx.

Suppose we have an operator M : l2(Γ)→ l2(Γ) defined as

M(f)(α) =
∑
γ∈Γ

M(α, γ)f(γ),

we can define the modified trace as

t̂rM = lim
L→∞

1

(2L)2

∑
α∈Γ∩[−L,L]2

M(α, α).

If M =MB(f) such that M(α, β) = e
i
2
Bα∧βf(α − β), then we have similarly t̂rMB(f) =

f(0)
|R2/Γ| . Moreover, suppose R(f) = aw(x,BDx), then

t̂rMB(f) =
f(0)

|R2/Γ|
=

1

(2π)2

∫
R2/2πZ2

a(x, ξ;B)dxdξ.

The modified trace has similar properties as a trace:

Proposition 11.1. Suppose Aj : L2(Rn) → L2(Rn), j = 1, 2 such that |Aj(x, y)| ≤
Ce−c|x−y| for some C, c > 0, then (suppose both sides are well-defined)

t̃r(A1A2) = t̃r(A2A1).

Suppose Γ ⊂ Rn is a lattice and B : L2(Rn)→ l2(Γ), C : l2(Γ)→ L2(Rn) such that

|B(α, x)| ≤ Ce−c|x−α|, |C(x, α)| ≤ Ce−c|x−α|

for some C, c > 0, then t̃r(CB) = t̂r(BC)

Proof. We only prove the first claim, as the second is proved in the same way. By definition,

t̃r(A1A2) = lim
L→∞

1

(2L)n

∫
[−L,L]n

∫
Rn
A1(x, y)A2(y, x)dydx

= lim
L→∞

1

(2L)n

∫
Rn

∫
[−L,L]n

A2(y, x)A1(x, y)dxdy.

By assumption,

|A21[−L,L]nA1(y, y)− A2A1(y, y)| ≤ Ce−c|L−|y|∞|, y ∈ [−L,L]n
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and

|A21[−L,L]nA1(y, y)| ≤ Ce−c|L−|y|∞|, y /∈ [−L,L]n.

Thus ∫
Rn
|A21[−L,L]nA1(y, y)− 1[−L,L]nA2A1(y, y)|dy ≤ CLn−1

and

t̃r(A1A2) = lim
L→∞

1

(2L)n

∫
Rn
A21[−L,L]nA1(y, y)dy

= lim
L→∞

1

(2L)n

∫
Rn
1[−L,L]nA2A1(y, y)dy = t̃r(A2A1),

completing the proof. �

To compute t̃rf(PB), we will use the Helffer–Sjöstrand formula which is based on the

existence of almost analytic continuations:

Proposition 11.2. Let f ∈ C∞0 (R), then for any δ there exists f̃ ∈ C∞0 (C) such that

f̃ |R = f, ∂f̃(z) = O(| Im z|∞), supp f̃ ⊂ supp f +BC(0, δ).

In particular, we have

f(x) =
1

π

∫
C
∂̄f̃(z)(x− z)−1dm(z), x ∈ R. (11.1)

Proof. The identity (11.1) comes from the fact that 1
πz

is the fundamental solution of ∂̄z.

The function f̃ is constructed as follows. Let χ(y) ∈ C∞0 (R) be a cutoff function such that

χ(y) = 1 near x = 0. Let ψ(x) ∈ C∞0 (R) be a cutoff function such that ψ(x) = 1 near

supp f . We define

f̃(x+ iy) =
ψ(x)χ(y)

2π

∫
R
f̂(ξ)χ(yξ)ei(x+iy)ξdξ.

It is clear that f̃ ∈ C∞0 (C) and f̃ |R = f . We consider

∂̄f̃(x+ iy) =
ψ′(x)χ(y)

4π

∫
R
f̂(ξ)χ(yξ)ei(x+iy)ξdξ

+
iψ(x)χ′(y)

4π

∫
R
f̂(ξ)χ(yξ)ei(x+iy)ξdξ +

iψ(x)χ(y)

4π

∫
R
f̂(ξ)ξχ′(yξ)ei(x+iy)ξdξ.
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The term with χ′(y) vanishes near the real line. The last term is

iψ(x)χ(y)

4π

∫
R
f̂(ξ)ξχ′(yξ)ei(x+iy)ξdξ =

iψ(x)χ(y)yN

4π

∫
R
f̂(ξ)ξN+1(yξ)−Nχ′(yξ)ei(x+iy)ξdξ

= O(|y|N)

since (yξ)−Nχ′(yξ)ei(x+iy)ξ is uniformly bounded and f̂(ξ) is rapidly decreasing.

The first term is

ψ′(x)χ(y)

4π

∫
R
f̂(ξ)χ(yξ)ei(x+iy)ξdξ

=
ψ′(x)χ(y)

4π

∫
R

∫
R
f(x̃)χ(yξ)ei(x−x̃+iy)ξdx̃dξ

=
ψ′(x)χ(y)

4π

∫
R

∫
R
f(x̃)χ(yξ)

∂ξe
i(x−x̃+iy)ξ

i(x− x̃+ iy)
dx̃dξ

= −ψ
′(x)χ(y)

4π

∫
R

∫
R
f(x̃)yχ′(yξ)

ei(x−x̃+iy)ξ

i(x− x̃+ iy)
dx̃dξ

= −ψ
′(x)χ(y)yN

4π

∫
R

∫
R
f(x̃)ξN−1(yξ)−N+1χ′(yξ)

ei(x−x̃+iy)ξ

i(x− x̃+ iy)
dx̃dξ

= O(|y|N)

since (yξ)−N+1χ′(yξ)ei(x+iy)ξ is uniformly bounded and∫
R

f(x̃)

i(x− x̃+ iy)
e−ix̃ξdx̃ =

∫
R

f(x̃)

i(x− x̃+ iy)

(
1− ∂2

x̃

1 + ξ2

)N
e−ix̃ξdx̃

=

∫
R

(
1− ∂2

x̃

1 + ξ2

)N (
f(x̃)

i(x− x̃+ iy)

)
e−ix̃ξdx̃

= O((1 + ξ2)−N)

is rapidly decreasing in ξ for |x− x̃| > c > 0 since supp f ∩ suppψ′ = ∅.

We conclude ∂̄f̃(x+ iy) = O(|y|N) for any N > 0. �

Now for the self-adjoint operator PB we have (by spectral theorem)

f(PB) =
1

π

∫
C
∂̄f̃(z)(PB − z)−1dm(z).

Recall from (10.14) that

(PB − z)−1 = EB(z)− EB
+ (z)EB

−+(z)−1EB
− (z).
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Since EB(z) is holomorphic, we have

f(PB) = − 1

π

∫
C
∂̄f̃(z)EB

+ (z)EB
−+(z)−1EB

− (z)dm(z).

By Proposition 11.1 and ∂zE
B
−+(z) = −∂z((RB

−)−1(PB − z)(RB
+)−1) = EB

− (z)EB
+ (z),

t̃rf(PB) = − 1

π

∫
C
∂̄f̃(z)t̃rEB

+ (z)EB
−+(z)−1EB

− (z)dm(z)

= − 1

π

∫
C
∂̄f̃(z)t̂rEB

− (z)EB
+ (z)EB

−+(z)−1dm(z)

= − 1

π

∫
C
∂̄f̃(z)t̂r((∂zE

B
−+(z))EB

−+(z)−1)dm(z).

11.2. Smoothness of B 7→ t̃rf(PB) for f ∈ C∞c (R).

11.3. Bohr–Sommerfeld quantization rule for pseudodifferential operators in 1D.

11.4. Magnetic oscillations in density of states: topological corrections.
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[HS90a] B. Helffer and J. Sjöstrand, Analyse semi-classique pour l’équation de Harper. II. Comportement

semi-classique près d’un rationnel. Mém. Soc. Math. France (N.S.) 40, 1990.
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