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4 ZHONGKAI TAO AND MACIEJ ZWORSKI

1. INTRODUCTION

This are the notes taken by Zhongkai Tao from the topics course taught by Macie]
Zworski in Fall 2022 at Berkeley, on mathematics of condensed matter physics.

We will cover the following topics:

e Magnetic Hamiltonian of the free electron; Landau levels, derivation of de Haas—van
Alphen oscillations in that case.

e Spectral theory of periodic structures; band theory.
e Berry phase, curvature and Chern numbers.

e 2D crystals in magnetic fields and the Peierls substitution; semiclassical study of
the de Haas—van Alphen effect.

e Semiclassical derivation of the tight binding model.

e Introduction to many-body interactions and the language (if nothing more) of sec-
ond quantization.

2. PRELIMINARIES

We discuss some preliminaries which will be useful later. A brief account of geometric
preliminaries can be found at https://math.berkeley.edu/~zworski/symple.pdf. For
tempered distributions (.#”) and Fourier transform an in depth presentation is provided
in [Ho03, Chapter 7] (see also [Zw12, Chapter 3| for a more light-hearted treatment).
References for pseudodifferential calculus (going beyond what is needed here) are [DS99]
and [Zw12, Chapter 4]. For unbounded operators, a detailed account can be found in
[Sch12] and for brief reviews see [DS99, Chapter 2] and [Zw12, Appendix C.2].

2.1. Symplectic geometry. A symplectic manifold is a smooth manifold M with a non-
degenerate closed 2-form o on M, called the symplectic form. On a cotangent bundle T* M,
there is a canonical symplectic structure given by

0 = dej A dl’j = d(ZSJ A\ dflj'])

In the case of M = R", we can think of o as a non-degenerate quadratic form on R? x R™:

o(X,5, X', ) = (=, X") — (X,Z). (2.1)


https://math.berkeley.edu/~ztao/
https://math.berkeley.edu/~zworski/
https://math.berkeley.edu/~zworski/
https://math.berkeley.edu/~zworski/symple.pdf
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Given a smooth real-valued function p : T*"M — R, we may define the Hamiltonian
vector field H, by

In local coordinates, it is given by
— Z — @i (2.2)
853 8$] &vj 053

The flow ¢, = exptH, under the Hamﬂtoman vector field is called the Hamiltonian flow.
It is straightforward to verify that ¢; preserves the symplectic form and the function p. In
particular, it preserves the volume form d Vol = ¢"/n! (Liouville theorem).

Example 1. Let p(z,§) = 362 + V(z) : R" x R® — R, then the Hamiltonian flow is given
by

i=¢€ E=-VV(x).

That is, & = —VV (z). We think of V() as a potential and F(z) = —VV (z) as the force,
then this is Newton’s law of motion.

Example 2. Suppose there is a charged particle in an electromagnetic field. By Maxwell
equation

V-Ez@, V x E=0.

So there is a potential V(z) and a vector potential A(z) such that
E=-VV(z), B=V xAx).

The force on the particle is then given by

F=-VV(z)+x B.
Now we have an equivalent Hamiltonian formulation. Let

p(.8) = 3 326 — A4 + V(@)
j

The Hamiltonian flow is given by
=¢& — A Za Ap(z) (& — Ap(z)) — 93V (2).
That is,
Zak D)ig 4§ = Y _(0;Au(r) — OpA;(x))ay — 0,V (z) = (i x B—VV);.

k
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The quantization of this Hamiltonian in the case of a constant magnetic field is the Landau
Hamiltonian which we will study in §3.

A classical observable is a function @ on 7*R". Under the Hamiltonian flow ¢, = exptH,,
the evolution of the observable is given by ¢;a(z,£) = a(pi(x,§)). In other words,

d * * *
= Hypia = {p,p;a}. (2.3)

2.2. Analysis on R". The space of Schwartz functions is defined as
S (R™) = {u € C*°(R") : 20°u € L™ Vo, € N"}.

The seminorms |[ul|o s = [|220°u| 1~ give . a structure of Fréchet spaces. The space of
Schwartz/tempered distributions is the dual of ., or equivalently,

S'(R") ={u: —C:3N €N,Cy >0, such that [u(p)| < Cx > [l¢]las Ve € 7.

oel,| BISN

We note that LP(R™) C ./(R"), with the definition

u() = / u(@)p(z)dz.

The main advantage of distributions, and in particular of tempered distributions, is the
fact that the derivative is always defined using formal differentiation by parts:

(0z,u)(@) == —u(0p, ), ue L' (R"), peLR"). (2.4)
The Fourier transform of a Schwartz function u € . is defined by
Fu(§) =u(f) = / u(z)e ™S dr

and F : . — % gives an automorphism of the Schwartz space. The inverse Fourier
transform is given by

1

Flule) = () = / u(€)e . (2.5)

We recall the basic properties of Fourier transform without proof.

Proposition 2.1. The Fourier transform F : ¥ — % extend to a conlinuous linear
isomorphism F : " — ', with the following properties.

e (Plancherel theorem) Up to a normalization constant, F is an isometry on L*(R™):
1Fullzz = (2m)" |ullZ2-
® .7:3% = ijf, .F.Q?j = 28,5].7:
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Using Fourier transform, we can define the Weyl quantization for a € .%(R?") by

1 .
Op“(a)u(x) = a"(z, D)u(z) = @ /el(xy)'ga (m —g y,f) u(y)dydg, ue S (R").
(2.6)
For u € . you can check that a*(x, D)u € .# as well.
Here
10
A 1 8£Cj '

This definition can be extended to a more general class of symbols such that Op"(x;) is
multiplication by z; and Op“({;) = D,,. In this class we will only need the case when
a € & or when a(z,§) is a polynomial in &.

Example 3. The quantization of Landau’s Hamiltonian is given by

P =33 (D, ~ 4@+ Vir)

J

This is called the magnetic Schrodinger operator.

2.3. Unbounded operators. The quantization of a classical observable is ususally an
unbounded operator on a Hilbert space. We recall some results for unbounded operators.

Definition 2.2. Let Hi, Hy be Banach spaces. An unbounded operator P : Hy — Hy means
a linear subspace D(P) C Hy along with a linear map P : D(P) — Hy. P is called densely
defined if D(P) is dense in Hy.

Definition 2.3. The graph of an unbounded operator P : Hy — Hs is

P is closed if the graph is closed. P is closeable if G(P) is the graph of an operator P,
called the closure of P. We say P C Q if G(P) C G(Q).

We will say a densely defined operator P : H — H on a Hilbert space H to be formally
self-adjoint or symmetric if

(Pu,v) = (u, Pv), wu,ve€ D(P).

Given a densely defined operator P : H; — H, between Hilbert spaces, the adjoint P* is
defined as

D(P*) ={u € Hy: 3C = C(u), such that |(u, Pv)y,| < C||v||n,,Yv € D(P)}
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and P* : D(P*) — H, satisfying
(P*u,v) = (u, Pv), wue D(P*),ve D(P).

The adjoint is well-defined by Riesz representation theorem. We recall some facts of the
adjoint operator without proof

Proposition 2.4. The operator P* is closed. Also, if P* is densely defined, then P is
closeable annd P = P**.

Now we can define self-adjoint operators.

Definition 2.5. Let P : H — H be a symmetric operator on a Hilbert space H. We say
P is self-adjoint if P = P*. P is called essentially self-adjoint if P is self-adjoint, that is
P =P~

Example 4. Suppose A;(z) are linear, V() = 0. Then Landau’s Hamiltonian
1
5 Z(D% - Aj(*r))Za
J

defined with the domain given by .#(R") is an essentially self-adjoint operator. This follows
from a more general case of operator of the form

P = S{Av.2) + 5{Bx, D.) + 5(Ds. Ba) + 3(OD,. D.)

where A = AT, C = O7 are two symmetric matrices. Let

p(e,6) = 5(Av,2) +(Br,€) + 5 (CE,€),
be the symbol of P in the sense that for u € .77,

Pu = p“(z, D)u.

Let N, be the operator P with domain D(N,) = .(R") and M, be the operator P with
domain

D(M,) = {u € L*(R") : Pu € L*(R")}.
The proof of the following properties can be found in [Zw12, Appendix C.2]

e M, is closed;
o N, =M,y
o Ny = M; = M,

Those properties imply that if p is real-valued, then M, is a self-adjoint operator and N,
is essentially self-adjoint.
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©

The importance of self-adjointness is due to the following spectral theorem.

Theorem 1. Let P : H — H be a self-adjoint operator on a Hilbert space. Then there
exists a measure space (X, M, ), a measuable function f: X — R and a unitary operator
U:H— L*(X,p) such that

ez € D(P) if and only if f-Ux € L*(X, u);
o U(Px)=f-Ux for any x € D(P).
Remark 1. The spectrum of an arbitrary operator P is defined as
Spec(P) = {z € C: P — z is not invertible }.

In the case of self-adjoint operators, we can apply Theorem 1 so that it is given by f(X).
In particular in that case the spectrum is real.

Using spectral theorem, we can define the unitary evolution by
Ut)y=e ™" H—H, Ut)=U"MupupU, e eL®X,p).
One then checks (again using the spectral theorem) that for u € D(P),
(Ut +h)—U(t))u/h — Pully — 0, h—0.

(Convert P to multiplication by f and use dominated convergence theorem based on fu €
L?)

A quantum observable is a linear operator A : H — H, the evolution of a quantum
system is described by (Heisenberg picture)

A(t) =U(t)*AU(t).

In other words,

d

%A(t) =[P, A(t)]. (2.7)
Comparing the quantum evolution (2.7) with the classical evolution (2.3), we obtain a
similarity between them. The Poisson bracket corresponds to the commutator after quan-

tization. This is explained in the following example.

Example 5. We have {&,, z;} = 0j, and [, 2%] = [Dy,, x;] = +0j.

7

The ideal generalization of this would be
P, ¢"] = i{p,q}",
for the quantization (2.6) or another form of quantization. However the Groenewold—Van

Hove theorem showed that it is impossible. However, it remains true up to “lower order
terms” — see Th


https://en.wikipedia.org/wiki/Canonical_quantization#Groenewold.27s_theorem
https://en.wikipedia.org/wiki/Canonical_quantization#Groenewold.27s_theorem
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2.4. Properties of pseudodifferential operators. The Weyl quantization has many
good properties.

Proposition 2.6. e Formally, (a®)* = (a)*. In particular, if a is real, then a" is
formally self-adjoint.
e (Calderon—Vaillancourt theorem [Zw12, Theorem 4.23]) If 05 ca € L*, then a*(x, D) :
L? — L2 is bounded.
e (Beals theorem [Zw12, Theorem 8.3]) If A : L* — L? is bounded and ad,; ade, --- A :
L? — L? is also bounded, then there exists a : R** — C with 93 c.a € L™ such that
A=a"(z,D).

The first property is straightforward calculation. The next two are deeper. We will
not prove those properties here but just indicate the L? boundedness is easy if we assume
a € .¥. In fact, when a € ., we write

(. D)uln) = I/ (%”&) Dy (e dyde do.

We write the phase as follows

(x—y,&) — (x,n) = =2(5L,n— &) — (y, 2 — ).

We then put
a1(¢,€) == / a(z,&)e " dz.
Hence,
e Djulr) = oz [ anl2n =26, )n(26 — n)
~ G | il =€ B0 = (K )

Because of Parseval’s identity (||ul|z2 = (27)~"/2||4||12) it is enough to prove

|Kv||2 < Cllv||Le. (2.8)
We now recall Schur’s criterion for boundedness on L?: if
Kolo) = [ Kn.0v(Od

and

/ K(n,0)ldn < C. / K@, OldC < C, (2.9)
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then (2.8) holds with the same C. In fact, using Cauchy—Schwarz inequality we see that

K2, = /‘/KUC dn</(/\Kn, iac) ( [ 1o ecyac ) an
< (s [ 1.1 (suw [ 16600 0lan) ([ 160)Pac) < €2l

which proves (2.8).

(2.10)

In our specific case
K(n7 C) = dl(n - C7 ﬂ;_<)7
and (2.9) holds as a € . so that a; € . as well.

We note that we can use a weaker condition:

a1 (GOl < (T+[C)™, >0,
as that also implies (2.9).

The composition properties for quantizations are also interesting. We recall the following
result without proof. In principle, it could be shown without general theory since it involves
only differential operators.

Proposition 2.7. Suppose a; = <., @j.a(@)E%, j =1,2. Then af o ay = ay’ with

1 k
as = Z k! ( (DCC7D§7Dy7D77)) al(xag)@(%m’x:y,é:m

k=0
where o is the symplectic form given in (2.1). In particular,
1
g[ailu(x’ D)7 (lg}(fb, D)] = {ala ag}w(l', D) + rw(xv D)v

where & — r(x,§) is a polynomial of degree less than the degree of {ai,as} (which is less
than or equal to my +mg — 1.)

We refer to [Zw12, Theorem 4.12] for the proof.

2.5. Trace class operators. In this section we recall basic properties of trace class oper-
ators.

Let H be a Hilbert space and A : H — H be a compact operator. Then Spec(A4) = {\;}
is discrete and can be ordered as

Dol = A > > [Ny = 0. (2.11)
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If A is self-adjoint, then \;’s are real. Moreover, there exists an orthonormal basis {e;}
consisting of eigenvectors of A, such that

Au = Z Aj(u,ej)e;.
J

In the non-self-adjoint case, there is a similar form using singular value decomposition
(SVD).

Proposition 2.8. Let Hy, Hy be Hilbert spaces and A : Hy — Hs be a compact operator.
Then there exists

802812"'28]‘—>O7 (212)
and orthonormal sets {e;} C Hy, {f;} C Hs, such that

Au= " si(u,e;) ;.
J

In fact {s;} \ {0} = Spec((A*A)"/?) \ {0} = Spec((AA*)"/*)\ {0}.
Proof. Observe that A*A : Hy — H; is a non-negative self-adjoint operator. Let {e;} be
the eigenvectors corresponding to the eigenvalues 3]2- = \;(A*A). Let

f = sj_lAej, s; #0
/ O, Sj = 0.

Then it is direct to check f;’s are orthonormal and

Au = Zsj(u,ej>fj.
J

The set {s;} are called singular values of A. We list some properties without proof.

o 5,(A) = min{||A — K|/ g, n, : rank K < n}.
* sjk(A+ B) < s;(A) + si(B).
o 51 ,(AB) < s;(A)si(B). In particular, si(AB) < || A||sk(B).

Here is an example of how to use those inequalities.

Example 6. Let s > 0 and A : L*(T") — H*(T") C L*(T") be a bounded operator, then
s;j(A) < Cj=*/™. This is because

s;(A) = 5;((—A +1)"/2(=A +1)*/?A)
< (=D +1)72A] g pes; (A +1)777)
< Cj—s/n'
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The claim s;((—A + 1)7%/2) < Cj~*/" is proved by lattice point counting:
#{si sl 2ry S#M e (m* + 1) >} S

Now we can give the definition of trace class operators.

Definition 2.9. Let H be a Hilbert space, the family of trace class operators is
Li(H)={A:H — H: A is compact and Zsj(A) < oo}

J

The norm for L1(H) is defined as
1AL = s;(A).
J
It makes L1(H) a Banach space with a continuous functional called trace:
tr(A) = Z(Aej, e;)
J
where e; s any orthonormal basis.

The trace norm can also be written as
1A = (I Alejse5)
J
where |A| = (A*A)Y/? and {e,} is any orthonormal basis. This is because for two orthonor-
mal bases {e;} and {f;} we have

> (Alese5) = Y ALk fodless fid(es, fird = D (Al fe fi)- (2.13)

J 3k k! k

If Ae £,(H), then A = U|A| for some unitary operator U. Thus
> HAej el = [(UIAlej e < D IAMelll[|A]V2U7¢|
J J J

1/2
< (Z(IAlej,eJ) Z<|A|U*6k,U*6k>> => s =lAle.

j k J

So the trace is well defined and bounded by the trace norm. For the same reason as (2.13),
the definition of trace does not depend on the choice of orthonormal bases.

We recall some properties of trace class operators without proof.

o (Lidskii’s theorem) If A € £(H) has eigenvalues \; ordered as (2.11), then tr(A) =
>N
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o (Weyl inequalities) Let A € £,(H) with eigenvalues \; and singular values s; or-
dered as in (2.11) and (2.12), then

DN s v,

7=0 7=0
[Ta+nD <]+,
j=0 j=0

o If A: L*(R") — L*R") is in £,(L*(R"™)), with integration kernel K4(z,y), then
Ka(x,z) € L'(R") and

tr(A) = Ka(x,z)dz.

R”L
This is easily verified by Ka(z,y) =Y s;(A)f;(x)e;(y).

We remark that the trace class condition is much stronger than the condition that K 4(x, x)
can be integrated. For example, for any a # 1, Au(z) = u(ax) gives a bounded operator
with K4(z,y) = 6(y — ax). Then Ka(z,z) = 6((1 —a)z) = |1 — a|7*5(z) and

/KA(x,:c)da: =[1—a|l "

But A is far from being in the trace class.

2.6. Grushin problems. In this section we review Schur’s complement formula and its
application to spectral theory. Schur’s complement formula is a direct lemma in linear
algebra:

Lemma 2.10. Suppose

-1
P R\ (E B\
<R+ R+_) = (E_ E_+> Xy x X — X9 x X+ (214)

are bounded operators on Banach spaces, then P is invertible if and only if E_ is invertible.
Moreover, in such case we have

P'=E-E,ElE, E.=R, —R.P'R_. (2.15)
Proof. The proof is direct. If E__ is invertible, then from
PE+R_E_=1PE,+R.E . =0,
we get PE — PE,E"L FE_ = [. Similarly, since
EP+E.R, =1, EEP+E R, =0,
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we get EP—E,E"'E_P = I. We conclude that P is invertible and P! = E—E,E"1E_.
The proof for the other direction is similar. 0J

If R, =0, we have the following observation.

Proposition 2.11. If R, =0 in(2.14), then R, and E_ are surjective, and R_ and E
are injective.

Proof. This is because we have

R+E+:], E_R_:].

O
We will call the R, = 0 case a Grushin problem, that is
-1
P R\ [(E E; _
(R+ 0 > = (E_ E_+> : X1 x X_ — X2 X X+ (2].6)

Perturbation of Grushin problems are stable due to the Neumann series argument.

Proposition 2.12. Suppose (2.16) is true, and suppose A : X1 — Xs satisfies
||EA”X1—>X17 HAE||X2—>X2 < 1a
then the Grushin problem

P+A R_
PA_(R+ 0)

F F.
F P,

18 still well-posed with inverse

where
F .= ++Z )*E_A(EA'E,
Proof. Let
P R
_ o1
Pee s (R+ 0 )
then
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and

O

We will usually study the Grushin problem for Fredholm operators. For more details,
see [DyZw2, Appendix CJ.

Definition 2.13. A bounded linear operator P : X1 — Xy between two Banach spaces is
called a Fredholm operator if the kernel and cokernel of P are both finite dimensional. The
index of a Fredholm operator is defined as

indP = dim kerP — dim cokerP.

Proposition 2.14. (i) Suppose P : X1 — X5 is a Fredholm operator. Then there exists
finite dimensional spaces X4 and operators R_ : X_ — X5 and R, : X1 — X, such that
the Grushin problem (2.16) is well-posed. In particular, the image of P is closed.

(i) Suppose the Grushin problem (2.16) is well-posed, then P is a Fredholm operator if and
only if E_, is a Fredholm operator, and

indP =indF_ .

Proof. (i) Let ny = dim kerP and n_ = dim cokerP. Let Xy = C"*. Suppose kerP is

spanned by zy,---,2,,, by Hahn-Banach theorem there exists z7 : X; — R such that
x3(7;) = ;5. We then define

Ry : Xy = C™, zw (2(x), -, 2, (7))
On the other hand, choose a representative yi,--- ,y,_ of coker P and define

R_:C" = Xy, (ar, - ,an )+ Zajyj-
j=1

(n. )

We claim the operator
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(. ) () =0

then since the intersection of the range of P and R_ is zero, we have Pu = R_u_ = 0, so

is bijective. First, if

u_ =0 and u € kerP. By R,u = 0 we conclude u = 0. We conclude injectiveness. On the
other hand, (R, R_) : X1 x X_ — X, is surjective by definition. Since modifying u € ker P
does not affect value of Pu, we conclude the whole matix is also surjective.

Finally, PX; can be viewed as the image of the closed subspace (X7, 0) under the invert-
ible map (P, R;) (modkerP). So the image of P is closed.

(ii) Take u_ = 0, we observe that
Pu=v < wu=Fv+FEuv, 0=F v+ FE ,v,. (2.17)
So E_:PX; — F_ X, and induces
E* . X,/PX, - X_JE_,X_.

By Proposition 2.11, F_ is surjective, so E? is surjective. On the other hand, EF_v €
E_, X, will give us v € PX; by (2.17), so E?* is also injective. We conclude

dim cokerP = dim cokerF_ .

Now we look at
Ey i kerE_, — kerP.

It is injective by Proposition 2.11. Moreover, if u € ker P, then by (2.17) we get v, € kerE_
such that E v, = u, so F, is also surjective. We conclude

dim kerP = dim kerE_ .

This finishes the proof of (ii). O

Corollary 2.15. o The family of Fredholm operators is open and the index map is
locally constant, that is

ind : mo(Fred(Hq, Ha)) — Z.

e If K is a compact operator, then ind (I + K) = 0.
e A Fredholm operator has closed image.
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2.7. Vector bundles. Let E, X be topological spaces, 7 : E — X is called a (complex)
vector bundle of rank r if for any x € X, 77!(z) is a (complex) vector space of dimension
r, and there exists a covering {U;} of X such that we have an isomorphism which is linear
on each fiber

Us) =5 U; x C"

l/

A vector bundle of rank 1 is called a line bundle. We will only consider complex vector

bundles.

Let E, F be two vector bundles over X. A vector bundle morphism f : F — F is a
continuous map preserving each fiber and linear on each fiber:

E—>F

L

A bijective morphism is called an isomorphism. Let g : Y — X be a continuous map
between topological spaces, 7 : E — X be a vector bundle on X, then the pullback bundle
Tgp : §°E =Y is defined as

gE ={(y,p):ycY,pc En(p) =91} 7yryp) =y

If Y — X is an inclusion, then pullback bundle can be thought of as the restriction of the
bundle E to Y and we denote it by Ely.

A vector bundle isomorphic to X x C” is called a trivial bundle. In general, a vector
bundle can be nontrivial, and we are interested in criteria guaranteeing triviality. One is
provided by the following proposition from Bott-Tu [BoTu82, Section 6.

Proposition 2.16. Let X be a compact Hausdorff space, and E — X x [0,1] be a vector
bundle. Let py : X x [0,1] — X be the projection to X and iy : X = X x {0} - X x [0, 1]
be the inclusion, then £ = piigE. In particular, if igE is trivial, then E 1is trivial.

Proof. Let F' ={E. It suffices to construct an isomorphism between E and pjF. We call
the variable t € [0, 1], then at t = 0, E|;—o = F' by definition. We can then find a finite cover
U; of X, such that over each Uj;, there exists ; > 0 such that the isomorphism extends
to U; x [0,¢;]. Using a partition of unity, we get a map F — pjF in a neighbourhood
X x [0,e] for some ¢ > 0. By choosing ¢ small, we may assume it is an isomorphism
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since isomorphism is an open condition. By connectedness of [0,1], we can extend this
isomorphic to the whole X x [0, 1]. O

Corollary 2.17. Any vector bundle over a compact contractible Hausdorff space is trivial.

Proof. By definition, X is contractible if there exist (with * denoting a point space) i : * —
X,p: X —-xand H: X x[0,1] — X such that Hy = idx and H; =i o p. By Proposition
216, FE = HjE = H{E = p**E. So I is a trivial bundle. U

For paracompact spaces, this remains true but the proof becomes a bit more subtle. We
provide a direct proof for the case we will need.

Corollary 2.18. Any vector bundle over R" is trivial.

Proof. Let E be a vector bundle over R". Then E is trivial over B(0,¢) for some ¢ > 0.
Since B(0, R)\ B(0, ¢) is homeomorphic to S"! x [0, 1], we conclude from Proposition 2.16
that E is trivial over B(0, R) for any R > 0. Then it is easy to glue those trivializations to
get a global trivialization of E over R". O

3. SPECTRA OF MAGNETIC SCHRODINGER OPERATORS

Let B > 0 be a constant and suppose we have a constant magnetic field B = (0,0, B).
Let the vector potential be A = (0, Bx1,0). We are interested in the spectrum of the
magnetic Schrodinger operator

P = D2 + (Dy, + Bx1)* + D2, (3.1)

with symbol pg = &2+ (&,+ Bxy)? +£2. We have proved in Example 4 that P is self-adjoint
with domain
D(Pg) = {u € L*(R®) : Pgu € L*(R*)}.

Before studying Pg, we first look at two simpler examples.

3.1. Spectrum of the Laplace operator. Let P = —A be the Laplace operator on R",
with domain D(P) = {u € L*(R") : Pu € L?} = H*{R"). Then we may use Fourier
transform to conjugate and explicitly diagonalize it. Let

1 .
— —ix-§
Uu(§) = (QW)H/Q/u(x)e dx,
then U : L?*(R™) — L*(R™) is unitary, and

UPU* = |¢]*.
In particular, Spec(P) = [0, 00).
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The propagation equation
(i0; — P)u=0, ul= = ug
can be explicitly solved by

() = e a,
We call A = [£|? the dispersion relation.

There is a similar operator Py = v/—A. We can also diagonalize it by UPyU* = [£|. The
dispersion relation for the corresponding half wave equation (i0; — Py)u = 0 will then be

A= [¢].

3.2. Spectrum of the harmonic oscillator. Let P, = —A + Z;lzl wiz?, w; > 0. This
is called the harmonic oscillator. For each j, we can do a change of variable y; = | /w;x;
and get

Di], + w?a:j? = wj(D; + 7).
Without loss of generality, we study the operator P = D? + x? on R. We define the
“annihilation operator” A = D, — iz and the “creation operator” A* = D, +ix. We notice

e A*A=D?+22-1=P—1;
o AA*=D?+22+1=P+1;
o [A A =2.

Let vg = e*wQ/Q, then it is easy to verify that Avy = 0, thus Pvy = vy. We notice
PA*vg = (AA* + 1)A* vy = 3A*v, so we will let v; = A*vy and we have Pv; = 3v;. In
general, let
vy, = (A™) vy
then
Puv, = (2n + 1)v,.

So A* “creates” higher and higher excited states of P. Since v, are eigenvectors of P with
distinct eigenvalues, we have

(Un, V) =0, n#m.
Un _ . e - . .
Mool = H,(z)e /% it is easy to verify inductively that H,(z) are polynomials
Unl|| L2
of degree n, with nonvanishing leading coefficients. Moreover, H,(—z) = (—1)"H,(x).

Let u,, =

Those polynomials H,,(z) are called Hermite polynomials.

We now claim the sequence {u,} is an orthonormal basis of L*(R). It suffices to prove
{u,} is dense. We prove by contradiction: suppose there is 0 # g € L*(R) such that

0= /g(x)mdx, Vn € N,
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then we know

/g(w)m”e‘x2/2dx =0, VneN.
By Taylor expansion of ¢ we know
/g(x)e_mg_xzmdx =0, V¢éeR

This implies that g(x) = 0, a contradiction.

So if we define

U:L*R) — A(N), Uu(n)= /u(x)un($)d1:
Then UPU*u(n) = (2n + 1)u(n). In particular,
Spec(P) ={2n+1:n € N}.

For P, = —A+ Y% w?2?, it follows that

Jj=1"3"3

Spec(P,) = {ij@nj +1):n; € N} :

Jj=1

3.3. Spectrum of the magnetic Schrodinger operator. Now we come back to the
magnetic Schrodinger operator (3.1). We can first use
1 . ,
Uru(1,§2,83) = or /U(Sﬂl,$2,333)6_”252_”3E3dx2dx3
T
and get
Ui PUf = D2, + (& + Bxi)® + &.

Then it looks very much like the harmonic oscillator: we put
vy = B3y, — B, y = Bix, + B 16,
so that
Dy, + (& + Bx1)* = B(Dy, +u1).
This motivates the introduction of the following unitary operator:
U2U(y17 527 £3) = Bil/4v<Bil/2y1 - 371527 §27 63)7
for which we have
We then use

Usu(nf%f?,) :/U(?Jl,&,&)un(yl)d%



22 ZHONGKAI TAO AND MACIEJ ZWORSKI
and let U = UsUyU;. Then

UPU"u(n, &,8) = (B(2n+ 1) + &)u(n, &, &).
So we explicitly diagonalize (3.1) and conclude

Spec(Pg) = {B(2n+1) + & :n €N, &, & € RY = [B, o0).

3.4. A different gauge. We could also consider a two dimensional version of Pg:
P = D2 + (D,, + Bx1)*. (3.2)
In that case
Spec(Pg) ={B(2n+1) :n € N}.

The eigenspaces have infinite multiplicity and are given by
Hoi= {ute) = B [ (Bt Bl @) eda s f e R)).
R

It is interesting to compare this to the eigenfunctions in the symmetric gauge:
Pg = (D,, — Bxy/2)* + (D, + Bx,/2)*.
In this case, let w = x1 4 129, we have
Pgp=—-A+ iBQ\xP — i1B(10p, — x20,,)
= —40,05 + leB2|w|2 — B(wd, — wdyg)
= (=20, + 3Bw) (205 + 3Bw) + B

Bww

So one ground state is given by ug = exp(—=5*) and the other ground states can be written

u(w, w) = f(w)e’%

where f(w) is a holomorphic function such that

/ [F(w)[Pe "5 dm(w) < oo,

4. MAGNETIC OSCILLATIONS FOR THE FREE ELECTRON

In this section we study the magnetic oscillations for the free electron. The mathematical
tool to study it the the density of states.
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4.1. Motivation. Suppose A is a self-adjoint matrix acting on CV. We can then think of
dp(N) = > S(A = p)dr = p(A)dA
pESpec(A)

as measuring density of states: we we count the number of states per unit of energy:

b
[Spec(A) N [a, b]] = / ap(N).

More generally, we have
/f Ydp(N), f e CR).
MESpeC A)

Another way to think about this is to order the eigenvalues (“states” in physics) from the
smallest one (“ground state”) onwards and to consider

dw(N)
d\
We can then think of the measure dp(\) as a distribution p € #/(R) (see §2.2).

w(A) = [Spec(A) N (=00, All,  p(A) =

These definition is applicable for any operator with discrete spectrum but already care
is needed to guarantee that p € %',

Example 7. Let P = —A+ 377 wjz?, w; > 0, be the harmonic oscillator in R". Show
that for f € .7, f(P) € £1(L*(R™)) and that trf(P) = [ f(A)p(A)d\ where p € /'(R).

This definition of density of states are not applicable to operators appearing in condensed
matter physics: already for P = —A we see that f(P) is not of trace class. The same is
true for magnetic Schrodinger operators considered in §3. We have then consider density
of states per unit of energy (as above) per unit volume. That is done by renormalizing the
trace and introducing ( HP)

~ T tr ﬂ[fL,L}” P

tf(P) = Jim QL
provided that the traces and the limit exist: we are restricting f(P) to a box of size L,
taking the trace and then dividing by the volume of the box and letting L — oo.

Density of states plays an important role in the kinetic theory of solids as it allows
calculations of such quantities as the internal energy, specific heat capacity and thermal
conductivity. In this section, we will be interested in the internal energy and magnetization
That corresponds to choosing the function f in trf (Pp) using the Dirac—Fermi distribution
(see [Ka03, §D.1.2]): for chemical potential zy and temperature T we take

FON) = fra(N) i= Tlog (1 + exp ("‘0; A)) . (4.1)
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From the mathematical point of view we will be interested in asymptotic behaviour of free
energy, {2 and magnetization m,

Q(B) = UB,T,2,N) := Nzg — fr(Pg), m(B) = 05Q(B, T, z, N). (4.2)

as T'— 0 and B — 0. The chemical potential and the number of particles are related by
the condition that 0., = 0 but we will make a simplifying assumption and fix N and z,
(the simplified relation between them can be derived by putting 7= B = 0 — see [HS90b,
§2] for a finer analysis explaining while this approximation is justified). The goal will be
to see the oscillations in m(B) as a function of 1/B — see Figures 1, 2 and 3. For the
fascinating story of theoretical and experimental discoveries related to these oscillations we
refer to [Sh84, Chapter 1].

4.2. Density of states. Suppose we have a self-adjoint operator P, then for a bounded
measurable function f on R, it makes sense to define f(P) : H — H thanks to spectral
theorem. If for f € C.(R), f(P) is in trace class (defined in section 2.5), then we can
define trf(P) and get a measure p supported on the spectrum of P, defined via Riesz
representation theorem:

trf(P) = / FNdp(N).

This measure p is called the density of states for P. In general, however, we would not
have f(P) € L1, so we will study the regularized trace. In our example, when H = L*(R"),
we will study
~ . tr(]l[,LL]nf(P))
WP = I T

Let us first look at the example of P = —A. In this case

f(=D8) = FUf(IE)P)F
and the integration kernel of f(—A) is given by

1 .
Kyien(oe.9) = s [ €0 (eP)ae

(4.3)

When restricting to the diagonal, K¢_a)(z,2) = ﬁ J f(|€]?)d€ is a constant and is not

integrable. However, when we multiply by a cutoff function y(z) € C§°(R"), the integration
kernel of A = y(z)f(—A) is

Kalog) = S [ gyie (e x )

If we fix a torus T" containing the support of y, then

A L*(R™) — C°((B(0,R)) € H*(T™), Vs>0.
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Choose s > n and use Example 6, we see A € £; and

Lo f(=A) =L pnx(2) f(—=A) € L.
Thus

Lo
Ky ) ynf-a) (7, ) [ ] /f [€1%)d

and

tr<]l[—L,L]"f(_A

So the regularized trace is given by

T8 = G [ HePE = oo / [ (s = ks (s)as

1 n— l

= vol( S // §(s —r*)r"tdrf(s)ds (4.4)

vol(S™~1)

= | c,s s)ds =: , Cp = ———

/R = f(s)ds = olf) ST
n—2
so the density of states is the distribution ¢,s,? , where for v > —1,
v |87, s>0,

sl .—{ 0 s<0. (4.5)

4.3. Two dimensions. We study the desity of states for the 2-dimensional magnetic
Schrodinger operator

P = D2 + (D,, + Bxy)* =U*(B(2n+1))U
where U : L*(R?) — (*(N, L*(R)) is given by

Bl/4 )
Uu(n,&) = Nor w(2y, 22)up (BY 2z, + B=1/2&,)e™ 282 dg d,
and
Bl/4
U v(xq, x9) = Z/un (BY2z1 + B7Y2&)u(n, &)e™2%2dg,.

For f € #(R), the integration kernel of f(Pp) is
Bl/2

K(z,a') = Z / un(B"?0y + B72&)un (B2 + B1/26) f(B(2n + 1))e'" 2% dg,,
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FiGure 1. The first experimental observation of magnetic oscillations:
the de Haas—van Alphen experiment of putting bismuth in magnetic field.
Reproduced from [Sh&4].

Restricting to the diagonal we get

Bl/2
K(z,z) =

Z/W (B2, + B7Y28) P f(B(2n 4 1))dE, = Zf (2n+1
As before we conclude the regularized trace is

trf(Pg) = Z f(B(2n +1)) (4.6)

As discussed in §4.1 the free energy per volume is given by
(29, B,N,T) = Nzy — trf,, 7(Pg)

where f., r(x) = T'log(1+ exp(*57)) and 2 is determined by £ m = 0. In the 7" — 0 limit,

fzo,T_> (ZO_'T)+7 f;O,T% —(20—55)3,, f;g,T_>620('I)
where

)y =2"1,50, Rey> -1 (4.7)
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FIGURE 2. The plot of 0502 as a function of 1/B for the two dimensional
Hamiltonian. It is given by (4.8) where we put 2o = 0. It is compared to the
approximation (4.9).

From (4.6) we get
B
Q=Nz— ; far(B2n+1))

and

m(B) = 0p{)(B) = —% > faor(B2n+1)) — % > @n+1)fl, p(B(2n +1)).

In the T — 0 limit we have

m(B) = - B(QZHPO(—ZO +2B(2n + 1))
and
m(B) = dpQ)(B) = M : ! (2B(M +1) —z), M := {ZOQEB} . (4.8)

One can show without much trouble (see proof of [BeZw19, Theorem 3] for a slightly
more complicated case of relativistic Landau levels) that

m(B) = %ZOU(ZOB_l —1)+0(B), o(t):=[t/2] —t/2+ 1/2. (4.9)
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= (rescaled) magnetization

0.015 one term approximation
= == two term approximation

FIGURE 3. The plot of 95Q/v/B as a function of 1/B (m := 0pQ is the
“magnetization”). We also show one term and two terms approximation
using Fourier series/Poisson summation formula. Oscillations are smoother
in 3D when a potential is present, that is, when we are dealing with metals.

4.4. Three dimensions. The 3-dimensional case is similar to 2-dimensional case and we
get

F(P5) = oy 30 [ S(BCn-+1) + s (4.10)

As a sanity check we verify that trf(Pg) — trf(—A) as B — 0. Observe as B — 0, (4.10)
is a Riemann sum and converges to

sy | 1o+ Easdes = s [ 10+ E2panics = s [ 107 + ypdpati
- (2;)3 | ruepe
As in (4.4) we obtain a formula for the density of states:
) = [ SO0 o) = o S0 - o Bt )

We will follow [HS90b, §2] (which in turn follows presentations in the physics literature
such as [Ca64]) and describe asymptotics of m(B) = 0g2(B), Q(B) := Q(B,0, N, zy) — see
(4.2). That means using a specific f = fr,, and considering 7" — 0.

4.4.1. Formula for mp and statement of the result. We proceed as in §4.3 to we obtain
from (4.11) a formula for mpg. (Strictly speaking, we need to differentiate {2 with respect
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to B for T' > 0 and then take the limit 7" — 0+.) This gives

1 > 1 3
n(B)= G ; (220(z0 — (2n+1)B)2 — (10/3)(z0 — (21 + 1)B)i> . (4.12)
The sum in (4.12) can be expressed using the Riesz means of the harmonic oscillator,
r(s)i= S (s — @nt 1)L 7 >0, (4.13)
n=0

as follows

m(B) = (271T)2n220< (10/3)B% (%) +22B%r (%)) (4.14)

The asymptotics of r, presented in the next section will give

Theorem 2. For m(B) given by (4.12) with zy > 0 we have, as B — 0,

\ 2 = k ,
B im(B) = ZO T () Z -3 COS( =0 _ 3_”) +O(B2). (4.15)
=1

B 4

This result is illustrated in Figure 3. The asymptotics of the next section provide an
expansion of the error term in (4.15) as well. However, when the constant z, is replaced
by 2o(B) (determined by 0,,€2 = 0) additional terms appear — see [HS89, Proposition 2.2].

4.4.2. Asymptotics of Riesz means. This is a nice exercise in classical analysis which is a
good illustration of various asymptotic methods.

We start with the following application of the Fourier inversion formula (2.5):

Lemma 4.1. In the notation of (4.7) and for Rey > 0,

r 1 c+1i00
ol = M/ u e du, (4.16)

2mi —ico

for any ¢ > 0, and uw — u="! defined on C\ (—o0,0].
Proof. For ¢ > 0, f(0) := ole” is integrable and
fls) = / ove ) do = (¢ + is)”l/ ((c+1is)a) e ") d(g(c + is))
0 0
=(c+ is)”’l/ Ve Tdr =T(y+1)(c+is) 7"
%

where % is the contour [0,00) 3 0 — 7 = o(c + is), which we deform to [0, 00) and apply
the definition of the I'-function.
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FIGURE 4. On the left the contour used for the evaluation of the Fourier
transform of o — ole ?® in the proof of Lemma 4.1. On the right the
contours in (4.16) and the Hankel contour in (4.17).

Since s — (¢ +is)77"! in integrable, the Fourier inversion formula ((2.5) with n = 1)
now gives

r 1) [~ .
0'16_60 — M/ (C + is)_7_160(28+c)6_acd87

2m e
where the integral converges since —Rey — 1 < —1. Cancelling e7?¢ on each side and
putting u = ¢+ is (with du = ids) gives (4.16). O

Remark 2. By putting 0 = 1, (4.16) gives the following formula for the reciprocal of the

I' function: '

1 1 /C+ZOO —z—1 vd R >0

—_— = — u e'du, Rez .
L(z+1) 2miJ, ’

To obtain a formula valid for all z € C we need to take advantage of exponential decay
of e* when Reu — —oo. For that we deform the contour to a Hankel contour, ¥ shown
in Figure 4. The contour deformation is easily justified when Rez > 0 and, by analytic
continuation, we obtain a formula valid for all z € C:
11
T(z+1) 2mi

—100

/u21e“du, z e C. (4.17)
3

We can now obtain asymptotics of the Riesz means:
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c*fd)

Cot ®©

FIGURE 5. Contour deformation used in the proof of Lemma 4.2

Lemma 4.2. For r.(s) defined by (4.13) for v > 0 we have, for every M,

ry(s) =T (y+1) (Z(—l)k@k)wl COoS (lms — @) + % Z _F(7 +72j —55 8'y+12j>

k=1 Jj=0
+O(7),

where 7y; come from the Taylor ezpansion t/sinht =377 (y;t? | |t| < 7/2, 70 = 1.
Proof. Using Lemma 4.1 and the fact that Y o0 e!¢=2"=1) = ¢ /(2sinh t), we rewrite 7, as

F 1 c+o0o
ry(s) = %/ e (sinht) "1t dt.

—100
The residue theorem and contour deformation show that

[e.o]

ry(s) =T(y+1) (—=1)*(7k)™7 ! cos (k‘?TS — WFTI)W) + L,(s),
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where, with the Hankel contour ¥ of Remark 2,

r 1
—(74— )/es'f(sinht)_ltﬂ_ldt.
€

bis) ==

This we deform to
Ce) = Cr(c) + C_(c) + € ),
where €+ = (—o0, —¢] £i0 with positive (—) and negative (+) orientations and & (¢) is the
circle of radius e centered at 0 with positive orientation — see Figure 5
Using exponential decay of e on €y (g) we see that

I'(y+1)
471

L(s) = L,(s,e) + O(e e Y), I (s,¢):= / e!(sinht) "'t dt.  (4.18)
€ (e)

We now expand t/sinht in Taylor series at 0 so that in the notation of the lemma,

M
T 1 1 .
]7(8,8) = % E ’er é( )QSttzj_ﬁ/_2dt + O(€2M_7_1€ES).
Jj=0 £

™

We now use (4.17) by inserting the “missing” contours €4 (¢), estimating their contributions

as in (4.18) and changing variables u = ts:
L. etSthf'nydt — L tstQJ Y— 2dt+0< —€s 7’y 2)
211 %(e) ™ (g( €)

= TV (y +2 —25) 71+ O(e =772,
Inserting this in (4.18) gives an expansion for 7, (s) with an error
0(65582M—7—1 + 6_&95_7_2).

This can be optimized by choosing € = &(s) so that e = &2 and gives an error estimate
O(e(s)M=772) = O(s™™/2), M > 1 (we note that s~' = £(s)/M|log(e(s))| Zar £(s)'79, for
any 0 > 0). By changing M this concludes the proof. 0

Proof of Theorem 2. We need to show the cancellation of the leading non-oscillatory con-
tributions in (4.14):

r ; r 3 1 5
D w0yt 4 2D E) o/ — B2 4 9 o,
() I'(3)
where we used I'(z + 1) = 2I'(z). The next term in the expansion of 7., v = %, % provides

the O(Bz) error in (4.15). O
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5. BLOCH-FLOQUET THEORY

5.1. Motivation. We will now consider electrons in a periodic structure such as a crystal
or a metal. In this case, electrons are interacting with each other and are subjected to
forces from the atoms forming the periodic structure (which we assume do not move or
interact with each other).

An extremely successful model for that is given by a periodic Schrodinger operator
P=-A+V(z), VeC*R%,R), V(r+y)=V(r), v€T, (5.1)

where I = @?:1 Y Z", {75 }j=; linearly independendent, is a lattice in R™ (we will concen-
trate on n = 2). This is a Hamiltonian in which there is no interaction between electrons
and it corresponds to a pseudo-particle rather than the actual electrons in the metal. We
will indicate why this approximation is acceptable in §5.2.

We will then diagonalize operators such as (5.1) and develop band theory.

5.2. Hohenberg-Kohn theorem and the passage to non-interacting pseudopar-
ticles. In physical modeling transition to non-interacting pseudo-particles modeling the
actual quantum mechanical system is now most frequently done using the density func-
tional theory. It is an approach to studying the Schrodinger equation by writing quantities
of interest, such as energies, in terms of the particle density, instead of in terms of the
wave function. This can simplify computations considerably, especially when the number
of particles is large.

In an N-body system we are primarily interested in the ground state that is an N-body
wave function ¢ (see Theorem 3) which is a function of N (2D or 3D) variables, for which
(WIH|p) = min (o[ H]p).

In the non-interacting system (especially when considering electrons which are fermions —
we will neglect such issues here), a composite ¥ can be build of non-interacting particles
at different energy levels (not the ground state of the full Hamiltonian). The game here is

to replace the actual ground state by a ground state of a non-interactive system with the
same density.

To explain this we present here an extract from the notes by Kiril Datchev
https://www.math.purdue.edu/~kdatchev/dftintro.pdf

(see also arXiv:2207.05794). They can be consulted for a more detailed discussion and
references.


https://www.math.purdue.edu/~kdatchev/
https://www.math.purdue.edu/~kdatchev/dftintro.pdf
http://arxiv.org/abs/2207.05794
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A very general Hamiltonian describing an N-electron system is given by
H=T+Ve+V,

where

N N

1<i<j<N

and where v is the potential coming from the external forces on the electrons. Here T is the
kinetic energy term, V.. is the repulsive Coulomb potential energy between the electrons,
and V is the potential energy due to external forces. We are ignoring the sizes of the nuclei,
the movements of the nuclei, spin, and relativistic effects.

For example, consider a system of N electrons in a molecule made up of M atoms. Then
v is the attractive Coulomb potential energy arising from the M atomic nuclei, given by

v(F) = i/[: =k (5.2)
|7 — Ry

where ﬁk is the position of the kth nucleus and Zj is the number of protons it has.
The density is defined by

) = WO = [ @y [ Erae [ om0 306 - 0ot ).

Note that [ d®rn(7) = N, and, for any region U, the quantity [, d*rn(7) gives the expected
value of the number of electrons to be found in U.

The basic case is the hydrogen atom, where N = M = Z; = 1. The ground state energy of
the electron is precisely —0.5 Hartrees, the corresponding wavefunction is ¢ (r) = e™"//T,
the density is n(r) = e=?"/m, and the probability density of the electron being at distance
r from the nucleus is 47r?n(r) and it achieves its maximum at precisely » = 1 Bohr radius.

The point of density functional theory is, instead of writing and computing in terms of
1, to write and compute in terms of n. The basic result is the Hohenberg-Kohn Theorem
which says that if n(7) is a ground state density, then no information is lost by doing this.

5.2.1. The Hohenberg—Kohn Theorem. Consider two N-electron systems, with Hamiltoni-
ans H; and H, defined by:

Ho= T4 Vet Vi
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with

and where each vy is continuous except perhaps at some isolated points where it may go
to infinity (the nuclei).

Theorem 3. Suppose each Hamiltonian H,, has at least one normalizable ground state |y),
and these ground states lead to identical densities

n(r) = (1 |(F) Y1) = (2|0 (7)|¢2),
where

(WA (7)) _/d3r1/d3r2.../d?’qu/;,j(Fl,...,FN)Zé(?—ﬁ)z/}k(Fl,...,FN).

Then v; — v9 1S a constant.

Proof. By the variational principle,

(1| H[¢n) < (o] Hi[)s). (5.3)
Since
N
<wk‘vl‘wk> = /dgrl d37‘2 T /dSTN 1/12(7717 s ,FN) Z/d3r 5(77— 7;;)7)1<7:‘)wk(7?17 cee 7FN>
i=1

= /d3r v (7)n(7),
and the right hand side is independent of k, (5.3) simplifies to
Wi|T + Veelthr) < (@a|T + Vee|tha).
In the same way, starting from (1o| Ha|1hs) < (11| Ha|th), we get

<¢2|T + Veeltha) < (T + Vielthr).

Hence both sides are equal and it follows that both |1);) and |¢)) are ground states of both
Hamiltonians. Then the result follows from the Lemma below. 0

Lemma 5.1. If there exists a state |¢) which is an eigenstate of both Hamiltonians H, and
H,, then vy — vy 1S a constant.
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Proof. We have
H1|¢> = F\ly) and ]:-’2|¢> = Es|y),

for some E; and E,. Subtracting, we get

(Vi = Vo — By + Ez)|) =0,

and hence
N
W, PR, Fy) =0, where W(FR, ... 7n) = Y () — va(7)) — By + Ea.
i=1
(5.4)
From this we will conclude that W (7,...,7y) = 0 for all points (71,...,7y). This will

complete the proof because then SN (v, (7)) — v9(7;)) — Ey + By = 0 which implies v, (7) —
v9(7;) is independent of 7. The tricky part here is that we must rule out the possibility that
¥ =0 and W # 0. We will use the fact (due to quantum tunneling/unique continuation)
that [, [¢[* > 0 for any region U.

To carry this out, multiply (5.4) by ¥*(71, ..., 7n) and integrate over an arbitrary region

U to obtain
[ wier=o
U

0= [ WIwP < maxw [ Juf
U u U

which implies maxy W > 0, and similarly

0:/W|¢\2zminw/ ]2,
U v U

which implies mingy W < 0. Hence

for any region U. We have

min W < 0 < max W. (5.5)
U U

Fix any point (7, ..., 7y ), and consider regions U containing that point and getting smaller
and smaller. As the diameter of U goes to zero, both miny W and maxy W converge to
W (7, ...,7n) because W is continuous. Hence, (5.5) becomes

W(r,...,rn) <0< W(r,...,TN),

which implies W (7, ...,7y) = 0. Since the point (7, ...,7y) was arbitrary, it follows that
W = 0 everywhere. O
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5.2.2. The Kohn—Sham method. The Kohn—Sham method computes densities and ener-
gies using a fictitious N-particle non-interacting system, designed so that its ground state
density is the same as the ground state density for the N-particle interacting system H.

More precisely, let vs(7) be the potential (called the Kohn—Sham potential) such that if
£1,...,en are the N lowest energies and ¢, . . ., ¢y corresponding normalized states (called
Kohn—Sham orbitals) for the single particle problem

(=57 +u() i) = col),
then
n() = (1

where this n is the same as the one for the ground state of the problem we are studying. By
the Hohenberg—Kohn theorem, this requirement determines the potential up to an overall
constant.

5.3. Periodic structure and the Bloch transform. In this section we discuss the Bloch
transform for periodic structures.

Let I' € R™ be a lattice of rank n. The dual lattice I'* is defined as
M ={kecR?: k-vec2rZVycT}.

For periodic functions u € C*°(R"/T"), we can define the Fourier series as follows.

1 .
u(k) = —/ u(x)e **dx, kel
IR /T2 Jgnr
We recall the properties of Fourier series.

o If u € C®°(R"/T"), then for any N € N, there exists Cy > 0 such that |u(k)| <
1 )
Cn(1+ |k|)™". In this case, u(z) = R Z a(k)e™ .

kel
e u € C°(R"/T"), we have Plancherel identity |u

Fourier series extends to a unitary operator on L?.

|L2(Rn/l") = ||u||gz(p*). Thus the

Here we just show a simple proof, due to Paul Chernoff, of the Fourier inversion formula
for n = 1 and I' = 277Z case (it easily generalizes). First we note that it suffices to show
u(0) = 0 implies >, . 4(k) = 0. But w(0) = 0 implies u(z) = (" — 1)g(z) for some
g(x) € C>*°(R/2x7Z). Thus

> k) =Y (g(k —1) = g(k)) = 0.

kel™* kel
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Here we used the fact, that ¢ is smooth so that [§(k)| < Cn(1 + |k|)~
Now for any 6 € R™/T™*, let

={ue Li (R"):ulx—~)=e"u(x),Vy €T}

We consider the space L?(R"/T*;H,), that is measurable functions g : R"/T* x R" — C

such that
0.0 =) =g, [ [ jglo.0)Pdedt < o
Rn/T* JRn /T
Now we can state our theorem.

Theorem 4. For u € ./ (R"), let

Bu(, z) — W ;(3_” Ou(z — ). (5.6)

Then B extends to a unitary operator
L*(R™) — L*(R™/T*; Hy).
Moreover, B* = B~ = C where

1
Cyg(z) = R/T[172 /}Rn/r* g9(0, x)do.

Proof. First we check

1Bull7. = Z

|Rn/F | Jor / v e OOz — 5 Yulz — 7)dwdd
IEF n * n

_ Z/ u(z — ) 2dx = / u(x)]?de = [|ul|Z2 gn-
R"/T R™

vyel

Then we check B is invertible with inverse C.

1 .
—iy-0 o — iy (1—6)
BCy(0,x) = ‘R”/F*‘ E e /R;H/F* g(T,x —~y)dr R/ ’;GF: /n/r* g(T,z)e dr

=g(f,x).

CBu(x

IR"/F*I Z/n "ule =) = ufz).

yer /re
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Sometimes we also use the modified Bloch transform
Bu(f,z) = e’ Bu(b, z)
such that
Bu( + k,xz —~) = e**Bu(6, x).
5.4. Bloch—Floquet spectrum: diagonalization of periodic Hamiltonians. Now

suppose we have a differential operator P(z, D) =}, <5 @a(x)D® such that P(z+7, D) =
P(z,D) for any v € I'. Then

BP(xz,D)B*v(0,z) = P(z, D,)v(d,x)
and
BP(z, D)B*v(0,z) = ¢ P(x, D,)e (0, x) = P(x, D, — 0)v(6, z).
Example 8. For P = D,, we have BPB* = D, — 6 acts on H'(R/27Z). The spectrum is
give by —0 + Z.
Let U : L*(R) — L*(R/Z; (*(Z)),

Uu(f,m) Bu 0,x) e~ M.
©, \/ 2T /
If we let Py = UPU* = m — 0, then

Spec(P U Spec(Pp) = R.

6ER /7.
Recall for s € R, the Sobolev space H*(R"/I") is defined as
HR"/T)={ue S :ulx —v) =u(zx), Vy €T, and Z (14 k[P a(k)|* < oo}

kel

The sum in the definition of H® defines the square of the norm in H?®.
We leave an exercise for the reader to check that for s € N,

H*(R™/T) = {u € L*(R"/T) : 0%u € L* V|a| < s},

H*(R")T) = {u e L*(R"/T) : APu € L* Vp < s}.

We recall the elliptic regularity lemma.

Lemma 5.2. Let P = —A + ngl ao(x) DS be a period second order differential operator
on R"/I", then there exists C' > 0 such that for any u € C*(R"/I),

lullgz < CllPullg2 + Cllullz2,  L* = LAR"/T), H* = H*(R"/T).
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Proof. First,

1 1
Pl + 5llulie 2 [(Puw)l = -

Auudzr — / ao () DSuudx
R"/T R /T Z

laf<1

1
> / | Du|?dx — —/ | Dul*dz — Ol|ul|3.
RPT 2 Jroyr
1
> 51 Dullzz = Cllulza.
Moreover, we also have
|Pullz > [|AulZ: = C||Dullz2 = Cllul|Z..
Thus
lullaz = [[Aullzz + [lull7e < [[Pullfz + Cl[Dullz: + Cllull72
< (C+ D[ Pullz: +2C(C + 1)]lullz:,

which concludes the proof. O

Now suppose the periodic elliptic operator in Lemma 5.2 gives self-adjoint operators
P(x,D, —0): H*(R"/T) — L*(R"/T'), then

(P(x,D, — 0) + i)' : LA(R"/T) — H*(R"/T)

is compact, and thus has discrete spectrum, with eigenvalues converging to 0. So it is easy
to see

SpeCLQ(R”/F)(P(xa D, —0)) = {E;(9) go‘io
where
Eo(0) < Ea(0) < -
are real eigenvalues, going to oo as j — oo. Using Bloch transform on sees

Speczgny(P) = U Speczgnry(P(z, Dy — 0)) = U {E;(0)}-
9ER™ /T* R /T*

Example 9. Let P = —A and ' = (27Z)". Then Py = (D, — 0)?> and Spec(P)) =
{(—=6 +m)?: m € Z"}. The picture for the bands is shown in Picture 6.

Let us look at two more interesting one dimensional examples.
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One dimension Two dimensions
T

~—~— T
0.5 \y\\ _—T 05
0 \r 0

-0.5

FIGURE 6. The band structure for the free Laplacian with I' = (27Z)",
n = 1,2. For # in the fundamental domain of R"/T*, T'* = Z2, we plot
lp — 0], p € Z™. That gives 0 < F1(0) < E5(f) < ---. Note that § — E;(6)
are not smooth because of the lack of separation between the bands.
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Example 10. The Kronig-Penney model is an explicitly solvable model of a one dimen-
sional periodic system (see [Wo78]| for a brief account):

P:=D2+) ¢z —m). (5.7)

We then consider Bloch eigenfunctions and eigenvalues as §5.4:
Pw(f,z) = E(@)w(6,z), wd,z—1)=c%w(d,z).
They are explicitly given as follows:
w(f,z) = e u0,x), wd,z) = Z ui (0,2 —m),
mez
where
uy (0, ) = ¢1(0) (e sina(B)x + ) sin(a(0)(1 — x))) 10,1

) (5.8)
gsin a(0) + 2a(0) cos a(f) = 2a(f) cosf, Tma(h) >0, E(0) = a(h)?

where ¢ (0) is the normalization constant guaranteeing ||u; (6, ®)|| 2r/z) = 1. The transce-
dental equation for «(€) in (5.8) has a discrete set of solutions (with imaginary values of «
occurring when ¢ is negative) — see Figure 7. We see that u;(6,0) = e sin () = u;(0,1)
which means that

w(z +m,0) =u(x,0), u(z,0+2rl) = u(z,0), (,0cZ,
u(e,0) € C(R;C)N HL (R;C), eu(z, o) € C°(R;C).

loc

(5.9)

The discontinuities of x — d,u(z, ) are needed to produce the J-function potential:

P(0)u(0,z) := <(Dz —0)* + Z qoo(x — m)) u(f,z) = E(0)u(0, ). (5.10)

meZ

The next example uses perturbation theory to see band splitting when a periodic poten-
tial is turned on.

Example 11. Let n = 1, € R, P\, = D? + Acosz. We are interested in the spectrum
of Py when A > 0. We will consider it as a perturbation problem and use the Grushin
problem method to study the perturbation. See Section 2.6 for more details.

Let P} = (D, — 0)* + Acosz. We will consider the following Grushin problem.

PAz) = (PO;I : }E—) . H(R"/T) x C* — L*(R"/T) x C. (5.11)
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Bands for the Kronig-Penney potential with q =20

500
N \/_
300 -
200 I T
100 £
0
3 -2 -1 0 1 2 3

FIGURE 7. The first 7 bands for (5.7) with ¢ = 10. They are computed
using the transcendental equation in (5.8).

First we consider the case when 2 is a simple eigenvalue with eigenfunction ug (||ugl|z2 = 1).
Then as in Proposition 2.14, we may take £ = 1 and
Riu = (u,up), R_u_ =u_ump.

When A\ = 0, this gives a well-posed Grushin problem. Let {u;}32, be an orthonormal basis
such that Pu; = zju;, then

1
E(z)v = Z o Z(v, (T E. (z)vy = vyup,
j#0 ™7
E_(z)v = (v, ug)uo, E_(2)vy = (2 — 2z0)vy.

Now we consider a perturbation by () = cosx, via the Grushin problem
-1
(P—z+)\Q R) _ (Ei E})
Ry 0 EY B
By Proposition 2.12 we have

B (z)=2—2+ Y (-N'E_Q(EQ)*'E,. (5.12)

So z(A) = 20 + MQuo, ug) + O(N\?). As a corollary, we get the Feynman—Hellmann formula
2'(0) = (Quo, up).

It also has a direct proof assuming z(\) is smooth in A: first write down the eigenvalue
equation PAu? = z(\)u?, then differentiate on . We get

QUO + PUO = Z/<O>U0 + Zo’do.
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Moreover, (P, ug) = (tg, Pug) = zo{tg, ug). Pairing with ug gives
20 = (QUO, U0>-

Now we want to study how the bands of Py = (D, — )% + Xcos x split. There are two
cases where we have a double eigenvalue for A = 0:

e 0 =0, my =m, my=—m, where m € N, , P;=0 has eigenvalue zy = m?;

e =1 m=m, my=—-m+1, me Ny, P} has eigenvalue (m — 1/2)2.

In the first case, we consider the Grushin problem (5.11) with k = 2. Let ¢;(z) = —t=¢"
be eigenfunctions of D,, we let

U__ (P
U—+ U+

Ru_ =u__e ,+u_te,, Riu= ((u, 6_m>) :

(u, em)

and

This gives a well-posed Grushin problem with - = R,, E, = R_, and

By Proposition 2.12 we get

= (T )
i ;/\% <<€—m7Q(EQ) €—m) 0 )

0 (em, QUEQ)* lem)
)\Qm m—1
Sa jzl;lﬂ((j 02— 2)7 ((1’ é) O,

Note for z € R,

(e-m, QUEQ)™ o) = (=, Q(BEQ)*Te_)
= <€m’Q(EQ>2k_lm> = <€mu Q(EQ)Zk_lem>‘

Thus we will see a splitting of the bands of size ~ A>™around z, = m?.
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A=0.5 A=1.5
6 6
4 4
2 2
0 0
-2 -2
-0.5 0 0.5 -0.5 0 0.5
A=25 A=3.5

4t 4/\

2 F
2
0
0 L
2ot
) - . ‘ .
-0.5 0 0.5 -0.5 0 0.5

FIGURE 8. The band structure for P = D2+ cosz: we show F;(6), —0.5 <
0 < 0.5 for j < 5. Despite appearances there are gaps between all bands as
soon as A > (0. See the movie for an animated version with 0 < \ < 2.

In the second case, we still have & = 2, but eigenfunctions become e_,,,1 and e,,, so

_ _ <u7 6—m-i—l>
Ru =u__e 1 +u_re, Riu= ( wen) )

This still gives a well-posed Grushin problem with £- = R,, ., = R_, and

2= (T ).


https://math.berkeley.edu/~zworski/cos_movie.mp4
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By Proposition 2.12 we get
6.\ - z—(—m+1—0)2 0
E_+(Z) - ( 0 P (m _ 9)2

. <67m 17Q(EQ)2k_1€fm 1> 0
*Z“( T Y QB0 )

2m— m—1
+ ;T_i [T (G-07-2)" ((1) (1)) + O,
j=—m+42
Note for z € R,
(i, QUEQ)* e pir) = (€& iy, “Q(EQ)TTe_r)
— (e QUEQI* e e 1) = (e QUEQ) o).

So we see a splitting of bands of size ~ \?™~! around 2y = (m — 1/2)2. In particular, when

E*(2) = (2_092 L (10_ 0)2) +% (2 é) +O(N).

m = 1, we have

1, A

See Figure 8 for the splitting of the bands (with a movie).

5.5. Density of states for periodic Hamiltonians. In §4.2 we provided motivating
discussion of the density of states and considered it for constant magnetic field without
an external potential. We now use the the explicit diagonalization given by the Bloch
transform to describe it in terms of Bloch-Floquet spectrum. We recall,

n n(mn /T* 1 —in
BL2<R)—>L(R /F,Ha), UHer ’YGU(.%'—’)/)
yerl’

and
U:L"(R"/T*;Hy) — L™"(R"/T*1"(N)), Uu(f, k)= (u(0,e), (0, ®))n,

where ¢ (0, z) is the k-th eigenfunction of Py : Hy — He. That gives UBP(UB)*v(0, k) =
E(0)v(0, k) and hence

UBF(P)(UB) (0, k) = f(E(6))v(0, k).
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So
F(Pyw(z) = B (f(Ex(0))pk(0, 2)(Buw(0, e), or(0, ®))2,)

1 —yy — Ner (O )
] L, FEEata) [y =)@ s

= o L, B0 [ e = [ Kty

R

where
1 -
K(z,y) = W;/n/w F(E(0))or(0, 7)0n (0, y)do.

Note K (z,z) is I-periodic, and thus the regularized trace (4.3) is given by
1
IR™/T| Jgn 1

= o T E(O))d0 = [ £0vpix

where the last integral is meant as distributional pairing and it defines the density of states,
p € (R). It is given by

trf(P) K(x,x)dx

1
= E(0 0,x)|"dxdd
R TTRTT 2 o o TR0,

' 1 d
A= Gy zk: /Rn/r* o= BN = Gy gy (zk: /w><A dg)

In particular, if Ex(0) < Ao < En41(0) for all € R"/T™*, then

Ao N
/_(,op“)dA = R/

gives the number of of states per unit volume in agreement with the discussion in §4.2.

We also note that if A is a regular value of E(6), we can also write

1 s
p(A) = W zk:/Ek(e):)\ W

Example 12. We can compute the density of states for the Kronig-Penney Hamiltonian
in Example 10. That amounts to computing df/dE inside the spectrum and for that we
can use the implicit formula (5.8):
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FIGURE 9. The plot of the density of states (up to a multiplicative constant)
for the Konig-Penney potential. We see the singularities at the edges of the
first 4 bands — see Figure 7.

The spectral bands are defined by the condition that

1< qsm\/E

< —i—COS\/ESl,
2/E

(see Figure 7) in which case,

= 10~ asinVEIVE +cosVE)) L ((a-+ 28 sin VE/ B} — qeos VE/E).

This is shown in Figure 9.
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5.6. Isolated bands for time reversible operators: trivial topology. We first study
the case when there is an isolated band, that is let I, = {E;(6) : § € R"/T*}, we assume

Ex(0) is a simple eigenvalue of P on Hy,

5.13
IyN1; = @ for any j # k. ( )

Let T1(A) : Ho — ker(Py, — Ex(0)) = C and II(0) = e®°II(f)e ¢ . LX(R"/T*) —
ker(P(z, D, — 0) — E(0)), we claim
Proposition 5.3.

1(0) = = ]{(z — Ply,) tdz (5.14)

- 2mi [
where v is a positively oriented closed contour separating Ij, with other bands.

Proof. For two functions f, g, define

f®g:: f<U,g>

Then the spectral theorem shows that

(= Phu) ' =Y 6,(.0) i(@); 0

This implies that

1

i — Ply,) tdz = .
o 7(Z l1,) dz = @1 @ Qg

O
Remark 3. In general, if we have any operator P and a simple closed curve 7 such that
+ N Spec(P) = &, then

1
M=— ¢(z—P)'dz

211 .
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is a projection. We can take another curve 4 which is homotopic to 7 inside C \ Spec(P),
and ~y inside the interior of 4. Then

m — ﬁ 7{ j(l{(z = P) (¢ - P)ldedc
- o 75 74 (€= 2) (== P = (¢ — P)\)dedC

_ (2712)2 ]{ }'{“ ~ )Yz — P)dzdC
L (z — P) 'dzd¢

2w y
=TI

If P is self-adjoint, then by functional calculus, II is the spectral projector to the spectrum
inside 7. This is because

1 1, | 1, xisinside v,
o) =5 fe == {

2w x is outside 7.
We can think of II as the spectral projector even for non-self-adjoint operators.
The family I1(#) we defined is analytic in 6.
Lemma 5.4. The map
0 — T1(0) : R"/T* — B(Hy)

1s a real analytic family of operators, that is there exists € > 0 such that this map extends
to a holomorphic map

R™/T* +iB(0,¢) 3 6 — T1(6).

Proof. 1t suffices to check for

- 1
o) = — — P(x,D, —0))"'do
)= g3 § = Pl De = 0) 0,
whose holomorphicity is clear from the definition. O

Remark 4. Here we are talking about the holomorphicity in a Banach space, so we recall
the following definition.

Suppose we have two Hilbert spaces Hy, Hs, and a map 6 — B(0) from C* — B(Hy, Hs).
Then we say B(f) is holomorphic if the following equivalent conditions are satisfied.

e For any ¢ € Hy,1 € Hy, the map 0 — (B(0)p, ) is holomorphic;
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e The derivative in the weak sense g, B(6) = 0;
. 0B — lim B(0 + ze;) — B(0)
(99j z—0 A

The reader can check the equivalence using uniform boundedness principle.

exists in the norm topology.

The eigenspace Hy thus defines a complex line bundle over the torus R"/T*. We refer to
Section 2.7 for basic properties of line bundles.

The following theorem tells us when there is time reversal symmetry, the line bundle is
actually trivial.

Theorem 5. Suppose P(x,D)u = P(z, D)u, then there exists ¢ € C°(R"/I'*;Hy) such
that

o Pp(0) = Ex(0)p(0), and ||p(0)|| = 1, that is p(0) is a normalized eigenvector of P
with eigenvalue Ey(0).

o p(=0) = ().

e [n addition, 0 — ¢(0) extends to a holomorphic map on R™/T™* +iB(0,¢)

Remark 5. In other words, this theorem shows that if a line bundle L over a torus satisfies
L* = L, then L has to be trivial. This reflects the fact that H2(R"/I™*;Z) = AT is torsion-
free. We will give an elementary proof following the proof of [HS89, Lemma 1.1].

Proof. We first note that is that if p(6) € Hy then p(0) € H_p. Simplicity of Ei(f) and
the property Pu = Pu show that

Ek(Q) = Ek(—Q), (,O(Q) € ker(P|H_9 — Ek(g))

Using this we will proceed by induction on the dimension n to show there is a continuous

section. Then we will regularize it to get a real analytic section. Without loss of generality,
we may assume [' = (27Z)" and I'* = Z".
Step 1: Let n = 1. By Proposition 2.16, we can choose a continuous section 1;(9) such
that Py(0) = E,(0)¢(0) and [[¢(0)|| = 1 for 0 < 0 < 1/2. We define () = )(—0)
for —1/2 < 6 < 0. One can check this defines a section except we want to glue at
0 =1/2 and 0 = —1/2. Since ||(—1/2)|| = ||[v(1/2)]| = 1, there exists & € R such that
(—1/2) = e")(1/2). We then let

Y(6) = e OT2(g),
so that ¥ (1/2) =1 (—1/2). It glues to a global section on R/Z.

Step 2: By induction hypothesis, we may assume there exists a continuous section ¢’(¢’)
on R"™1/Z"=1 x {0} such that ¢/(¢") = ¢/(—6'). Moreover, Py/(0") = E.(0',0)y'(0') and
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19/ (6")|| = 1. By Proposition 2.16, there exists a continuous extension to this section
\11(9) : (Rnil/znil)gl X [0, 1/2]9n — kerHe(P — Ek(ﬁ)), \I’(Ql, O) = w’(é”)

We now define ¥ on R"~!/Z"~1 x [-1/2,0] by ¥(—0) = ¥(6), and we want ¥(0',1/2) =
U(#',—1/2) as before. In general one only has
W0, 1/2) = w0, —-1/2)
where a(6’) € R such that
a0 +v)=a(@) mod27Z, ~e€Z"

Taking the conjugate we have

U(—0',—1/2) = e Oy (—¢' 1/2)
or equivalently

UG, —1/2) = e w0 1/2).
Thus e!?) = (=) and

a(f) = a(—0) mod 27Z.

Since « is continuous at 0, we conclude «(¢') = a(—0"). Since

1 1 1
(6] —§€j+€j = §€j = _56]' ,

we conclude a(f' +v) = «(#') for v € Z"~'. Now define
w(g) — e—i(9n+1/2)a(9’)qj(9)’
then
2/)(6/7 1/2) = e*ia(9')\p(6/’ 1/2) = \Ij<9/> _1/2) = w<9/7 _1/2)
Thus 1 gives a continuous global section over R™/Z™.

Step 3: Having obtained a continuous section 9 : R/ — C*°(R™) N Hy, we want to reg-
ularlize it to get a real analytic section. Let x(#) = (27)"/2¢=%/2 and x.(0) = e "x(0/¢),
we define

(0, ) = / o0 = )OO0 2)de
One checks

V(0,0 —7) = / Xe(0 — 0T =00 2 — ~)df = 704 (0, x),



PDE METHODS IN CONDENSED MATTER PHYSICS 53

0 1.(0,-) € Hg. Now 1.(6, ) is a real analytic section and 1.(6,-) — 1(6) in L? norm as
e — 0. Taking € > 0 small enough, we define
#o(0)
() = - 5
<f]R”/F* @O(Q)WO(_G)dl)

By Lemma 5.4, p(0) gives a real analytic section satisfying all the required properties. [

wo(0) = T1(6)1(0).

5.7. Wannier functions and spectral localization to an isolated band. Given the
global section in Theorem 5, we see that

(BILC)LA(R™ T Hy) = {u(8, ) = f(0)p(0, ) : f e L*(R"/T")}.
Thus

m ) = { [ IR CEORIE p(E /) |

Expanding f(6) into Fourier series, we obtain f(0) = >__p a,e? and
1
p—— f(O)(0,-)db = Z Ay (6)
BT Ja
where
1
wo(x) (0, x)db (5.15)

RIS
and ¢, () = wo(x — ). We conclude

Proposition 5.5. {¢,(z) : v € I'} gives an orthonormal basis of I, L*(R™). This basis
gives an isomorphism 11, L*(R™) = (*(T).

One can also check those properties directly. The basis ., are called Wannier functions.

Theorem 5 has the following corollary about exponential decay of Wannier functions.

Proposition 5.6. There exists a constant C' > 0 such that for any o € N there is Cy > 0
with
10%po(z)| < Cpe™l21/C, (5.16)

Proof. Recall
1

R iv-0
R S e (0, x)dob.

oz —7)
Using analyticity we can deform the contour from R" /T to R" /T™* +-ivy/|v|e, so we conclude
that @o(z —v) = O(e~1l). These estimates are uniform for z in the fundamental domain
of I" and (5.16) follows. O
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6. THE TIGHT BINDING MODEL

6.1. Motivation and examples.
6.2. Semiclassical derivation in dimension one.

6.3. Higher dimensional examples.

7. TOPOLOGY FOR BAND STRUCTURES

7.1. Line bundles through an example: the Bloch sphere. In this section we intro-
duce the concept of a line bundle over a surface, working with the specific example over
2-dimensional sphere §? = {z € R?® : |z| = 1}.

7.1.1. Definition of a line bundle. First we recall the definition in Section 2.7 specialized
to line bundles.

Definition 7.1. Let L, X be two topological spaces, and 7 : L — X be a continuous map.
Then 7 : L — X 1is called a (continuous) complex line bundle if

o For any v € X, n=1(x) is a 1-dimensional vector space over C;
o There is an open covering {U;} of X such that there is a continuous map h; :
7w HU;) = U; x C which is a linear isomorphism on each fiber.

U; LUJ'X(C

m(U;)
L

J

If L, X are smooth manifolds, ™ and h; are all smooth maps, then m: L — X is called a
smooth complex line bundle.

If L, X are complex manifolds, ™ and h; are holomorphic maps, then m: L — X is called
a holomorphic line bundle.

If U;NU; # @, then hiOhj_l :UiNU; xC — U;NU; x Cis given by (z,\) — (x, g;;(z)N).
The maps g;; : U; N U; — C* are called transition functions. Transitions function satisfy
the following compatibility properties.

* gilz) = 1;
o gij(2)g;(x) = 1;
® 9ij(2) g (x)gri(x) = 1.
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Conversely, if we are given a family of transition functions satisfying those compatibility
properties, then we can recover the line bundle. The line bundle being smooth/holomorphic
is equivalent to the transition functions being smooth/holomorphic.

We also define sections of a line bundle, as a generalization of functions.

Definition 7.2. Let m : L — X be a line bundle, a section is a map s : X — L such
that m o s = idx. It is called a continuous (smooth, holomorphic) section if s : X — L
is continuous (smooth, holomorphic). The family of continuous (smooth, holomorphic)

sections is denoted C'(X; L) (C>*(X; L), O(X;L)).

Using local charts X = |JUj, a section can also be described by functions s; : U; — C
such that gijS; = Si.

7.1.2. The Bloch sphere. A concrete example of a line bundle, will be a bundle over S?
given by an eigenspace of a self-adjoint family of operators parametrized by S?. As we
will see it is equivalent to the tautological line bundle over the projective space and, after
taking unit vectors, to the Hopf fibration of S3.

The operator is defined using the Pauli matrices:

(01 (0 _(r 0
" \10/)7 "2 \=i o) " \o —1)°

From them we build a family of operators parameterized by z € S%:
H({L’):Zxo‘: xTs3 $1+Z.T2 (7 1)
; I T, — i[EQ —T3 ' ’

It is clear that H(z) = H(z)* : C* — C? (as Hilbert space equipped with the standard
inner product) and it is easy to check that Spec(H (z)) = {£1}.

On S? we use two coordinate charts given by stereographic projections: let NP be the
“north pole” given by 3 = 1 and SP the “south pole” | 3 = —1. We then have

UO::SQ\NPBtz(x):MGC

and
= 82 Poyw— = = —yl in e C.
U, \ S Y w(y) w [

The transition map between them is w = 2.
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We are interested in the line bundle given by V, = ker(H (z) — 1) C C?, considered as a
subbundle of the rank 2 trivial bundle S? x C?. We have

V;C—(CG), v # NP, VNp_C(é).

The sphere S? can be identified with CP' defined as the set of complex lines inside C2.
In projective coordinates,

(C]PIZ{[ZQiZl]IZo#OOY Zl%O,ZjE(C}.

Here the projective coordinate [z : 2] means [2g : 21] = [2{ : 2] if and only if there exists
A € C* such that (zg,21) = A(2), 27). In local coordinates, we can use

, z=21/%, 20 #0;
(70 21] '_}{ z=20/21, 21 #0.

The line bundle V is called the tautological line bundle because its fiber is nothing but the
line that [z : 2] represents in CP'. The trivialization map is given by projection to the
second /first coordinate:

ho([Z() : Zl]) tA (Zl) — )\20, 20 7é 0,

20

h1<[20 : Zl]) A (Zl) — )\Zl, 21 7é 0,

20

Thus g1 0 g5 ' : Azo = Az and the transition function gi0([20 : 21]) = 21/20 = 2z on Uy N U}.
This indeed gives V' a holomorphic line bundle structure.

Sections of V' is then given by sg,s; : C — C such that s1(1/2) = g10(2)s0(2) = 2s0(2)
for z € C*.

Example 13. While V' has a lot of smooth sections, the only holomorphic section of it is
0. This is because if we expand

o0 o
So(z) = Zakzk, s1(w) = Z b,
k=0 1=0

then s1(1/2) = zs¢(z) implies that
apz + a2 4+ =by+ bz 4

that is ap = b; = 0 for any k,[l. There are other holomorphic line bundles with transition
function gio(2) = 27%, that is s,(1/2) = 27%s¢(2) (they are called O(k)-bundles). Only
when k > 0, there exists nonzero holomorphic sections.
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FIGURE 10. Part of the foliation (7.2) with R? ~ S3\ NP folliated by circles
made out of linked key rings. See also an animated version.

Remark 6. The bundle V is intimately related to the Hopf fibration of S3. For that we
consider S* = {(29,21) € C*: |2]? + |21|* = 1} € C?, 1 : V,, < C? the inclusion and

St~ VNS4 st L opl ~ S% f(zo,21) = [20: 21], for=id (7.2)

The circles V, N'S? foliate the sphere S? in a nontrivial way illustrated in Figure 10.

7.1.3. Connections and curvature. Now we define connections, which are generalizations of
the exterior derivative.


https://www.youtube.com/watch?v=AKotMPGFJYk
https://en.wikipedia.org/wiki/Hopf_fibration
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Definition 7.3. Let L — X be a smooth line bundle, a connection D on L is a linear map
D:C®X;L) = C®X; LT X)
such that D(fs) = fDs+ s®df for any f € C*(X) and s € C*°(X;L).
In local coordinates, a section s is represented by a family of functions s; : U; — C such

that s;(x) = g;;(z)s;(z). Suppose the section Ds is represented by D;s;, then by Leibniz
rule we may assume

Djsi(x) = ds;(x) + 0;(x)s;(x), 0; € C=(U; T°X).
The compatibility condition is
Gij(ds; +0;s5) = ds; + 6,5 = d(gi;5;) + 0:9i55; = gij(ds; + 0;5;) + s;dg;;,
that is 6, = 0, + glgldgij. A family of {6;} satisfying the compatibility condition will give
a connection on L.
Given a connection D, we can define its curvature:

Proposition 7.4. In local coordinates, we define Oy, = db;, then © gives a globally
defined closed 2-form on X.

Proof. 1t is clear that it is closed. We only need to check it is the compatible on U; N U;:
OJ

© is called the curvature form of the connection. It will depend on the choice of connec-
tion, but its cohomology class does not.

Proposition 7.5. Suppose D1, Dy are two connections on L, ©1, 04 are two corresponding
curvature forms. Then there exists n € C®(X;T*X) such that ©, = Oy + dn.

Proof. On U; N U;, ©1 — Oy = d(6) — 02). We claim 6; — 6, defines a global 1-form 7 on
X. It suffices to check on U; N U; 64; — 6y = 01 — 655, but this follows from 6;; — 0;; =
Oz — b2 = gi;ldgz‘j O

As a corollary, when X is a 2-dimensional compact smooth manifold with a smooth line
bundle L, one can define a number
qmzi/a (7.3)
2 X
This is called the Chern number of the line bundle and is independent of the choice of the
connection, thus a topological invariant. We will prove it is an integer.
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Example 14. Let us come back to our example of the Bloch sphere. Recall we have the
tautological line bundle V' given by ker(H (x) —1) on the sphere S%. Denote i : V' — S? x C?
the inclusion to trivial bundle. For a section s € C*(S? V), i o s gives a smooth function
S? — C such that i o s(x) € ker(H(x) — 1). We can define a connection on V' via

Ds(x) =TI,(d(i o s)) (7.4)

where II, is the orthogonal projection from C? to V, = ker(H (z) — 1) under the standard
Hermitian inner product on C2. It is easy to check it is a connection:

D(fs)(x) =T,(d(fios)) =, (ios®df + fd(ios)) =s®df + fDs.

We compute the curvature of this connection using a different basis (that is a different
trivialization). Let

1 z 1 1

o) =gy (1) 0= g (o)

then H(z)uj(x) = u;(z) and |uj(x)| = 1. We have
d(sju;) = ujds; + s;du,

and

(d(sju;)) = (ujds; + sjdu;, uj)u; = ujds; + s;{duj, u;)u;.
So Dj;s; = ds; + s;{du;, u;).

We should note that the definition (7.4) does not rely on the special structure of V' but

only on the fact that we have an inclusion of V' in the trivial bundle S x C?. If we have

an inclusion in a more general trivial bundle S? x H where H is a Hilbert space, we can
still use the definition (7.4).

This is a special case of a Hermitian connection the definition of which we now recall:

Definition 7.6. A Hermitian metric on a line bundle 7 : L — X is a smooth family of
Hermitian metrics | - |, on each fiber 7=1(z).

In local coordinates, this can be written as |v]2 = h;j(x)|v|?. The compatibility condition
gives

hj($)|5j($)|2 = hz’|3i($>|2 = hi|gz’j($)|2|3j($)|2,

that is h; = h;|gi;|*>. There are always many Hermitian structures on a line bundle by a
partition of unity argument.
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Definition 7.7. Let D be a connection on the line bundle L — X . D is called a Hermitian
connection if

d((s(z), s (2))z) = (Ds(x), ' (x)), + (s(x), Ds'(x)),, Vs,s € C°(X;L).

Equivalently, |s(x)|, is preserved under the parallel transport induced by D (parallel trans-
port is defined via the equation Ds(t)(%(t)) =0).

Let us choose a local frame wu; such that |u;| = 1, then
d(s;, ;) = (ds;, s}) + <8j,d5;>
and
(Dsj, 85) + (85, Dss) = (ds; + 055, 85) + (s, ds + 0;5%).
Thus D being Hermitian means (0;s;, s7) = (s;,0;s}), that is ; = —0;.
If L is a holomorphic line bundle, we say D is compatible with the holomorphic structure

if D%! = 9. There is a unique Hermitian connection on L compatible with the holomorphic
structure, called the Chern connection.

Given a connection D on L and a curve y(¢) on X, one can define the parallel transport
of s via the equation Ds(t)(¥(t)) = 0. Suppose D is Hermitian and ~ is closed, that is
7v(0) = v(1) = 2 € X, then |s(0)|, = |s(1)],, and there exists # € R such that s(1) = ¢*s(0).
The factor e? is called the holonomy of the connection D on the curve 7, denoted by
holp(7y). If v is a simple closed curve inside a single chart U;, then the equation

s5(t) + 0;((t))s;(t) = 0

can be solved explicitly and gives

holp(2) = xp - / 6,) = (- [ ©) (75)

where (2 is a region enclosed by ~. The last term on the right is independent of the choice
of charts and one can verify this formula works even if 7 is not contained in a single chart
U; by a subdivision argument.

Exercise 7.8. Let us consider the Hermitian connection defined in (7.4). On can compute
on Uy

1
0 = (dug,ug) = 5 (zdz — zdz)

(1 +12%)

and
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sin et

For example, on the circle given by z(t) = (0 < ¢ <), we can compute

1 —cosep
dz N\ dz
holp(y) = exp (/ —>
|z|>sin ¢/ (1—cos @) (]‘ + |Z‘2)2

> d
= exp (27Ti/ ° 2) = exp(mi(1l — cos )).

in? o/ (1—cos )2 (1 + 8)

Now we prove the Chern number is an integer.

Theorem 6. (L) defined in (7.3) is an integer.
Proof. Let x € X. Choose small neighbourhoods 2, converging to x and v = 92, then

wt-on(- ) -en([ 2)

Thus exp ([, ©) =1 and [, © € 2miZ. O

If we are on the sphere S?, there is another simple proof: notice for the equator -,

/6):/90—91:/gl_oldgm:/dloggloEQMZ.
X 5 o v

For the tautological line bundle V' with connection © defined in (7.4), we have

/ / dz/\dz: 271,
S2 ‘Z’

7.2. Line bundles over tori. Let I' C R™ be a lattice and X = R"/I" be an n-dimensional
torus. We are interested in line bundles over the torus.

Thus ¢;(V) = —1.

First we recall the notion of pullback. Let f : Y — X be a continuous map, then one
can define the pullback bundle f*L to be

f"L=Y xx L={(y,v) €Y x L: f(y) =n(v)}.

Suppose {U;} is a covering of X such that 7=1(U;) is trivial, then {f~*(U;)} is a cov-
ering of Y such that f*L|s-1(y, is trivial. So f*L is a line bundle over Y. When f is
smooth /holomorphic, one can check f*L is smooth/holomorphic.

When we look at a line bundle L — X over the torus X = R"/T", there is a natural
quotient map p : R® — R"/T". By Corollary 2.18, p*L — R™ must be a trivial line bundle,
so we identify p*L with R” x C. Now I' has a natural action on p*L by

’7'(y7’0) = (y+’7av>7
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lifting the action on the base, that is
I'x p*L —— p*L
r iY S }l/
L is exactly the quotient bundle under the I'-action
L=A{(y,A\) eY xL:ply) =n()}/(y+7,v)~ (y,v)) =p"L/T".
Since we identify p*L with the trivial bundle R™ x C, the action of [ can be written as
Y- (2,0) = (247 ey (@)). (7.6)

Those e, (x)’s are called multipliers. Because (y1 +72) - (z,A) =71 - (72 - (2, A)), they must
satisfy

671-1—72(1‘) = €y (‘T + '72)672 (ZL“), GO(LE) = 1. (77)
We can then describe sections of L as follows.
C®(X;L) ={ue C*R") :ulz+v) = e (x)u(x), Vy € '} (7.8)

Since the choice of trivialization p*L — R™ x C is not unique, if we change e, (z) to
&, (z) = eg(zﬂ)ev(x)e—g(m),
we will get an isomorphic line bundle L. Indeed, the family of line bundles over X up to
isomorphism is given by
{er(z) ey (@) = €y (T + 12)es,(2) } ey (2) ~ € (2) = eg(HV)ev(m)e_g(I)-

Let L — X = R"/I" be a smooth line bundle, and h be a Hermitian metric on L. h then
induces a metric on p*L = R™ x C such that

h(x) = hiz +7)ley (2)]*. (7.9)
Conversely, any smooth function h(z) : R® — R, satisfying the above condition defines a
Hermitian metric on L.

Similarly, connection D on L induces a connection on the pullback bundle p*L = R" x C
such that

(p*D)p*s = p"(Ds).
Suppose (p*D)s = ds + 0s for some 0 € C*°(R";T*R™). Then 0 has to satisfy for s €
C=(X; L)
d(ey(x)s(x)) + 0(z + v)ey(z)s(x) = ds(z +7) + 0(x + 7)s(x + )
= ey(x)(ds(x) + 0(x)s(x)),
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that is,

Bla +7) = () — e, ()" de, (2).

The curvature is given by © = df. When n = 2, let Q = {sy; +t7, : 0 < s,¢t < 1} be the
fundamental domain one can check that the Chern number is an integer directly in this

case. We use (7.7) to see that
e / 0= [ @ -0t - [ 0w 0+ )
X o0 [0,1]71 [0,1]v2
= / (€ys (t71) "M deny (t11) — (€4, (t2) " dey, (t92)) (7.10)
0

= log e, (71) — log e, (0) — log €5, (72) + log e, (0)
= log ey,1++,(0) —log e, 14,(0) =0 mod 27iZ.

We can simplify the multipliers a bit when n = 2.

Proposition 7.9. If ' = Zy, & Zrs, we can always choose e, (x) = 1.

Proof. Recall a (complex) line bundle over the circle S* is always trivial, thus by an easy
adaptation Proposition 2.16, any (complex) line bundle over S x R is also trivial. Consider
the projection p : R?/y,Z — X = R?/T". The pullback p*L must be a trivial line bundle.
As before, there is a natural action of ¥9Z on p*L such that L = p*L/v2Z. Suppose in a
trivialization p*L = R?/v,Z x C, the action is given by
nys - (:Ea )‘) - (Z’ + an?aen’yz(x)A)‘

Then we can describe L by multipliers e, (z) and e,, (z) = 1. O
Remark 7. In higher dimensions, it is not true that any line bundle over (R/Z)* x R! is
trivial. However, one can still play a similar game by choosing the generators carefully.

There is also an analogous version in holomorphic case. For more details, see Griffiths—
Harris [GH14, Section 2.6].

As an application, we prove that if ¢;(L) = 0 then L is trivial (Note this is not true in
the holomorphic setting).

Proposition 7.10. Let n =2, I' = yZ ® yZ. If c;(L) = 0, then L is trivial.

Proof. By Proposition 7.9, we may assume e., () = 1. Then ¢;(L) = 0 implies that

/0 ey, (ty1) Mdes, (tyr) = 0. (7.11)
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Since d(e,,(x) 'de,(x)) = 0, we can find f € C*(R?) such that df = e, (z) 'de,,(z).
Modifying f by a constant gives e.,(x) = exp(f(x)). Since
€2 (:E +m) = €2 (z + 71)671 (.l’) = e'Yl+'72(I) = €n ("E + '72)672 (ZE) = Ey (),
ey, () is periodic in vy and f(z + ) = f(x) + 2mik for some k € Z. But (7.11) implies
k=0 and f(z) is v, periodic. Now we claim we can find g € C*(R?/+,Z) such that
9(x +72) — g(x) = f(2)

Let x(z) € C*°(R?*/vZ) be a cutoff function such that supp x C {z = a1y + a7y : as >
—1} and x(z) =1 on {z = a171 + azy2 : ag > 0}. Let

g(x) =Y x(x—nm) f(x —nya) — (1= x(z + (n = )y2)) f(z + (n — 1)),

then g € C°°(R?/y,Z) since this is a finite sum. Moreover,
9(x +72) = g(x) = x(2)f(x) + (1 = x(2)) f(x) = f(2).
Now we let
&, (z) = e—g(%ﬂ)ew(x)eg(%)7

Then é,,(z) = e9®~9@+1) =1 and é,,(z) = e /@e,,(z) = 1. Thus L is isomorphic to the

trivial line bundle. O

When n = 2, we identify R? with C, so that C/T" is a complex manifold. It is called an
elliptic curve (for reasons related to elliptic functions and elliptic integrals). It is a fact
that every holomorphic line bundle over C is trivial. So we can do the same thing as above
and get a family of holomorphic multipliers e,(z) : C — C*. Note that there are many
different holomorphic structures on a smooth line bundle over an elliptic curve (in fact,
they all differ by a translation).

Given a Hermitian connection h(z), we can write down the Chern connection directly:
0(z) = 0.(log h(2))dz = h(z)'0.h(z)dz (7.12)
It is direct to check it is Hermitian and D%!' = 9. We check it is compatible:
0(z +7) = 0. log(h(z +7))dz = 0, log(h(z)|e,(x)| ?)dz = 0(2) — e,(2) ' 0.e,(2)dz.

A classical subject from 19th century is elliptic functions and theta functions. By Li-
ouville’s theorem, the only holomorphic function on C/I" is constant. So people study
meromorphic functions on C/I'; which are called elliptic functions, and holomorphic sec-
tions of a line bundle, which are called theta functions.
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Definition 7.11. Let z,7 € C,Im7 > 0. The Jacobi theta function is
O(z;71) = Z exp(min®T + 2minz).
nez
Letl e N, a,b e %Z, the theta function with rational characteristics a,b is

Oup(z7) = exp(wi(n + a)*7 + 2mi(n + a)(z + b)).

ne”L

Since Im 7 > 0, the series converges absolutely and gives a holomorphic function. Here z
is the variable on the universal cover C of C/I";, and 7 should be thought of as the variable
that parameterize the family of elliptic curves C/T"; with I'; = Z + Z7. The Jacobi theta
function is quasi-periodic

0(z+1;7)=0(z;7), O(z+7;7)=e ™" 240(2; 7).
In general,
O(z+m+nr;7) = e_m”QT_Qm”ZQ(Z; 7).

2

Let €4n:(2) = exp(—min®t — 2minz), then one checks

em2+n27'(z +my + an)emH-an(Z)

= exp(—minsT — 2ming(z + my + ny7) — TINIT — 27ing 2)
= exp(—mi(ny 4+ n2)*T — 2mi(ny + n9)2)

= €my+mat(n+na)r(2)-

So {€ém+nr(2)} defines a holomorphic line bundle over C/I'; and 6(z; 7) is a nonzero holo-
morphic section of it.

One can check the metric given by h(z) = exp(—27|Im z|?/| Im 7|) satisfies the compat-
ibility condition (7.9). The corresponding Chern connection is given by 6(z) = ”E;—_f)dz

with curvature © = ﬁdz ANdz. So

mm:éL@:L

So the Jacobi theta function is a nontrivial holomorphic section of a line bundle of degree 1.
In fact, Riemann—Roch theorem tells us this is the unique nontrivial holomorphic section
of this line bundle (up to scalar).

In general, there are more complicated line bundles of higher degrees. The theta functions
with rational characteristics 0,,(lz;7) satisfies

Oup(l(z+1);7) =bap(l2;7), bap(l(z+7);7) = e_”il27_2”i1229a7b(lz; 7).
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Thus they describe a holomorphic line bundle with e;(z) = 1 and e, (z) = e ™ 7—27* A
simple calculation shows this line bundle has Chern number /2, and again Riemann—Roch
theorem implies that it has [? linearly independent holomorphic sections. Indeed, one can
check directly that a basis is given by {0,4(2) : a,b € 1Z/Z}. We provide an elementary

proof below.

Proposition 7.12. Suppose Im7 >0 and ' =Z & Z7, and X = C/T" is a complex torus.
Let L be a line bundle over X defined by multipliers

e1(2) = e e (2) = F72m2 o B C,m € Z.

Then the dimension of holomorphic sections of L (denoted by O(X; L)) is equal to

m, if m > 0;
dimc O(X;L) =< 0, if m < 0;
0orl, ifm=0, depending on whether L is trivial.

Remark 8. Note by (7.10), m = ¢;(L) is the Chern number of the line bundle.

Proof. Let w be a holomorphic section of L, we write
w(z) = e"*u(z),

then u(z + 1) = u(2),u(z + 7) = F=a)=2mmzy(»)  We can then expand u into Fourier
series

u(z) = Z an(y)e?™m.

ne”L

Since u(z) is holomorphic, a,(y) is also holomorphic, and a,(y) = a, are constants. The
condition u(z + 7) = ¢Bam)=2mimzy () gives

an€27rm7 _ ez(ﬁ—cw) -

If m=0and f —ar € 2n7Z (i.e. when L is trivial), then one has a nonzero solution
ap = 0y, for B — ar = 2mirt. Otherwise we get a,, = 0 for all n.

For m # 0, the solution is determined by a choice of ag, a1, -, apm—1. If m < 0, the
solution a, would grow exponentially (|a,| > %6”2/ ©) and the series would diverge. Thus
there is no nonzero holomorphic sections when m < 0. If m > 0, then the solution a,, decays
exponentially (|a,| < Ce™"/C) and gives holomorphic sections. So dim O(X; L) = m for
m > 0. U
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8. TOPOLOGY IN PHYSICS: THE ADIABATIC THEOREM AND DECAY OF WANNIER
FUNCTIONS

Here we present two examples of consequences of non-trivial topology in physics. The
first concerns adiabatic evolution. We first revisit the Bloch sphere (see §5.3) and see the
emergence of holonomy in adiabatic evolution in that case. We then consider general line
bundles over R?/T* (the Brillouin zone) given by Bloch eigenfunctions and show how their
nontriviality affects decay of Wannier functions (see §5.6 for the first instance they appeared
here, albeit in trivial topology).

8.1. Adiabatic theorems and parallel transport. In this section we introduce the
adiabatic theorem. To gain respect for the general case proved in §8.2 below we first look
at a special case of the Bloch operator (7.1).

Proposition 8.1. Let z(t) = (rcost,rsint, (1 —72)/2) be a curve on the sphere. Consider
the initial value problem

{ icduw, = (H(x(t)) — 1w,
wa‘t:O € Vx(O)

Then there exists w(t) € Vyu independent of €, such that
w(t) = w(t) + O(e). (8.1)
Remark 9. If we write the equation as

{ i0yw. = H(x(et))w,
Weli=o € Va0,

then we will conclude w,(t) = e "w(et) + O(g). The —1 term will just affect the phase.
The adiabatic theorem describes behavior of a system under a slowly varying Hamiltonian.

Proof. Let

e 1 peit . — 1 1
1= (1+p)2\ 1 )" 2= (1+ p2)1/2 —peit

be the normalized eigenvectors. Let w(t) = ¢1(t)ui(t) + co(t)ug(t). Then

é1(t) = —ci{t, ur) — coltig, uy),

; . . 21
CQ(t) = —cl<u1, U2> — 02<u2’ u2> + gCQ‘
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In other words,

2
. P . P it
é1(t) = —icy 1 5 + ZCQrer )
) . P it 2i ip?
éo(t) = —ic1y +p2€ + ¢ (? + 1 +p2) )
Let a1(t) = c1(t) and ay(t) = e cy(t), then
2
al(t) = —1aq 11 p2 + ZCLQTPQ,

. . P 21 ip? _
as(t) = —za11+p2 + as (g—i- T+ 2 —7,) )

This is an ordinary differential equation with constant coefficients. The matrix

2
S S P _
Zler2 Zl{rg2
B R ST/ S

1+p2 ¢ 1+p2

has eigenvalue A\, = 2i/e + ip?/(1 + p?) — i+ O(e) and Ay = —ip*/(1 + p?) + O(e) and
eigenvectors v, = (?) + O(e), vy = ((1)) + O(e). Thus

al(t> _ _il—in ilfpz 1
=exp |t , 9 ip? , 0
ax(t) Ty e T e T

— exp((—ig/(1 1 9)0) (3) L 0.

In conclusion
we(t) = exp((—ip?/ (1 + p*))t)us (t) + Oe), (8.2)
which gives (8.1). O

The general adiabatic theorem describes a system with slowly varying Hamiltonian. It
was first proposed by Born and Fock, and later proved mathematically by Kato [[{a5§]

Theorem 7. Let P(s),s € [0,1] be a smooth family of bounded self-adjoint operators on
a Hilbert space H, and A(s) be a smooth family of simple eigenvalues of P(s) such that

dist(A(s), Spec(P(s)) \ {A(s)}) > d > 0 is bounded from below. Consider the following
imatial data problem

{ icOu. = P(t)u,,
u:(0) = ug € ker(P(0) — A(0)).
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Then there ezists u(t) € ker(P(t) — A(t)) independent of € such that

. (t) = exp (—3 /0 t A(s)ds) u(t) + O (e).

€
We postpone the proof until §8.2.

Remark 10. The boundedness assumption of P(t) is not essential, and the proof adapts
to unbounded cases under reasonable assumptions. We only prove the bounded case for
simplicity.

In order to understand the next theorem, we need to introduce parallel transport.

Definition 8.2. Let w: L — X be a line bundle over a smooth manifold X, and (t) be a
smooth curve on X. The parallel transport of so € 7 1(7(0)) is a section s(t) of L along
~(t) such that

Ds(t)(7(t)) = 0. (8.3)

Suppose L C X x H and the connection D is inherited from H as in (7.4). Then if we
choose a local orthonormal frame uy, D is given by ds; + (duy, u;)s;. The parallel transport
equation can be rewritten as

(GOt u6w) <o

Let s(t) = s1(t)ui(v(t)), it is equivalent to (£s(t), s(t)) = 0 or (s(t + 0),s(t)) = (so, s0) +
O(6?%).

The following theorem of Barry Simon [Si83] gives an interpretation of the adiabatic
theorem in terms of parallel transport.

Theorem 8. Suppose X is a smooth manifold, v(s) is a smooth curve on X. Let P(s) =
P(vy(s)) is a family of operators satisfying the same conditions in Theorem 7. Let V, =
ker(P(x) — A(x)) be the line bundle defined by the eigenspace of P(s) and D be the inherited

connection from H. Then u(t) given in Theorem 7 is the parallel transport of uy along ~(t).

Proof. We may assume A(z) = 0 and ignore the phase. Then u(s) = lim._,o uc(s). To prove
u(s) is the parallel transport, it suffices to show (Lu(s),u(s)) = 0. For taht, in turn, it

suffices to show for any ¢ € C§°((0,1)) we have

/90(5) <d%u(s),u(s)> ds = 0.
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We calculate

[ o6 (st ds =1 [ o16) {u(6) 9 ) s
~tin— [ ¢(6) (o) (e ds = [ pte) (u(s) e ) ds

_ —/tp'(S)dS‘f‘?_I}(l)é/(p(s) (u(s), P(s)uc(s))ds

—lim > [ o(s) (P(s)u(s), u(s)) ds

e—0 &g
=0.
We conclude (“£u(s),u(s)) = 0 and this finishes the proof. O
Remark 11. A quick formal argument indicating validity of Theorem 8 goes as follows:
d . d .1
(a0 ) =ty (Suafs) o) ) =~ £ (PS5, ()

= —lim * (u.(s), P(s)u(s)) = 0.

But we need to justify the change of order for limit and derivative. Thus we need the help
of a test function ¢ € C§° in the actual proof.

As a corollary, we conclude

Corollary 8.3. In Theorem 8, if ¥(0) = v(1) and A = 0, then u(1) = holp(y)u(0).

Remark 12. One can check that the answer in (8.2) agrees with the computation in
Example 7.8. In (8.2), p = sinp/(1 — cos¢) and

27ip? 271 27i(1 — cos )?
holp(7) = exp ( — = =
oolr) exp( 1+p2) exp(1+p2) exp((l—coseo)2+sin2s0

= exp(mi(1l — cos p)).

8.2. Proof of the Adiabatic Theorem. In this section we give the proof of Theorem 7.
The main idea is a new unitary evolution called the adiabatic evolution.

Proof of Theorem 7. Step 1: We may assume A(t) = 0 without loss of generality. Let U(t)
be the unitary evolution defined by P:

iedU(t) = P(t)U(t), U(0)=id, (8.4)
then wu.(t) = U(t)ug. Following Kato [[Ka58] we define the adiabatic evolution to be

ie0 Ux(t) = (P(t) +i[I1(2), 11(¢))Ua(t), Ua(0) =1id
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where

() = 7{(2 — P(t))"\dz

27 -

is the projection to the eigenspace with eigenvalue A(t) = 0 (v is a simple closed curve
such that A(¢) lies inside and Spec(P(t)) \ {A(¢)} lies outside). Note this defines a unitary
evolution because [I1(t), I1(¢)] is anti-self-adjoint. We claim

() Ua(t) = Ua()I(0).

This is because

i S (UA) T U (1)
= Uy (t)* (= P(OII(t) — de[IL(t), T()|TL(t) + iell(t) 4 TI()P(t) + sell(t)[I1(2), T1(£)]) U a(t)
= ieUA(t)* (T1(t) + 200 () II(4)I1(t) — TL(4)TI(¢) — TL(4)II(2))UA(t) = 0.

In the last step we use

f1(¢) = S (11(0) = FI(E)TI() + (0T

and consequently TI()IT(¢)IT t) = 0. As a consequence,

(t) = 2AL(OII()IL(E) =

u(t) = Ua(t)uo = IL()Ua(t)uo € ker(P(t) — A(t)).
(0
(t

Moreover, since P(t)U4(t)I1(0) = P(t)I1(t)UA(t) = 0, we have

iedhu(t) = (P(t) + iel11(e), TL(0)) Ua (t)uo = i=[11(6), TI(E) (),

that is, dyu(t) = [I1(¢), I1(t)]u(t) which shows that u(t) is independent of «.
Step 2: It remains to prove u.(t) — u(t) = Og(e). We need to estimate

Ua(t) = U) =U0) [ UG Un(o)s

0
v [ >
= U(s)"(—P(s) + P(s) + ie[ll(s), II(s)])Ua(s)ds (8.5)

0

¢

— U / U (s)*[F1(s), TI(s)]Ua(s)ds.
0
The key now is to find a smooth family operator s — X (s) such that

[11(s), T1(s)] = [X(s), P(s)]- (8.6)
That is because we then have a chance of gaining an epsilon in (8.5) as (8.4) and (8.6) give

U(s)"[X(s), P(s)]U(s) = € (i0s[U (s)" XU (s)] — iU (5)"[0: X (s)]U (s)) (8.7)
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We claim that

X(s) := 5 (z — P(s))'(s)(z — P(s)) 'dz
gives (8.6). Indeed,
1 _1 1
[X(s), P(s)] = %]{(2 — P(s)) " [lL(s), P(s)](z = P(s))""dz
= o f e = P(s)I1(s), 2 — PO)(z — P(s)d:
= gt FIH). 2 = PO
= [1I(s), T1(s)].

So we can write the integrand in (8.5) as
U(s)*[X(s), P(s)]Ua(s) = icdy(U(s)* X (s)Un(s)) — ieU(s)* X (s)Ux(s)
— iU ()" X (3)[T(5), TI(3)]Ua(5),
Inserting this into (8.5) gives

[Ua(t) =U@)] < elU@)"X()Ua(t) = X(0)]

+ 8/0 (IX ()1 + 11X ()[11(s), L(s)][[)ds = O(e).
Thus u.(t) — u(t) = (U(t) — Ua(t))ug = Onle), as claimed. O

8.3. The line bundle of eigenfunctions over R?/I'*. Suppose that
P(w,D) =Y (Da, + Aj(x))* + V(2),
=1 (8.8)
Aj(x+7v)=A;(@), Ve+7)=V(z), yeTI, xR
We also assume that for some & (5.13) holds. We then define
L:={[0,v] € (R* x L*(R*/T))/ ~ : v € kerpzmz/r)(P(z,D —0) — Ex(0))},
(

0,0 = 0,0 <> (6,0) ~ (89)

0 v) < Apel™, 0 =0+p, v =7(p),
where [7(p)v](z) = e@Ply(z).
The reason for 7(p) is the fact that it provides unitary equivalence
P(z,D—0—p)=71(p)P(z,D —0)7(p)*, § €R?* pecTl*
In particular, for u € H*(R/T),
P(e,D = O)u(x) = Bp(x) <= Pla,D—0—p)[r(p)ul(x) = Elr(p)ul().
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We have

Lemma 8.4. Definition (8.9) gives a complex line bundle over C/T'*,
n:L—C/T* x:[0,v] —[0] € C/A. (8.10)

Proof. Let R™ > 0 — u(f,e) € C*(R?/T") be a smooth family of solutions to P(x, D —
O)u(l, r) = E(0)u(f, ), [[u(0, ®)| r2@e2/ry = 1.

The action of the discrete group I, p : (0,v) — (0 + p, 7(p)v) on the (trivial) complex
line bundle

L:={(6,7u(f):0eC, 7€C}~CyxC,, (8.11)

is free and proper, and the quotient map is given by F(0,7u(f)) = [0, 7u(f)]. Hence its

quotient by that action, L, is a smooth manifold of dimension two. With 7 given by (8.10),

71 ([0]) ~ kerpame/ry(P(x, D — 6) — Ei(0)) and has a vector space structure and local

coordinates 6 provide the needed trivializations. 0

From the presentation in §7.2 we see that we can use u(,z), § € F, F a fundamental
domain of I'*, as a frame and then for § € F', the connection is given by D(su) = (ds+ns)u,

n = (dou(0,®),u(0,®)) r2mn/r) = (Op,u, u)db; + (Og,u, u)dby, 6 € F. (8.12)

This is the Berry connection in the setting of Floquet eigenfunctions over R?/T'*. This
gives the following formula for the curvature, called the Berry curvature in this setting:

O = dn = —2iIm (g, u(0, ), Op,u(0, ®)) r2r2/ryd0y A db2, 6 € F. (8.13)
(The other terms give (97, 5, u, u)df; A dfy + (0,9, u, u)dfy A dfy = 0.) We then have
1
(L) = —/ Im (0, u, Oy, u)db db;. (8.14)
T JF

In particular if the integral on the right hand side does not vanish then the line bundle is
non-trivial.

Theorem 5 shows that in case of time reversal symmetry, in particular when A; = 0 in
(8.8), the line bundle L is trivial and ¢;(L) = 0. A yet stronger statement follows from
symmetries of V:

Proposition 8.5. Suppose that P = —A + V(x) and that (5.13) holds for E(0) = Ei(0).
If for some xg,

V(g +2) =V(zg — ), (8.15)
then the Berry curvature given by (8.13) satisfies

©=0. (8.16)
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Proof. We can assume that zo = 0. In view of (8.13),

Q= —/ dou(0,x) A dou(0, x)dz.
R2/T

Since we assumed that the eigenvalue F(6) is simple, V(z) = V(x) and V(z) = V(—x)

imply that

uw(@,z) = a1 ()u(—0,z), u(—0,z) =ax(0)u(f,—z), |a;(0)=1.

Hence with a(0) := ay(0)as(0),

u(d,z) = a(@)u(d, —x), o CR"/T).

The periodicity and smoothness of a hold as for p € I'* we have

(8.17)

a0 +p) = / W01 p,2)al0 + p,—)dz = / CR (b, D) (g, —7) = al6).
R2/T R

2/F

This gives

0= /R?/Z? dou(0, z) N dp((0)u(6, —x))dx

= —a(h) /R?/Z? dou(8,z) A dpu(0, —x)dx + do(f) A /]R u(f, —x)dou(f, x)dx.

Q/ZZ

The first term vanishes since

/ dou(0, ) A dpu(0, —x)dx = / dou(0, —z) N dou(0, x)dx
R2 /72 R2 /72

= —/ dou(0, ) N dpu(, —x)dx.
R2 /72
For the second term we notice that
/ a6, —2)dgu(0, 2)dx = 1dy / (b, —2)u(6, 2)dz = Ldo(a(0)™),
R2/72 R2/72
so that
2

da(0) A /R?/ZQ u(0, —x)deu(0, x)dx = Ltda(0) A do(a(0)™1) = 0,

and the conclusion (8.16) follows.
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8.4. Berry connection and curvature via perturbation theory. In the notation of
§8.3 and assuming (5.13) again we can express the connection (8.12) and its curvature using
formulas from second order perturbation theory. Since we will consider other energy levels
we now write u = ug nad £ = Ej — see (5.13).

We first note that (P(x, D — 0) — E(0))u(0,z) = 0 implies that
(P(J], D — 49) - Ek(Q))agZuk(G) = 89ZEk(«9)uk(6’) - Q(D:w - Gg)uk(ﬁ)

Since the inner product of the left hand side with u; vanishes we see that the right is also

orthogonal to uy (and that 0y, Ex(0) = 2((D,, — O¢)ur(8),ur(6))). This means that, for

a(f) € R,

(D un (0 (9)>
E;, —

69£uk(9) = <89[uk(9) —|— 2 Z
J#k

Then, for the curvature (8.13) we get © = H(0)d#, N df; where
H(Q) = =2 Im<891uk(0), 892uk(0)>

tm (D, x(6), 0, () (D (8), 4, (0))) (8.18)
(Ex — Ej)? '

= —8@'2
J#k

8.5. Decay of Wannier functions. We again suppose that (5.13) holds and we denote
by Il = 1, (P), the spectral projection associated to the isolated band I. In §5.7 we
discussed the basis of II,L?*(R?) for time reversible operators P, Pu = Pu (for instance,
P=—-A+V, with V real valued). We now consider a more general case.

Definition 8.6. Suppose that the condition (5.13) holds. Then o is a Wannier function
associated to the band Iy if {po(x — ¥)}yer form an orthonormal basis of of 15, (P)L*(R?).

We note that that
©(0, ) := |R"/T*|Y2 By, (6, o) € kery, (P — Ei(6)).

The condition that {yp¢(z — ¥)}er forms an orthonormal basis implies || (6, o)/, = 1:
let F' be a fundamental domain of R" /T,

(6, )2, = Z/ 00000 (¢ — Vol —7)de

vy el

= ZGWG/ x)po(r —v)de = lo(x))?dr = 1.
R

vyel
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Conversely, (see §5.6) any normalized family ¢(0,x) € L?(R?/T; Hyg) satisfying Py (0) =
Ex(0)p(0) and ||¢(0)|3, = 1 produces a Wannier function

1
[R?/T*] Jgon s

wo(x) = po(r) = (0, x)do. (8.19)

Hence we always have a Wannier function once (5.13) is satisfied.

The simplicity assumption in (5.13) then shows that ¢(6, @) is uniquely determined up
to a multiplicative (measurable) factor f(0), |f(0)| = 1, and that

Bl (P)L*(R?) = {g(0)¢(0,x) : g € L*(R?/T")}.
We also note that for o, 5 € T,

1 i i 1 ifam
R2/T7] (e z(aﬁ)%e <ﬁ,9>90>L2(R2/r*;7{9) = W /RQ/F /]RQ/F6 ia 6’9>|g0(9,x)|2dxd«9

1
- R/T Jee e

e B0 dh = §,5.

Writing g(0) = >, cp aae ", {a,} € 3(T'), we see from this that

{©o(x — )} er is an orthonormal basis of 1y, (P)L*(R?). (8.20)

We now make a general statement about the relation between regularity of in § and
decay in z (which holds in any dimension):

Lemma 8.7. Suppose u € < (R?) and that B is the modified Bloch transform (see §5.3).
Then D, Bu = B(z;u) and

/ / | Dy, Bu(8, z)[?dédz = Cr / |zju(x)|*d. (8.21)
R2/T JR2/T* R
For v e ' (R* x R?/T) satisfying v(0 + p,z + ) = 7(p)v(0, x), we then define
HUH k(2 /T 2 = / ’DQU 9 l')‘ d@ (822)
HF(R?2/T* xR2/T) |az<k e or

provided that the right hand side (with distributional derivatives on R* x R?/T" and the
integral over a fundamental domain of a larger lattice 2T") is finite. It follows that

||l§u||H$(R2/F*XR2/F) ~ ||<[1’}>k;'UJ||L2(]R2)7 <823)
and that Bu € H*(R2/T* x R2/T) if and only if (x)*u € L2(R?).
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Proof. For u € . (R?) we have
Bu(f,z) = cr Z ey (x — ) € OF(R2, C*(R?*/T,)).

vyel
Then
Dy, Bu(f,z) = er Y " (w; — y;)u(w — ) = Blejul (6, ),
vyel
and (8.21) and (8.22) follow. A density argument then gives the last conclusion. O

Let us assume that I' = Z? and that ¢;(L) # 0. Then, using the results of §7.2 we choose
(60, ) such that

p(0+p,x) = e)(O)[T(D)¢)(0,7), PEZL? ee () #1, ee(0) =1. (8.24)
Using Definition 8.6 we now formulate

Theorem 9. Suppose that P is given by (8.8) and that for some k, (5.13) holds. Let L be
the line bundle over R?/T* given by (8.9). Then the following are equivalent:

(1) there exists a Wannier function satisfying |0%po(x)] < Cae !, ¢ > 0;
(2) there exists a Wannier function satisfying [g, |z]?|¢o(x)|*dz < co;
(3) e1(L) = 0.

Remark 13. A more general version of this result valid for multiple bands and dimension
three was provided in [Mo*18]. It is also optimal as far as the exponent 2 in (2) is concerned.
Localization of Wannier functions and its link to topology is related to interesting physical
phenomena such as superconductivity — see [Val§].

Remark 14. We have shown that for line bundles over tori ¢;(L) = 0 is equivalent to
L being trivial (in fact, in full generality, ¢;(L) is the only topological invariant of a line
bundle, see [BoTu82]). Hence, the theorem states that having a decaying Wannier function
is equivalent to triviality of the line bundle of L, that is for having a smooth family R? >
p(6) € C(R?/T), satisfying 7(p)p(0) = (6 + p), [0(O)ll2®2/r) = 1, P, Do — 0)p(6) =
Er(0)¢(6)-

Proof of Theorem 9. The implication (1) = (2) is obvious. To see that (2) = (3) we use
(8.23) to see that ¢(6,z) := |R"/T*|*/2Byp, € HL. But this means that 6 — e~ @0y (0, z)
form R/T* — kery, (P — Ex(0)) C Hy is an H' section satisfying ||¢(0)||r2rz/ry = 1. We
then use the following lemma:

Lemma 8.8. Let L be a smooth complex line bundle over R? /T*, and there exists a unitary
H?' section s : R?/T* — L, then L is trivial.
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Proof. Let 1 = . x; be a partition of unity on R?/T* such that suppx; C U; and L is
trivial over U; (see Definition 7.1). We then choose ¢; : 7~ 1(U;) — U;xC be a trivialization.
Let ¢ € C>°(B(0,1); R) with [ (z)dx =1 and put ¢.(z) = e ?¢(x/e). Then

Sc 1= ZQD; (Ve % 55) € C®(R*/T* L), s;:=@ju(x;8), |se —s|m — 0, e = 0.
J

We now denote by |v| the Hermitian length of v € L defined using the L? norm (see §3.3)
and introduce a distance function, d : L x L — [0,00), on L (for instance by introducing
a Riemannian metric). We can now estimate the distance between s.(x) € L and the
compact subset {v € L : |v| =1} of L:

d(se(z), {v € L:|v] =1})* < min d(s(),s(y))* < C€_2/|_ d(s=(x), s(y))*dy

lz—y|<e

= 025_2 /|Iy|<e (e # s5(2) = 5;()]” + & — y|*) dy,
’ (8.25)

where the O(]z — y|?) term came from the change of the Hermitian metric on different
fibers. Its overall contribution after integration is O(e?).

To estimate the first term, we recall the Poincaré inequality (see for instance [Ev10,
§5.8.1])

s*/ Hﬂm—%@ﬁwsc/‘ Vs, (y)dy,
lz—y|<e lz—y|<e

where

1

[3 ’]z, = 3'(y,)dy/
e me? lz—y'|<e ’

is the average of s; over the disc B(z,e). We also note that by the Cauchy-Schwarz
inequality and properties by 1. we have

m*@—mmmwzv’%@—mwwwmm@
eylse (8.26)

< 052/ |5;(y) — [5j]ecl*dy.
lz—yl<e



PDE METHODS IN CONDENSED MATTER PHYSICS 79

Thus,
/| i) sy
_ / e G = ) @) = (500 = [sleo)dy

< Colthe # (55 — [83]oc) (@) + 267 / 155 (4) [ ]o.cdy

lz—y|<e

< Che? / 155(y) — [5;1cl?dy
jr—y|<e
< Cg/ Vs;(y)*dy — 0, &—0,
lo—y|<e

where we used (8.26) to obtain the penultimate inequality.

Returning to (8.25), we have shown that d(s.(z),{v € L: |Jv] =1}) - 0 ase — 0, and
hence s, is a smooth, nonvanishing section of L. Thus L must be trivial. ([l

It remains to show that (3) = (1). From Proposition 7.10 we see that the line bundle L
is trivial. That implies existence of a C'*° non-vanishing section, that is of a smooth map
0 — o(0,2), [|¢0)| 2@2/ry = 1 (see above). But then the regularization procedure in the
proof of Theorem 5 gives us a real analytic section ¢(#). (The only modification needed is
in the normalization where we need to divide by the square root of (po(6), ¢o(6))r2r2/)
to guarantee holomorphy.) Exponentially decaying Wannier function is then obtained as

in Proposition 5.16. U

9. TWO EXAMPLES OF TOPOLOGY IN BAND THEORY

Here we present two cases of non-trivial line bundles arising in condensed matter physics.
The first one is motivated by the work of Thouless [Th83] and has physical implications
which we do not discuss but provide references for. The second comes from considering 2D
Landau Hamiltonians of §3 with rational magnetic fluxes. It turns out that in that case
one can use magnetic translations to develop an analogue of Bloch—Floquet theory and that
leads to non-trivial topology.

9.1. Thouless pumping. Suppose that P := D2 + V(x) where V(x +27) = V(z), V €
C*®(R;R) (regularity is irrelevant here and could for instance consider the Kronig-Penney
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model of Example 10). Following §5.4 we have

Spec(P) = D I;, I, ={E;@):0cR/ZL}.

Suppose that E(0) = Ex(0) and (5.13) holds, that is the band I}, is isolated. It follows from
Theorem 5 that there exists ¢(6,z) € C*(R x R) satisfying

(Dy —0)* + V(2)u(d,2) = BE(Q)u(d,z), u(@+p,x+2rl) =P u(d,z), plc.

(We have u(0, z) = e®p(0, x), where ¢ is the (normalized) Bloch eigenfunction of Theorem
5.) We then consider the periodic family of operators

P\ :=D>+V(z—X), PO, :=(D,—0)?2+V(x—N\).
The eigenfunction corresponding to F(6) is given by u(6, A\)(z) = u(f,z — \) and
w(f + p,x +210) = e Pr(p)u(f, N),  [r(p)v](z) = e“Pu(). (9.1)
As in §8.3, we consider the following natural line bundle defined in a way similar to (8.9):
Ly :={(\[0,v]) € R x (R x L*(R/Z))/ ~ : v € kerpzm/z)(P(6,\) — Ex(6))} 02)
0,0] = [0',0] < (B,v) ~(0',0v') <= TpeZ 0 =0+p, v =r71(p.

We define the connection using the Hermitian structure inherited from L*(R/27Z) — see

(7.4): for (6,X) € (0,1) x (0,27), using the frame s(6,\) = ((6, \), f(0, N)u(6,\)),
DS(9> /\) = ((97 )‘)7 (dQ,)\f + <d9,)\u> u)f)u(@, )‘))
The curvature is then given by
O = 8A(u9, u)d)\ A df + 09<U,\, u>d9 A d\
= ((ux, ug) — (ug, ur))do N d\ = 2i Im(uy, ug)df A dA

The Chern number is given as in (8.14) but with ¢, = A and 6, = . Since
hu(f,z — ) = —0,u(f,z — \)

(9.3)

and v is periodic in z, we get

i

Ly) = — S
albn) =5 /{o,wo,zﬂ]

2 1
= —2/ / Im <8xu(0,x)agu(6’, x)) dxdb.
o Jo
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We now observe (see (9.3)) that
—2Im(0,u(f, x)0pu(0, x))dd N dx = id(upudd + u,udz),

so that the Stokes theorem gives

ci(Lr) = i/ol([ueu](Q,O) — [ugul (8, 2m))do +i/027r([uxu](1,x) — [u,ul](0, z))dz.

We now use (9.1) to see that

u(0,27) = u(6,0), u(l,r)=e"u(0,r).
This gives

o) (6,0) — [up](6,27) = 0, [uy)(L,2) — [u,0)(0, 2)] = i[u(0, ) .
Since fozﬂ |u(0, z)|?dx = 1 (u is normalied in L?) we conclude that
ei(Ly) = —1. (9.5)

In particular the line bundle Ly is nontrivial.

Remark 15. We could also evaluate ¢;(Lr) using multpliers (7.7) as in (7.10). From (9.1)
we get that e aq0) (0, A) = € and that give (9.5).

For physical aspects of this example, involving the concept of polarization and Thouless
pumping, see [MoMo18, §4.1] and [Val8, §1.1.2]. For a youtube presentation see https://
topocondmat . org/w3_pump_QHE/pumps.html (thanks to Zhen Huang for this suggestion).

Mathematical treatment of the more subtle case of D2+ W (z)+V(z —\), W(x +27) =
W (z), was recently given in [Dr21]. An argument similar to the one presented here appeared
in [Go20] (thanks to Alexis Drouot for these references). Those results were motivated by
the study of spectral flows rather than by Thouless pumping.

9.2. Landau levels revisited. We now return to §3.4 and consider the two dimensional
Landau Hamiltonian in the symmetric gauge and recall that with w = z; + 129,

Pp=AAp+ B, Ag:=e BFA@2D )PP/ = oD, — LiBuw. (9.6)

The infinitely degenerate ground states are given by

., feo(C), /]f(w)|26_B2W|2dm(w) < o0. (9.7)

_B|w\2
4

u(w, w) = f(w)e

To describe this space using Bloch—Floquet theory we need operators which commute with
Pg and replace v +— u(x — ), vy € I'.


https://topocondmat.org/w3_pump_QHE/pumps.html
https://topocondmat.org/w3_pump_QHE/pumps.html
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Definition 9.1. Let I' be a lattice in C. For magnetic field B and v € T' a magnetic
translation by vy is defined on L*(C,dm(w)) as

TPu(w) = e BTNy (4 — ). (9.8)
We immediately check that
ApTE =TPAp, (TP) =15, TPTE = 3BO - ITETE (9.9)
and
PgTP? =TPP r 9.10

Remark 16. This definition, due to Zak (see [HS89] and references given there), can be
generalized to all dimensions so that (9.10) holds. We restrict ourselves to R? ~ C to keep
the presentation simple.

The problem with a generalization of Bloch-Floquet theory is that the magnetic trans-
lations do not commute — see (9.9). However if
sB(Yy—#4'v) € 2miZ, ~v,7' €T, (9.11)
then TPTH = THT? and we can define
AP ={ue Ll (C): Vyel TPu= ez KNy} ke C.

The point is that {TV }yer is an abelian group on two generators and it irreducible repre-
sentations are one dimensional and are given by

v m(y) i C—= C, m(y)z = ex® 0 ke /T
For u € #(C), the magnetic Bloch transform is given by,

1
C/T|2

BPu(k, z) := > ety () € LA(C/T% A4E). (9.12)

It extends to a unitary operators as for u € .#(C) we have

~ 5 (k=) k(-7 gy (k )
€ m (&
23 ], (// &

v er

“X S [ sttt syt = dm(w) = [ Jutu) P

yel' ~'el c/r

PN

(w(ﬁ—ﬁ’)—w(v—v’))u(w _ v)u(w _ ’y’)dm(w)

As is easily seen from (9.12), the inverse of B? is given by

B 1
Co(e) = e /«: | vl)im(9)
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(See also the proof of Theorem 4.) Hence, as in §5.4,
B PsCPu(k,z) = [Ppu(k, e)](z),

We are interested in the space corresponding to the ground state:

Vil i=ker n(Pp — B) = ker ;45 Ap. (9.13)
It is convenient now to specialize to specific lattices of the form
o
P=Z®7Z, Imr>0, I'*=_"'T,
Im~

(A general lattice is given by w1Z @ wyZ = w(Z ® (fwy/wy)7Z) and we can arrange the sign
of Im7, 7 = wy/wy). The condition (9.11) becomes

B
N :=—1Im7 € Z. (9.14)
2T

Theorem 10. Suppose that (9.14) holds. Then the vector subspace of IG5 corresponding
to the ground state of B (see (9.13)) is finite dimensional and

dimker%i(B(PB — B) = Np.

Proof. In (9.7) it is convenient to write f(w) = g(w)exp(Bw?/4), so that for u € J£5,

TlBu(w) _ egBImwu(w —1)= e%BImwe—%B(w—l)(w—l)eiB(w—l)Qg(w —1)
1
4

BImw —B(—l-i-(w-l-w))e%B(l—Qw)

e —%B\w\2+%3w2g(w _ 1)

S

€ €

= e_iB‘w‘z'FiBw%g(w — ]_)

. ; ; _1 2,1 2
Since TPu = etfeky = e Reke— 3Bl 350" g(1)) we conclude that

glw — 1) = Rk (). (9.15)
Similarly,
TBu(w) = e3Bm)y(y — 7) = s BIm(Fw) o= i Blw-n)(@-7) 3 Bw=r) g (1), _ 1)
_ 6%’8Im(wf)e%B(—“\“(m*m)eiB(TE_QT“’)e‘%BW'Q*%BMg(w —7)
= s BImT(r=20) =i BlulP+iBu? g, 7y,

Again, TBu(w) = e2®* )y (w), we obtain

Er+k?)—%BImT(T—2w) (k7+k7)—iTNp (7_2w)g(w) (916)

g(w —7) = et g(w) = ez

This means that we can consider g as a section of a holomorphic line bundle over C/T.
Proposition 7.12 tells us holomorphic sections form a vector space of dimension Np.
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One can also see the dimension from Riemann—-Roch theorem. Residue theorem shows
that the number of zeros of g is given by Np and the theorem follows from the Riemann—
Roch theorem: suppose g; and go satisfy (9.15) and (9.16). Then ¢;(w)/ge(w) is a mero-
morphic function on C/T" with at most Np poles at locations (counted with multiplicities)

of the zeros Ng. But that space has dimension Np.

Suppose Np = 1. In that case we obtain a vector bundle over C/I'*.

take the map

T P = AP u(w) — neu(w) = el
nPpri = Pp(k) := (Ap — k)" (Ap — k) + B.
We also note that for p € ['*, we have a unitary map

Tp : ,%%B — %%B, T;PB(k)Tp = Pg(k+ p).

wk”jl—‘)u(w),

As in §8.3 this leads to a definition of a natural line bundle over C/I"*:

Ly = {[kv] € (€ x )/ ~ : v € kerp(Po(k) — B)

O

To set it up we

(9.17)

(9.18)

(9.19)

k,v] = K, V] <= (k,v)~ (K,v') < Tpel™ k'=k+p, v =,

Remark 17. Under an assumption stronger than (9.11) (or equivalently (9.14)),

%Im B(’}/l’_}/g) € 27TZ, Vi < F,
we can identify #g” with L?-sections of a line bundle over C/I':

AP ~ L*(C/T; Ep),

(9.20)

(9.21)

where Ez — C/T is the line bundle defined using (7.6) with multipliers e, (z) := ezBMm(7),

We first check that this function satisfies the cocycle condition (7.7):

— osBIm(z(71+752) _ sBIm((z+72)71) 5 Im(272) ,— 5 BIm(v291) _
Cy1+v2 (2) =e? =e? €2 e ? = €y (Z + 72)6’72 (’Z)?

where the last equality comes from (9.20). Now, u € P means that (see (9.8)) u(z+7) =

ey (2)u(z) which in view of (7.8) gives (9.21).

We have

Theorem 11. Definition (9.19) gives a holomorphic line bundle with a hermitian metric

defined by ||v||>, 5 and the Chern number ¢1(Lp) = —1.
<0

Proof. Let us consider the function g in the proof of Theorem 10 for k = 0. It satisfies

g€ O(C), g(z+1)=g(2), glz+7)=e " g(2).
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This means that up to a multiplicative constant
9(z) =0(z, 1) := Z exp(min®t + 2minz),
nez

that is g is the theta function from Definition 7.11. (Uniqueness follows an argument similar
to the proof of Proposition 7.12 — see [Mu83, §I.1]; we also comment that the zero of g(z)
in the fundamental domain spanned by 1 and 7 is at (7 + 1) — see [Mu83, I, Lemma 4.1].)

We now define

0(z —ik/B, )
0(z,7) ’

F(z) = ea(zm2)k
so that
Fe(z+1) = Fe(2), Fu(z+71)=e 20 ke 2K/BR (1) = o(mr=2n/Bkp () — R (2).
where we used (9.14) with Np = 1. Let u € ker ,z8(Ap), u(z) = e~ 1817182 (). Then
u(k, 2) = Fi(2)u(z) € ker o(Ap — k), u(k+p,z2) = ep(k) trpulk, 2), (9.22)
where 7, was defined in (9.17) and for p = iB(n + m7),
ep (k) := T TH2mmk/ B (9.23)
and we check that this a multiplier, that is, it satisfies (7.7).
The action of I'*, p : (k,v) — (k + p, 7pv) on the (trivial) complex line bundle
L:={kruk)):keC, 7€C}~CyxC,, (9.24)

is free and proper, and the quotient map is given by 7. (k, 7u(k)) = [k, Tu(k)]. Hence its
quotient by that action, L, is a smooth complex manifold of dimension 2. We then define
the action of I'* on L as in (7.6):

p - (k ru(k)) = (k+p,ep(k)ru(k +p)), pel,
so that
7. (k, ku(k)) = 7 (k + p, ep(k)ru(k + p)).
This gives L the structure of a complex line bundle over C/T™*.

The hermitian structure is inherited from L?(C/T") and the resulting hermitian structure
on L of (9.24). In coordinates (k,7) on L, we get

(i) = () P,p.
This gives us also a hermitian structure on L: from (9.22) we see that

h(k) = |ep(k)|*h(k +p), p €T (9.25)
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To h we associate the Chern connection (7.12) and the curvature © — see Proposition 7.4.
Then we use (7.10):

i
allp) =5 /C/F Q=-1, (9.26)

completing the proof. O

Remark 18. Another way to compute the Chern number is to use (7.10):
i(iB)

=1
B

c1(Lp) = Py (loge;p,(iB) — loge;p,(0) — log e;5(iBT) + log e;5(0)) =

Remark 19. Since kerp>c/r)(Pg(k) — B) is one dimensional we can always choose a holo-
morphic gauge:

0 = Dl(As — K)u(k)] = (A — K)[Dgo(k)] — Do(k) = a(k)u(k).

and a can be replaced by 0 by choosing changing v to vy := e~*K®/2y,

10. 2D PERIODIC STRUCTURES IN CONSTANT MAGNETIC FIELD: EFFECTIVE
HAMILTONIANS

We now study the case with a smooth periodic potential V(z) € C*(R?) and V(z+7) =
V(z) for any v € I". Let

2

Pgg = Z(ij + A;(x))% A(x) = (—Buxy/2, Bry/2),

(10.1)
Pp = Ppy = Ppo+ V.

We will use our knowledge of the cases B = 0 and V' = 0 and our goal is to consider the
problem perturbatively as B — 0. The perturbation is very singular but a careful study of
the case B = 0 combined with the magnetic translations will provide a needed framework.
We follow the proof given by Helffer—Sjostrand [HS89]. For a presentation of more general
perturbations of periodic structures and references, see [DS99, Chapter 12] and [Te03].

10.1. Periodic potentials revisited. In order to consider magnetic field as a perturvation
we analyze a Grushin problem P := —A + V under the isolated band assumption (5.13).
Theorem 9 then shows that the topology of the band is trivial. In particular, we have
exponentially decaying Wannier functions ¢, () = @o(x — ) such that |po(x)] < Ce~l#I/¢
for some C' > 0.



PDE METHODS IN CONDENSED MATTER PHYSICS 87

Proposition 10.1. With the notation introduced above, let

P(z) = (PRT bé) C H?(R?) x I2(T') — L*(R?) x I*(T)

where R_u_ := Y pru_(a)pa(x) and Ryu(a) = (u,@q). Then for z € nbhdc(1;), P(x)
is wnvertibile with
P(Z)_l — 8(2) — (5(2) E_,.(Z) ) ’

() Eei(z) (10.2)

where E(y) = [R?/T*[7! [po . e7 0 E(6)d6.
Proof. Let II = 11, = 1, (P) be the spectral projection to the band I;. One can verify
directly that

B(z) = (I—T)(P—2) NI~ 1T), E_()= Ry, Ei()=FR_

and E_, (z) given above solve the equation. O

Since the magnetic field introduces a very strong perturbation near infinite, we will need
weighted estimates for £(z):

Proposition 10.2. Let f € C?(R%R) and ef (v,v,) = (e’@v(x), e/ @v (). If || f]|o0 +
/" |loo is sufficiently small, then e/ P(2)e~7 is invertible with bounded inverse

e/ P(2) e || oxie iz < C.

Proof. We estimate each term in

np - - eof —f
s 5 (e (P—2z2)e ! e'R_e
e!P(z)e ( eI Re 0 :

Notice ef (P — z)e™f = (D, + 10y, f)? + V(z) — z, we have
ef(P—2)ed —(P—2)=i(Vf-D.+D,-Vf)— VS

This is small in H* — L? norm once || f'|| + ||/”||c is small. The term on R, gives
e’Riefu= ef(a)<eff(:r)u<x>7 0a(z)) = (u, ef(a)ff(m)wa(l.»

and (e/Rie™/ — R))u = (u, (/@) —1)p,(z)). So we can estimate

)~ (o) = | [ (510 - £p 1t o)

S CHf Hool — Q;|€”f lloo |a7$|€*|$fa|/c.

(10.3)
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Now,

e'Roe™f — Du(a) = K(o,z)u(x)dz, K(a,x):= (ef(o‘)_f(x) — Dpa(x),

and we showed in (10.3) that if || f’||«c < 1/C is sufficiently small,
K (a, )| < Ce~l7=l ¢ > 0.

Hence e/ R e/ — R, : L?> — [? is bounded with a small norm by Schur’s inequality (see
(2.9), (2.10)).

Similarly we also obtain the smallness of ||/ R_e™/ — R_||;2_,z2. Since P(z) is invertible
and e/P(z)e™/ — P(2) has small norm as an operator H? x [> — L? x [?, we conclude
e/ P(2)e~7 is invertible with a bounded inverse. UJ

10.2. Functional spaces associated to Pg. The operator Pp is essentially self-adjoint
as was discussed in Example 4. The domain was given by
D<PB,0) = {U € LQ(R) . PB’OU S LQ(RZ)},

where Ppou was considered as an element of . after distributional differentiation (2.4).
It is convenient to give a different characterization of the domain using magnetic Sobolev
spaces which we define as follows. For o € N?, we put

(Dm -+ A)a = (Da:l - Bx2/2)041 (.Dx2 -+ B$1/2)a2.

(We note that the order matters but the commutator of D,, — Bxzy/2 and D,, + Bx1/2 is
given by multiplication by B.) With that notation we define

HE(R™) = {u € L*(R?) : (D, + A)*u € L*(R?), |a| <k}, keEN,
where again the derivatives are taken in the sense of distributions. We note that C°(R?)
is dense in H%(R?).
To relate H% to the domain of Ppg we have

Lemma 10.3. There exist Cy such that for u € C°(R?)
[(De + A ullzs < CulllProtllzs + uls2), ol <2 (10.4)

Proof. This is based on the observation that for & = A(zg) := (—Bx2/2, Bxo1/2) we
have

" (D, + A(z))*e 0" = (D, + Az — 20))* = (Dy + A(y))*, = =1z0+Y,
and €'€?) Py (z, D,)e 0% = Py o(y, D,).
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Local elliptic estimates (see the proof of Lemma 5.2 or [Zw12, Theorem 7.1] for a detailed
elementary presentation) then show that

1(Dy + A(Y)) 0|l 22B0.1) < CollPro(y, Dy)vlliaso2) + 1vll2zo2)), ol < 2.
Applying this to v(y) = e€om0Fy (x4 + y), gives

(D2 + A(@))ullL2(B(wo,1)) < ColllProullL2(Bze2)) + lullL2(B0,2))); (10.5)
where the constant is independent of z5. We can now use a cover, say, R? = UpE 172 B(p, 1),
so that (10.5) applied with 2o = p and summed over 1Z? gives (10.4) with C} = 64C,. O

If u, Pgy € L? then approximation by elements of C2° shows that (10.4) remains valid
and that D(Pp) = Hz(R?). The estimate remains true when Pp is replaced by Pgy and
it can also be used to show that Pp ) is essentially self-adjoint (apply the definitions from
§2.3) with the same domain.

10.3. Grushin problem for small constant magnetic fields. In the notation of §10.2
we consider the following Grushin problem:
_ B
Pu(z) = (P%B 2 B;)—) . H2(R2) x 12(T) — L2(R2) x [2(T) (10.6)
+

where

Zu ()T po(z), RPu(a) = (u, T o),

acl’

The boundedness of
RP () —» L*(R*), RY:L*R* — (),
follows from the Schur criterion (2.10) and the exponential decay of ¢g(z):
= K(wa)u(a), Kza):=Tl(), |K(z,a)<Ce o,

acl’
with the similar statement for Rf.
We define
va(a) = e%B('ﬂ_M)v(a —)

as the discrete analogue of (9.8) and
T2 0
B - %
T ( 0 Tf) ’

TEPy(2) = Pu(2) T2, (10.7)

then
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This means that the operator obtained from the Grushin problem commutes with the
magnetic translation. We only need to check TP RY = RYTP as the other one is dual to
this one.

TfRfu(a) = u, (ﬁl'-?(z(a*v)ff(cm))900(3j —a+7))

)
=
X

Q
21
|
o]
=
—~
S
S
i
2
—
8
N~—
~

Il

9]
N
X

Q

3

Q
2

—

B(za—za)

T
T

= (et My(z —y),e
= (Tfu,goa) = Rf[Tfu](a).

We now show that our Grushin problem is well posed:

o(r — a))

Theorem 12. For z € nbhd¢ (1) and |B| < 1, the operator
Ps(2) : H3(R?) x I*(T') — L*(R?) x I*(T)

1s tnvertible with uniformly bounded inverse.

Proof. We choose a partition of unity 6., such that
S 0,@) =1, 0,(x) = bz — ), bola) € C(RE [0, 1),

~yel
Let

0., () = (97(()@ (gy ) (10.8)

and & (z) = Py(2)~!, we construct the approximate inverse Fp as
Fp=) TP&TEO, = Tl &OTY.
vyel vyel’
We claim || Fpl| 22 m2 52 < C < 00. We need to estimate

(D+ A 0\ . (D + A 0
(() 1&_;ﬁ3 0 1 ) SO0T

et 0 (D+ A 0

By weighted estimate (Proposition 10.2), K : L* x > — L? x [? is bounded for 7 sufficiently
small and || < 2. We now choose 0y € C§°(R?) so that the corresponding O defined as
in (10.8) satisfies 090y = ©y. We then have

(D+A)a 0 ‘ 6*77<'> 0 ~
(o Nro=a. a=72(7"" O VK672, (10.9)
~vel

Let n > 0; denote

To prove the boundedness of the sum of A,’s we need the classical Cotlar—Stein Lemma:
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Proposition 10.4. Suppose that B; : Hy — Hs,j € N are bounded operators between
Hilbert spaces Hy and Hs, and that there exists M > 0 such that for all j,

SOIBBillE < M, S |IB;Bi| < M,
keN keN

then Bu := EjEJ Bju converges in Hy and defines an operator satisfying

||BHH1—>H2 < M.

Proof. Let us first assume that B; = 0 for j > J so that B is well defined. Since B*B
is self-adjoint, the spectral theorem (Theorem 1) implies that | B||*™ = ||(B*B)™|. In
addition,

J J
(B B) - E lesz cet szmﬂBJQm - E , BJLM,sz’
jly---7j2m:1 j17---7j2m:1

where we note that we have 2m sums. The summands are estimated as follows:

1Bji.oome | < 1185, B M1 B, Byl - - 1B, B |l

and

1B1,wgam | < W Bjs 1 Bjs By ||+ M B2 By M B I
Since ||B,|| = ||B;Bj||% < M, multiplying these estimates and taking square roots we
obtain

1Bjr.ion | < MBS, Bl B B2 B, By, V2B, B I,

3 J2m—2""J2m—1 J2m—1
The advantage lies in having products of 2m — 1 terms which we can sum separately:
J
IBIP™ = I(B*B)"I< > IBjanl
Jiyejzm=1
J
< MY BB B, B, I < MM,
1 yeeesjom=1

where the J factor came from having 2m sums and only 2m — 1 factors in the summands.
Hence

IB|| < J#aM — M as m — . (10.10)

For the general case we take u € H; of the form uw = Bjv for some k£ and some v € H,.
Then

1> Biull = 11> BBl < Y I1B;BillY2I1B; Byl ||v]| < M?||v]|.
j=1

=1 =1
We conclude that » 7%, Bju converges for u € ¥ := span{ B} (H>) | k=1,... }.
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We have proved || Z;-Izl Bj|| < M for any J, and that ) 7% Bju converges for any u € ¥.
Hence, the series converges for any u € ¥ (the closure of ¥ in H;). In fact, if suffices to show
that for u € X, we have the Cauchy sequence property: || Z]K:L Bju|| <e,if L, K > N. For

that we choose ug € ¥ such that ||u — ug|| < e/(2M) and for which || Z]K:L Bjugl| < g/2, if
L,K > N. Then

K K K
1Y~ Biull < 1D Biuoll + 11 Bj(u — uo)|| < 3+ Mllu—ug|| < e,
j=L j=L Jj=L

where we used the fact for any finite sum of B; we have the bound (10.10). It also follows
that

[e) J o)
1 Bjul < lirJnsup (H > Byl +1) Bj“”) < Mjul|.
j=1 oo j=1

j=J+1

If u is orthogonal to 3, then u € ker(By,) for all k; in which case > ;1 Bju=0. Hence the
series ) °° | Bju converges in norm for all u € H; and defines an operator of norm bounded
by M. O

We want to apply this proposition with the index set N replaced by I' and B; given by
A, v € T defined in (10.9). First of all, since K : L? x [* — L? x [? is bounded, each
A, L* x I* = L? x [? is uniformly bound. Moreover,

6_77<'> O

*x _ gB
AQAB o 7:)‘ ( O 6_77<'

5 B e (€70 B
>) KOoT5,T; 00K ( 0 el T 5.

For |a — | > 1, (:507:%7;33@)0 = 0 by the support property. So ), ||AQAZ||% < C for
some C' > (0. On the other hand,

e amg e (€0 pap (€0 S 7B

Thus
| A% Agll < C‘|e—n<~>7:i7'636—17<->|| < C'supe M@ enle=(B-a)) < Ce=nlB=al,
T
So we conclude )5 p | Ax Agl|2 < C for some C' > 0. Using Proposition 10.4 and recalling
(10.9), we proved that

((D + A 0

0 1>]:B:L2><l2—>L2><l2, la] <2

is bounded and therefore Fp : L? x [ — H% x [? is bounded.
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Now we compute
PsFp =Y TPPs&O T =I1+K, K=Y TE(Ps—P)&OTE.  (10.11)
vel yerl’

We claim || K||z2x2 1252 = O(B) and thus Fp is an approximate right inverse. In order
to estimate the norm K, we compute

Ps—Py= Y _ O(B)x;D,, + O(B)[z|> + O(B)
and
B za—za —|lr—a
(T 00 = Topo| = e —1||po(z — a)| < OBz — alaje*=lC
< C|Bale~lz=al/¢"
107 (T ¢o — Typ0)| < Cs(|Bal + |Ba| e lelC.
Thus as in the proof of Proposition 10.2, for || f'||« sufficiently small we have
e (&) H(RY — R%)e! = Op2,2(B); e 7(RE — R%)(e) e/ = Op_,12(B).
Now we write
6_77<'> O 677<'> O
(PB — 7)(])50@0 = ( 0 6_n<.>> KB, KB = ( 0 €n<.>) (PB - PO)EOQO-
By Proposition 10.1, we conclude || Kg||r2xiz_sr2x2 = O(B). We now write
K= T, < 0 ety ) BETS:
yerl’

Using Cotlar—Stein Lemma as before, we conclude || K||12x;2r2x2 = O(B). For B suffi-
ciently small || K|| < 1 and we can define

SB = ,FB Z(—K)] so that PBSB =1.

=0
A similar construction gives an approximate left inverse by defining
B¢ 1B B B
Gs =Y O, TPETE =3 TPO&TE.
vyel’ yel’

We will then get the left inverse £ such that E5Pp = I. Since the left inverse and right
inverse must be equal, we conclude that £; = &g is the inverse of Pg and the proof is
finished. [

We conclude this section with an analogue of Proposition 10.2:
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Proposition 10.5. For f with properties from Proposition 10.2 and Pg given by (10.6)
then e/ Pg(z)e~! is invertible with bounded inverse, and

Hef,PB(Z)ileifHLQXlQ—)H%><12 <C.
The proof follows the same lines as the proof in the case of B = 0.

10.4. Stability of spectral gaps. In §10.3 we considered z in a neighbourhood of an
isolated band of Py = —A + V(z). It is also natural to ask what happens when z, ¢
Spec(—A + V(x)). In that case we proceed as in the proof of Theorem 12 but without
setting up a Grushin problem, that is using invertibility of (Py — 29)~!. In the notation of
(10.8) we put

Fp =Y TPy~ 2) 6,7,

yel’
where 77 are magnetic translations (9.8). A simpler version of the analysis of (10.11) then
shows that
(Pg—2)Fp =1+ Kp, Kgz=O0O(B):L*R?) — L*(R?).

which provides us with a right inverse. Similarly we obtain a left inverse. This proves the
following theorem of Nenciu and of Simon. We note that no assumption on the spectrum
are made here. All we need is that zy is outside the spectrum of F.

Theorem 13. Suppose Py = (D,, — Bxy/2)? + (D,, +iBx1/2)* + V(z), V € C*(R*R),
V(zx+~)=V(x), v €. Then for B sufficiently small

29 & Spec(Py) = zy ¢ Spec(Pp). (10.12)
A modification of the proof gives in fact a stronger statement than (10.12) (see [Sj89,
Proposition 2.4]): if zp ¢ Spec(Pg,) then there exists € > 0 such that
|20 — z| + |B — By| <& = 29 ¢ Spec(Pg).

10.5. Effective Hamiltonian for small magnetic fields. In view of Theorem 12 we
can define

Pr(2)"! = Ep(2) = @28 £ %) L L3(R?) x 2(T) — HZ(R?) x (A(T).  (10.13)

In view of (2.15) the operator EZ, (2) is the effective Hamiltonian in the sense that the
existence of its inverse controls invertibility of Pg — z:

(Pp—2)' = EP(2) — EP(2)EZ_(2) 'EP(2), =z € nbhdc(Iy). (10.14)

We now have an analogue of (10.2):
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Proposition 10.6. There exists (z, B,a) — f(z,B,«a), z € nbhdc(I}), B € nbhdg(0),
a € I, satisfying, uniformly in z and B,

1f(z, B,a)| < Ce Pl ¢ >0, (10.15)
such that, in the notation of (10.13),
[EP, (2)v)() = D e3P (2 B o — B)u(B). (10.16)
Ber

Proof. From (10.7) we conclude that for all v € I', 7°E” (2) = E” (2)7F . On the level
of the matrix elements of EZ, (z) that means that

S e =3 ) = 5B 5
B

- Z EP, (2, p, 8+ 7)es P70 (8),
B

that is,
e2PPNED (z,p— 7, 8) = e3PMEP (2,p,8 +7),
or, by putting p = a — 8 and taking v = —f,
E]_3+(z, a,fB) = 6_%B(O‘_B)A(_'g)JF%BBA(_B)E_BJF(z, a—3,0)= e3Bons B (2,0 —=3,0).
Hence we can put
f(2,B,7) == EZ,(2,7,0).

To obtain exponential decay we note that Proposition 10.5 applied with f(z) = ¢o(z),
0 < ¢p < 1, shows that

0 f(2,B,7) = eV B, (2)(e7 ) 5(e))(7) € €*(T).
In particular, the left hand side is bounded and that gives (10.15). O

10.6. Harper’s operator. We will show that f is a smooth function of B and hence the
first approximation of EZ (z) is given by

v(a) = 2v(a) — Mpv(a), Mpv(a 2623‘“5]5 - B).
Bel

In the simplest tight binding model, I' = Z*, I'* = 2772, and
E(n, m) = 6n,1 + 571,71 + 5m,1 + 5m,717 (Tl, m) € Z2,
which corresponds to E(6) = 2(cos 6 + cosbs).
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4
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B r”""’-ﬂ’]}svl

FIGURE 11. Spectrum of Harper’s operator (10.19): the horizontal axis
represents magnetic flux through a fundamental domain which for I' = Z? is
equal to B; the vertical axis is the spectral parameter. The spectrum is a
Cantor set when B/27 ¢ Q and a union of ¢ disjoint intervals when B/2m =
p/q € Q. This picture is known as the Hofstadter butterfly. Reproduced from
the original figure by Douglas Hofstadter under Creative Commons License
CC BY-SA 3.0. The proof of the structure of the spectrum in the general
case is due to Avila and Jitomirskaya [AvJi09].
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Since (n,m) A (n£1,m) = +m and (n,m) A (n,m £ 1) = Fn, we see that

i

v(n,m) Ms, e3P p(n —1,m) + e 2P u(n +1,m) + e 2P 0(n,m — 1) + e2%"v(n, m + 1).
We now introduce a unitary transformation
Up : T) = AT, Ugv(n,m) := ez v(n, m),

so that

UpMpUp

v(n,m) 2—= v(n —1,m) +v(n+1,m)+ e B"

v(n,m — 1)+ eP"(n,m + 1).

We are interested in the spectrum of Mg which is the same as the spectrum of M, B =
UzMpUp. We can consider this operator on the Fourier transform side 6 € R? /T* where
it becomes

u(0) — 2cos by u(f) + 2[cos(BDg, + Oo)u](0), u e L*(R*/T*), T* =217
or, putting x = 0, € R/27x7Z, 7 = —0; € R/27Z,
Hpw(x,7) := [Hp(T)w(e, 7)|(z),

) ) (10.17)
Hgp(t) :=cosx +cos(BD, — 1), Hpg(7): L (R/21Z) — L*(R/27Z).
This is the celebrated Harper operator.
We now claim that
B ¢ 21Q == Specag oz (Hp(T)) = Spec 2 (g 2.7y (HpB(0)), 7 €R. (10.18)

Proof of (10.18). This follows from two observations:
Hp(kB) = UHp(0)U;, k€ Z,
Upu(x) := e*u(x), U, : L*(R/27Z) — L*(R/277Z),
and, using irrationality of B/2xr (which implies ergodicity of § — 6 + B mod 27),
VedkeZVne€Z |cos(B(n+k))—cos(Bn—rT)| <e.

In particular || cos(BD, + Bk) —cos(BD, —T)||L2(r/272)— L2 (R/27z) < €. But this means that
for any € > 0 there exists k € Z such that

||HB(T) - HB<kn)||L2(R/27TZ)—>L2(R/27rZ) = ||HB(T) - UkHB(O)UI:;||L2(R/27rZ)—>L2(R/27rZ) <E.

For bounded self-adjoint operators, A;, j = 1,2, [|(A; — A)7!|] = 1/d(), Spec(4;)) (which
follows from the spectral theorem, Theorem 1), gives

|A; — Azl < e = Spec(A;) C Spec(Az) + (—¢,¢).
We apply this this with
A1 = HB(T), AQ = UkHB(O)U;, SpeC(AQ) = Spech(R/%Z)(HB(O)).
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Since ¢ is arbitrary, (10.18) follows. O

In the notation of (10.17) it follows that, if B ¢ 27Z,

SpeCLQ(R2/2W22)(HB) - SpeCLZ(R/2ﬂz)HB<T), T E R,

as sets. In view of this we can consider (abusing notation slightly) the following operator
with the same spectrum:

Hy : I2(R/27Z). x (R/BZ),) — [X(R/2A7), x (R/BI),),
Hpw(z,7) = [Hp(T)w(e, T)](x).
We can then define a (modified) Bloch transform in this context (see §5.3)
Vg : L*(R) = o, # ={uc L} (R :u(x+27mm, 7+ kB) = e “u(x, 1)},
Veu(z,T) = Z e BT mm)y(x — 2rm),  (z,7) € R/217Z x R.

mez,
As in §5.4,
SViHEVp = cosz + cos(BD,) : L*(R) — L*(R). (10.19)
This is another version of Harper’s operator — see Figure 11. We note that it is given
as a semiclassical quantization of the (postulated) Bloch energy, F(z,{) where we replace

(01,605) by (z,£) € T*R. The small magnetic field B plays the role of the semiclassical
parameter.

10.7. Smooth dependence on B. To study smoothness of B +— f(z, B), where f is given
in Proposition 10.6, it is natural to differentiate £g(z) = Pp(z)~! with respect to B. The
difficulty we encounter is the fact that spaces on which Pg(z) act (and are invertible on)
depend on B. Using weighted estimates from Proposition 10.5 we can however consider
these operators as acting on smaller spaces which are independent of B:

Lemma 10.7. Let
AF = (\2) VHNR?), L= ﬂ VN

N

be Fréchet spaces with seminorms |[ullpr n == || (®)Nullgr, ||vllzn = |[{(®)Nv||e. Then, in
the notation of (10.6),

Pp(z): H*x L — #° x £, z¢cnbhde(ly),
1 a bounded operator, invertible for sufficiently small B, with a uniformly bounded inverse,

Ep(2) : H° x L — H#*x £, B €nbhdg(0), z € nbhde(l}).



PDE METHODS IN CONDENSED MATTER PHYSICS 99
Proof. We first check that for any B and k, % = (" (z) "NV HE(R?). This follows from
)Y (D + A(@)ull g2 < Ol ¥l
and

&)Y D3ull 2 = [{2)™ (Ds + Alx) = A(x)*ull2 < C Y )V U(D, + A(x))Pul| 2.

B<a

To show boundedness and invertibility we then use Proposition 10.5 with

fn(z) = Nx(eva)logla), [le™ullm ~ [lul

Here we take y € C*(R?;0,1]) equal to 0 for |z| < 1 and equal to 1 for || > 2. We then
choose ey so that Ney log(ey') is sufficiently small as then || fi |l + || fx || < 1 as required
by the assumptions of Proposition 10.5. On one hand, we have

_;{Jk’N.

1Ps (2 ullmoxcn ~ e Po(2)ullraxie = e/~ Pr(z)e™ e/ ul|axe

< CuefNUHngﬂ < Clle™2ul| g2y ~ [ullrzxe,ne-
On the other hand, we have

I€s(2)ullzaxcn ~ lle™ Ep(2)ullmexe < Clle™2Ep(2)ull g2

= CHefN”gB(Z)e_fN+2€fN+2U||H%xl2 < Clle™2ul| 2w ~ |ullgoss e,

which completes the proof. [l

With this in place we can consider derivatives of Ppg(2):
Proposition 10.8. For z € nbhdc¢(/y),
nbhdg (0) > B + Pp(z) s in C°°(nbhdg(0), B(H#? x L, #° x £L)).
Consequently, B+ Eg(2) : HOX YL — H*x L is also a smooth function of B € nbhdg(0).

Proof. Recall

ZU 900 )7 REU<O‘) - <u7TaB§00>'

ael

Pz —z RB
Pt = (" ) R
+

We need to check each individual block is smooth in B. First Pg = (D,, — Bxy/2)? +
(D,, + Bx/2)?* is smooth in B since polynomials are smooth. For RZ : £ — H°, we note

OTapo(x) = %Im(wd)chpo(x).
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Since |@o(x)| < Ce 171/ the operator

OpR® 1 u_(a) Zu Im (za)TEpo(x) : L — H°

acl

is bounded by Schur’s criterion. Moreover,

(R” — R — (B — By)0pR™)u_(x)

= 3 )T o) = T2 (@) = (B = Bo) Im(a) T2 ()

ael

=Y u (@) OB - By)?),

ael

Thus by Schur’s criterion again, g R is indeed the derivative of RZ. We can iterate this
argument to conclude RZ € C*(nbhdg(0), B(L — H")). The smoothness for R is similar.

The smoothness of £g(z) comes from the identity
EOPp + (08ER)PE =0
and thus 8353 = —53(83773)83. O

As a corollary, f(z, B,«) is smooth in B and we can calculate derivatives 9% f(z, B, ).
By the weighted estimate, for 0 < § < 1

H€5<°>3353(Z)6_6<'>|’L2xz2—>ngz2 = “35<°>5B(Z)(aBPB(Z))gB(Z)€_5<.>HL2x12—>ngz2

= [|”®Ep(2)e e (0pPp(2))e " @ Ep(2)e | L2y w2 < 00,
we conclude [|e*®IpEB, (2)e™%®||22 < 0o and @I f(z, B,a) € [*(T'). We can iterate
with more derivatives and conclude that

0% f(2, B,a)| < Cre®l, B € nbhdg(0), z € nbhde(l}). (10.20)

10.8. The algebra of effective Hamiltonians. Recall the effective Hamiltonian EZ (=)
is given by operators of the form

Ma(f)ule) = Fpua) = 3 e85 flo— Bu(d),  f € I(D).
Ber
We study operators of this form in this section. Note Mp(f) : I}(T') — [}(T') is a bounded

linear map, we define

Ap = (Mp(f): f € D}, IMa(H)] = IMs(Dloon = 1l

We claim Apg has the structure of a Banach *-algebra. Recall a Banach *-algebra is a
Banach algebra A over C such that
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e There is an involution operator *: A — A, i.e. 2** = .
o (x+y) =" +y, (zy)" = y'a" for any x,y € A;
e (\x)*=M\z* forany A € C, x € A.

If the * operation satisfies the C* identity ||z*z| = |z||* for any = € A, we say A is a
C*-algebra. Classical examples of C*-algebras include continuous functions over a compact
Hausdorff space, bounded operators on a Hilbert space and the C*-enveloping algebra of
the convolution algebra of a locally compact group.

The multiplication and * operation is naturally defined on Ag, and we note

Mp(f) = Mz(f), fla)= f(-a); Mp(f)Mp(g) = Mp(Mp(f)g).
On checks
(Map(flu,v) = > 2P f(a = B)u(B)o(a)
a,Bel
= > u(B)esf(a = Bv(a) = (u, Mp(f)v)
a,Bel

and

Mp(H)Mp(gula) = > e3P f(a — B)exPPg(8 — p)u(p)

B,pel

= Y PO fa -y — p)er P0G (y)u(p)
B,pel’

= e2Bary (Z BN (o — p— 7)9(7)) u(p)

pel’ vyel
= Mp(Msz(f)g)u(a).
All the properties of * follows from the definition. For the C* identity, one checks that
[Mp(f) Mp()Il = H]?#Blel = Z

ael

N ePNTF (B = a)£(8)

per

<SS STUAB - QIFB)] = £

ael’ gel’

The identity will never hold for general f € ['(T'), so Ag is not a C*-algebra. However, one
can define the reduced C*-enveloping algebra C*(Ap) as the closure of Ag inside B(I*(T)).
It is, by definition, a natural C*-algebra.

One note that if (B — B')|R?/T| € 47Z, then Ap = Ap/. Since f#pg = g# _pf, Ap is
commutative if and only if B|R?/T| € 27 Z.
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Proposition 10.9. Suppose |f(a)| < Ce~el for a € T, then Mp(f)~' : I*(T) — 1*(T)
exists if and only if there exists g : I — C such that |g(a)| < Ce~ el and

[#B9 = g#Bf = do.

Proof. Suppose there exists such g, then it is obvious that Mp(f)™' = Mp(g). On the
other hand, suppose Mp(f) is invertible on *(T"). Since
(77, Mp(f)] =0,
we know Mp(f)~! = Mp(g) for some g € [°°(T"). Moreover,
lglliz = M 5(g)dollr2 < oo.

Choose ¢ : I' — R such that ¢ is constant near co and ||¢||Lip, < 1, then by the exponential
decay of f, we have

le?Mp(f)e™? = Mp(f)lliz—r < 1.
This implies that for some 0 < § < 1, [|e’l*lg||;2 < 0o and thus
l9(a)| < Ceok.
0

Recall 77 f(a) = e3BoM (o — ) = M_g(d,)f(a). We have the commutator relation

7_;BT[;B _ eiBaABTEBT;B.
This is the Weyl commutator relation, which motivates us to give a semiclassical interpre-

tation of the effective Hamiltonian.

10.9. Semiclassical structure of the effective Hamiltonian. The effective Hamilton-
ian BB + can be interpreted as a semiclassical pseudodifferential operator, where B is con-
sidered as a semiclassical parameter.

Recall for a(z,§) € C*(R?) such that |07 a(z, )| < C,, we may define the Weyl quan-
tization of a as

Op*(a)u(z) = a*(z, D)u(z) = — /R Qa(

"o

rT+y
2

,5> D () dyds, u € S(R).
We note that

eiBDzeiIU(l') _ ei(z+B)u<x+B), eiazeiBDzu(:C) _ ezxu(x+ B)

So eBP= ¢t also satisfy the Weyl commutator relation

ezBDx ezac — ezBewezBDx )
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We recall two basic lemmas on the Weyl quantization of exponential of more general
linear functions.

Lemma 10.10. For a,b € R,
Opw(ei(am+b§)) — ei(aw-‘,—bDw)
where v(t, x) = et +0Pe)y (1) is defined by
(i0p + ax + bD,)v = 0,
v(0,z) = u(z).

Proof. Let v(t,x) = e™@@™P=)y(z). It is direct to check from the definition that v(t,z) =
eitert3t%aby (1 4 tb). On the other hand,

Op™ (&5 )y (1) = i/ei(a”;y%&f(xy))u(y)dydg _ L /ei(‘?+b£+§x)ﬁ (5 - 2) dg§
o 2 2
1 - ax ] ;
- S TOHDEFa/D) g (6)de = 9T/ 2y (1 4 b) = v(1, x).
T
O
Lemma 10.11.
€i(a1x+b1Dz)e’i(a25E+b2Dz) = eé(bl‘m*anl)Gi((al+a2)x+(b1+b2)D1)'
Proof. We check
ei(alm‘*‘lez)ei(mx"—bQD””)u(x) _ 6i(a1x+b1Dm)eiaza:—i—z‘azbz/Qu(x + b2)
_ 6ia1$+i(l1bl/2€ia2(x+b1)+ia2b2/2u(m + by + 52)
= eilazbi—ab2)/2gi(artaz)ati(ar+az)(br+ba) /2 (1 4 by 4 by)
_ ei(azbl,ale)/Zei((al+a2)x+(b1+b2)Dz)u(l‘)'
O

Now for f € [*(Z?), let

R(f) =Y Op“(ePHeen)f(a) : L*(R) — L*(R).

a€Z?

Since the generators satisfy the same Weyl commutator relation, we have

Proposition 10.12. For f,g € (*(Z*), R(f) o R(g) = R(f#s9).
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Moreover, if | f(a)| < Ced®l, then R(f) = Op“(a(x, BE)) where
a(z,&) = Y et f(q) € O%(R?/2nZ?)

a€Z?
is a real analytic periodic function. Similarly, if |f(a)| < Cy(a)™ for any N € N, then
a(x,§) is a periodic smooth function.

We can then interpret the spectrum of Pg as a nonlinear spectrum problem for a semi-
classical pseudodifferential operator as follows.

Theorem 14. Suppose f : 7Z* — C such that |f(a)| < Ce=cl, then the following are
equivalent

(a) 0 ¢ Specp(zz)(./\/lB(f));

(b) 0 ¢ SpeCL2(R) (R(f));

(c) R(f): L* — L? is invertible, and there exists b € C¥(R?/27Z?) such that R(f)™! =
Op"(b(x, BE)).

Proof. By Proposition 10.12, (a) implies (b). Also it is clear that (c) implies (a), since we
can take g to be the Fourier transform of b so that R(f)™* = R(g). Proposition 10.12
again tells us Mp(f)~! is Mp(g).

We are left with showing (b) implies (c¢). In order to do this, we need use Beals Lemma
(see [Zw12, Theorem 8.3]) which tells us R(f)~' = Op"(b(x, BE)) for some b € C*(R?)
with |07 :b(z,§)| < C,. In order to show b(z, §) is periodic, we introduce k(x,§) = 20§ — o
for (xg,&) € 2mZ?/B and conjugate using k“(x, BD,) by Lemma 10.11:

eikw(az,BDz)ei(agz+alBDz)efik“’(x,BDz) i angoJralBéo)ei(agx+a1BDz) _ ei(angralBDz)

Thus [e?**@BD2) R(£)] = 0 and [ (®5P=) R(f)~'] = 0. On ther other hand,
@B (g BD, e @ BP2) = b (1 + Bug, BD, + B&).

So b(z,&) € C*(R?*/27Z?) is a periodic function. By Fourier series argument again,
b(x,€) = Y gla)ell@rtte2®) for a rapidly decaying g : Z? — C. We have R(f)™' = R(g)

a€Z?
and thus Mp(f)~' = Mp(g) by Proposition 10.12. By Proposition 10.9, |g(a)| < Ce~ll
has exponential decay. Thus b € C*(R?/27Z?) is real analytic. O

10.10. Computation of the semiclassical effective Hamiltonian. In this section we
want to compute the semiclassical expansion of the symbol b(z, &) € C¥(R?/27Z?) defined
via Theorem 14 and Proposition 10.6:

b(z,2,& B) = by(z,2,€) + Bby(z,2,€) + O(B?).
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By Proposition 10.8, b(z, x,&; B) is smooth in B and z. Taking B = 0 we conclude by(z,§) =
z — E(§, x) from Proposition 10.1. In order to compute by, we differentiate in B. Since

05€p(2) = —€p(2)(0.Pp(2))Ex(z), we have
OpE® (2)|p—o = —E_0pPpE, — E_(2)0sRE, — E_OpRPE_,(2).
Recall Pg = (D,, — Bry/2)* + (D,, + Bx1/2)* + V(x), so
OpPp = x1D,, — x2D,, + iB|x|2.

Moreover, E_v(a) = Ryv(a) = (v, ps) and Eyvy(z) = R_vy(z) = > vi(a)pa(x). Thus
ael
the first term is given by

—E_(aBPB|B:0)E+50(O./) = — /RQ(ZL'leQ — ZEQDxl)gO()(ZL‘)gOa(LE)dQZ. (1021)

The second term 1is

!

—E_ 4 (2)(@8RY) =0 E4do(a) = 5 > (205(a) = E(a = ) /R2 (A B)po() ps(w)de

BeT
(10.22)
and the third term is
B (0pR?|po0) E_ =53 [ @A B () - B@))palalpaloe
ger Y R?
(10.23)

When I' = Z2 we can write

(z.2,8) = Y 0pE®, (2)|p=obo(a)e'™ 12",

a€Z?

The first term (10.21) gives

-, / (51Dy, — 42Dy, )20 (y) a(y)e ™2 dy = / WDy, = 12Dy )eo(y)e((€, ), y)dy

a€Z?

The second term (10.22) gives

| =
N
%
£
|

eyl

(o — p))eiréions / (v A B)oo(y)oa)dy

R2

— 5~ Bl&a)) [ eoo)nDs — 52DolE a1,
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and the third term (10.23) gives

-5 3 emerien / (A B)=00(8) — BB pa(w)aly)iy

«,B€Z?

=5 [ wABBE)swAE Dy

BEZQ

- 2(2@2 /R /R g 2O Do y2Da,)(6, y) (€, ), y)dbdy.

We conclude that by(z, z,€) is given by

/RQ(%DW - ysz1)¢0(y)mdy
iz - B(e,x) / (). — 32D (E 7). 9y

2(27)? / Az/QﬂZQE<9><y1Dez—y2Del> (6.4)p((&.2), y)dbdy

1 .
- / / (—2(1Dy, — 4Dy, + (s Do, — y2 Do) E(0))0(6, y) 2(7, 9 dbdy
2(2m)? Jpe R2 /2772

+ 4z = B o) [ onlsTnDs — D& 20}y
(10.24)

We are interested in the case when b(z,z,&; B) = 0. Then z = E(§,x) + O(B) and the
second term on the right hand side of (10.24) is of higher order.

Denote 7 = (&, z) and (ay,as) A (b1, by) = asb; — a1be. In this notation the y-integral of
the first term can be rewritten as

2027 )2 Z/m [01 2(y =) A Dy —ily =) A DgE(0))p(0,y — 7)¢(T,y — 7)dy
YEZ? )%
27‘( Z /;)1) 0 1) y ’7) /\ Dy - Z(y - ’}/) A DgE(e))gi’y'(H*T)gp(e’ y)gp(T, y)dy
YEZ? x|

~1 /[ = DYAO = 7) A (D, - VEO)o(0.1)7T .
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Integrating in 6 gives

/Rz/zz(y + Do) A (Dy ~ %VE(T))SO(ﬂ y)e(T,y)dy

— IVE(r) A / DR / D) A Dyl )2 )y
R2/72 R2 /72

= %VE(T) A (Dru(r,®),u(t,)) + (D; A (=7 + Dy)u(r, ®),u(r, o)),

where u(7,y) = ™ o(r,y) — see §3.3. The term wedged with VE(7) is essentially the
Berry connection (8.12). We conclude
b1(2,8, 2)|bo(we)== = 3VE(T) A (Dru(r,0), u(r, o))
+ (1 — Dy) A Dyu(T,e),u(r,e)), 7=( ).
Here we used the fact that TA D, = —D_ A T.

(10.25)

Remark 20. Under the symmetry assumption V(x) = V(—z) (see Proposition 8.5) the
second term in (10.25) can be simplified. We write

bi(x,€,2) == (T — D)) A Dyu(r, ), u(r,e)), 7=(E ),
and we first note that (see §8.4)
IE() = - (B, = Dutr.y)ulrgdy = - [(D, = nyulr (. ~y)a(r)dy
where we used (8.17). Hence

0=3D,.AV,E(T)=—=D; A /(Dy — T)u(r, y)u(r, —y)a(7)dy
= b — /(Dy — 1)u(t,y) A Dyu(r, —y)a(T)dy — %VTE(T) A a(T) ' Dya(r)

=b + /u(T, Y)[(t — Dy) A Dyul(r, —y)a(T)dy — %VTE(T) A a(T) ' Dra(T)

=2by — IV E(1) Aa(r) "' Da(r).
We conclude that
by = 1V.E(1) A a(r) " Dra(7).
We use this to show that reflection symmetry (8.15) implies that b |p,—. = 0. In fact,

/]12{2/22 Dou(r, z)u(T, z)dx = /R?/Z? Dro(r)u(r, —z)a(r)u(r, —)dw

= — /R2/Z2 Dou(r, x)u(r, z)dx + a(7)Dra(t) L.
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Moreover, D [5. /22 u(T, x)u(r, z)dr = 0 implies that

/]R2/Z2 Dou(r, z)u(r, v)dx = / Doul(r, )ulr, z)de.

R2 /7.2

Thus

/w Dyu(r,)ulr, 2)dz = =5a(r) "' Dsa(r)

and (10.25) gives

bi(x, &, 2) by (2.6)=> = %VE(T) A (—%Q(T)_IDTCY(T) + %a(T)_lDTa(T)) = 0.

Remark 21. The second term in the Bohr—-Sommerfeld expansion, relevant to de Haas—van
Alphen oscillations, is given by

- / by (., €, (10.26)
E(¢z)=p

where ¢ corresponds to the parametrization of £ = y (we assume here that VE # 0 when
E = p) given by the Hamilton vector field (see (2.2)):

(@(1), §(1)) = Huo(2(1),£(t)) = (O E(E(1), x(t)), =0 E(E(t), x(1)))-
This means that
(8§E, 8$E) A\ (al, CLQ)dt = <(axE, —8€E), (Cll, (1,2)>

or

/ bi(p, x, §)dt = / (1 — Dy) A\ Dyu(T, @), u(r,))|dt| + 2%/ n,
B(&a)=p BE(&x)=p Yu

where n = fRz/ZQ dou(0,y)u(f,y)dy is the Berry connection (8.12). The cycle v, is given
by E(0) = p with the orientation determined by the direction of the Hamilton vector field
H,,. Since under the symmetry assumption (8.15), dn = 0, in that case we get a nontrivial
contribution only when +, is not topologically non trivial.

11. 2D PERIODIC STRUCTURES IN CONSTANT MAGNETIC FIELD: DENSITY OF STATES

11.1. Regularized traces B # 0. In this section we consider the density of states in
the previous model. Now we move to the case that B # 0 and small. First we show the
existence of trf(Pg). Suppose

f(Ppw(z) = | K(z,y)w(y)dy.

RQ
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Since [P, Pg] = 0, we have [TV, f(Pg)] = 0, i.e. K(z+7v,y+7) = esBE MK (2 ).
This implies that K(z + v,z +7) = K(z,z) for any v € I". This implies the existence of
the limit

1 1
trf(Pg) = lim

— Kz, z)dr = —— K(x, x)dzx.
50 13 e K = e f K5

Suppose we have an operator M : [*(T") — [?(T") defined as

:ZM(a

yer
we can define the modified trace as
~ ) 1
trM = Lh—{%o EIAE M(a, ).
a€el’N[—L,L]?

If M = Mg(f) such that M(«, 5) = e%BO‘/\Bf(a — A), then we have similarly trMz(f) =
/O Moreover, suppose R(f) = a"(x, BD,), then

[R? /T
o~ _ S 1 .
trMp(f) = RE/T] ~ (2 /RZ/%ZZa(:c,g, B)duxde.

The modified trace has similar properties as a trace:

Proposition 11.1. Suppose A; : L*(R") — L*(R"),j = 1,2 such that |A;(z,y)] <
Ce=l==¥l for some C,c > 0, then (suppose both sides are well-defined)

tr(A;Ay) = tr(AzA;).
Suppose T' C R™ is a lattice and B : L*(R") — [*(T"),C : I*(T') — L*(R™) such that
|B(a, )| < Ce~=ol|O(z, a)| < Ce~le=
for some C, ¢ > 0, then tr(CB) = tr(BC)

Proof. We only prove the first claim, as the second is proved in the same way. By definition,

tr(A1A4) = lim (2L)"

Ay (z,y)As(y, x)dydx

n

[~L.LI"

= lim —/ / 2 (y, ) Ay (z, y)dzdy.

By assumption,

[ Aol p o Ar(y,y) — As A (y,y)| < CemF el y e [—L, L]
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and
| Aol n Ar(y, y)| < Celmlvl=l -y ¢ [-L,L]"
Thus
/Rn | Ao h . n Ar(y,y) = Lz As A (y, y)|dy < OL™
and
tr(A;Ay) = Lh_{go (2;;)” /n Aol n A1y, y)dy
= ngfolo (22)" /R" IL[—L,L]”A2A1 (?Ja y)dy = &(A2A1>7

completing the proof. O

To compute trf (Pp), we will use the Helffer-Sjostrand formula which is based on the
existence of almost analytic continuations:

Proposition 11.2. Let f € C3(R), then for any § there exists f € C°(C) such that

f|R = f, ﬁf(z) = O(] Im z|>), supp f C supp f + Be(0,0).

In particular, we have
1 [ _-
=— / Of(2)(x — 2)"tdm(z), =z €R. (11.1)
T Jc

Proof. The identity (11.1) comes from the fact that - is the fundamental solution of 9.
The function f is constructed as follows. Let x(y) € C5°(R) be a cutoff function such that
X(y) = 1 near z = 0. Let ¥(z) € C§°(R) be a cutoff function such that ¢)(x) = 1 near
supp f. We define

flx +dy) / f(e )el@TWE ge.
It is clear that f € C’OO( ) and f|R = f. We consider
f(e -+ ) = X [ fepnuereemag

W) [ Fronterer g+ M [ oy et
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The term with x/(y) vanishes near the real line. The last term is

WO [ g ererrmias = LD [ e eyt
ot

since (y€) Ny (y€)e! =% i uniformly bounded and f(€) is rapidly decreasing.
The first term is

//f yg z(z Z+iy) Edl’dé'

a pila—a+iy)é
/ Jo o) i
Z$ T+iy)€
//f Z)yx’ (y€)- zﬂy)dafd&
z(x T+1iy)€
N 1 —N+1_7
LMW [ [ @ e) W ()i

= 0(Iy|N)

since (y€) NIy (y€)e @+ is uniformly bounded and

@) e (@) 1-02\" e
Az’(z—ﬂ@)e 5dx‘4i<x—f+¢y>(1+52) o

-[(58) (i)
=01 +€)7)

is rapidly decreasing in & for |z — Z| > ¢ > 0 since supp f Nsupp ¢’ =
We conclude df (z + iy) = O(|y|N) for any N > 0. O

Now for the self-adjoint operator Pg we have (by spectral theorem)
1 [ -
§(Pe) = — [ OF()(Ps — ) dm2).
C
Recall from (10.14) that

(Ps— =) = BP(2) - E¥(2)E”, (=)' B2 (2).
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Since EP(z) is holomorphic, we have
1 [ -
F(Ps)= -1 /C D (2)EE(2) B2, (2)" B2 (2)dm(>).
By Proposition 11.1 and 9,EZ, (z) = —0,((R2)"Y(Pp — 2)(RY)™) = EB(2)EZ(2),

() = L [ OFOREN B2, () B ()
- L [ OieREn B, () an
_ _% / BF (2)0((0. BB, (2))E, (2)"Vdm(2).

C

11.2. Smoothness of B — trf(Pg) for f € C=(R).
11.3. Bohr—Sommerfeld quantization rule for pseudodifferential operators in 1D.

11.4. Magnetic oscillations in density of states: topological corrections.
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