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Abstract. The scattering phase, defined as log detS(λ)/2πi where S(λ) is the (uni-

tary) scattering matrix, is the analogue of the counting function for eigenvalues when

dealing with exterior domains and is closely related to Krĕın’s spectral shift function.

We revisit classical results on asymptotics of the scattering phase and point out that

it is never monotone in the case of strong trapping of waves. Perhaps more impor-

tantly, we provide the first numerical calculations of scattering phases for non-radial

scatterers. They show that the asymptotic Weyl law is accurate even at low frequen-

cies and reveal effects of trapping such as lack of monotonicity. This is achieved by

using the recent high level multiphysics finite element software FreeFEM.

1. Introduction

The scattering phase and its close relative, the spectral shift function, have been

studied by mathematicians at least since the work of Birman and Krĕın [BK62]. In

the case of radial scattering, the scattering phase is the sum of phase shifts which are

a central and classical topic in quantum scattering – see for instance [Sa20, §6.4].

The scattering phase is defined using the scattering matrix, S(λ), which is a unitary

operator mapping incoming waves to outgoing waves – see §2 and Figure 3. Because

of its structure, the determinant of S(λ) is well defined and we put

σ(λ) :=
1

2πi
log detS(λ) ∈ R, σ(0) = 0, (1.1)

where the last condition fixes the choice of log.

The scattering phase, σ(λ), is appealing to mathematicians since it is a replace-

ment for the counting function of eigenvalues for scattering problems – see [DyZw19a,

§2.6, §3.9] and references given there. More precisely, as established by Jensen–Kato

[JeKa78] and Bardos–Guillot–Ralston [BGR82], σ(λ) satisfies

tr(f(−∆Rn\O)− f(−∆)) =

∫ ∞

0

f(λ2)σ′(λ)dλ, f ∈ S (R). (1.2)

Here, as in the rest of this paper, we specialized to the case of Dirichlet Laplacian,

∆Rn\O on Rn \ O, where O b Rn is an open set with a piecewise smooth boundary

and connected complement. (Strictly speaking, f(−∆Rn\O) and f(−∆) are defined on

L2(Rn \ O) and L2(Rn), respectively, using the spectral theorem, but we consider the

former space as subspace of L2(Rn) using extension by 0.)
1
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It could then be considered somewhat surprising that, to our knowledge, σ(λ) has

only been exhibited for radial scatterers. That is, there has never been any form

of an actual assignment, via a numerical approximation, of λ 7→ σ(λ). At the time

when asymptotic formulae for σ(λ) were mathematically investigated (see §1.1) it is

safe to say that such numerical computation were out of reach. Here we benefit from

major advances in computational power and, in particular, from the recent high level

multiphysics finite element software FreeFEM – see §4.

The numerical results for a variety of two dimensional scatterers O are shown in our

figures. The main conclusions are:

• The Weyl asymptotics for σ(λ) given in (1.5) provide an accurate approximation

starting at 0 energy; this accuracy is particularly striking in the case of non-

trapping geometries – see Figure 1. They also appear remarkably accurate in

trapping geometries.

• Strong trapping immediately causes lack of monotonicity of σ(λ) which in ac-

cordance with (1.7) is related to the presence of resonances near the real axis

(as reviewed in §1.2) – see top Figure 2.

• Mild trapping, illustrated in the two bottom Figures 2, does not seem to destroy

monotonicity but there is a visible effect from scattering resonances at least for

low frequencies.

• For star shaped obstacles the scattering phase is monotone [Ra78]. This mono-

tonicity is not known for non-trapping obstacles even though [PePo82] provided

full asymptotic expansion for σ(λ); numerical examples suggest that σ(λ) may

always be monotone for non-trapping obstacles – see Figure 1. More experi-

mentation would, however, be required for a firm conjecture.

1.1. Weyl law for σ(λ). Possibly the most striking result about the counting function

for the eigenvalues of the Dirichlet Laplacian, ∆O , on a bounded domain O ⊂ Rn is the

Weyl law: with

N(λ) := | Spec(−∆O) ∩ [0, λ2]|,

N(λ) =
ωn vol(O)

(2π)n
λn − ωn−1 vol(∂O)

4(2π)n−1
λn−1 + o(λn−1), (1.3)

where ωn := vol(BRn(0, 1)). It was conjectured by Weyl in 1913 and established by Ivrii

in 1980 (see [SaVa97] and [Iv16] for the history of this problem) under the assumptions

that ∂O is smooth and the set of periodic orbits has measure zero (a generically valid

fact expected to be true for all O with smooth boundaries).

The trace formula (1.2) shows that σ(λ) is the exact analogue ofN(λ) since tr f(∆O) =∫∞
0
f(λ2)N ′(λ)dλ. It is then natural to ask if (1.3) holds for σ(λ), with the understand-

ing that, in agreement with (1.2) we now consider renormalized volume of Rn\O. Hence

https://freefem.org/
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the natural analogue of (1.3) is given by

σ(λ) = −ωn vol(O)

(2π)n
λn − ωn−1 vol(∂O)

4(2π)n−1
λn−1 + o(λn−1). (1.4)

The difficulty in obtaining (1.4) stems from the fact that classical Tauberian theorems

used for (1.3) use monotonicity of N(λ). As we will see in §1.2, σ(λ) is not, in general,

monotone.

However, for star-shaped obstacles σ′(λ) ≤ 0 was established by Helton–Ralston

[Ra78] (see also [Ka78]). This monotonicity allowed Jensen–Kato [JeKa78] to obtain

the leading term in (1.4) in that case (the convex case was treated by Buslaev [Bu75]).

For convex obstacles Majda–Ralston [MaRa78-79] improved on [JeKa78] by obtaining a

three term asymptotic expansion of σ(λ). Using advances in propagation of singularities

for obstacle problems (see [HöIII, Chapter 24] and references given there) Petkov–

Popov [PePo82] obtained a full asymptotic expansion of σ(λ) as λ→∞.

The first proof of (1.4) for all obstacles (for which the conditions after (1.3) hold) was

given by Melrose [Me88] using his trace formula for scattering poles (see [DyZw19a,

§3.10, §3.13]). Since that formula holds only in odd dimension the same restriction

was imposed. This restriction was lifted using different methods by Robert [Ro94].

(A proof in all dimensions following Melrose’s idea can be given using [PeZw99].) In

this historical account we only discussed the Dirichlet obstacle case. For more general

perturbations see, for instance, [Ch98].

Specialized to two dimensions, (1.4) becomes

σ(λ) = −|O|
4π

λ2 − |∂O|
4π

λ+ o(λ). (1.5)

In the non-trapping case, in addition to further terms in (1.5), there is an asymptotic

formula for σ′(λ) [PePo82]. When a non-trapping O has corners (i.e. has piecewise

smooth, Lipschitz boundary) the following formula is suggested by heat expansions for

interior problems which can be found in [Ch83, MaRo15]:

σ(λ) = −|O|
4π

λ2 − |∂O|
4π

λ+
1

24

∑

j

(
θj
π
− π

θj

)
− 1

24π

∫

∂O

Hds+ o(1), (1.6)

where θj are the angles at the corners (measured from outside) and H is the curvature

(with the convention that H > 0 for circles; we note that if there are no corners and

connected O,
∫
∂O
Hds = 2π). However, to our knowledge only the first asymptotic

term of (1.6) is known rigorously in this case.

In the figures illustrating numerical results both asymptotic formulas are plotted

against the computed scattering phase and its derivative. It is interesting to note that

for most frequencies σ′(λ) seems to agree with the asymptotic formula even in trapping
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cases. This is similar to phenomena proved in the recent work of Lafontaine–Spence–

Wunsch [LSW21] and perhaps could be rigorously established by similar methods.

1.2. Breit–Wigner approximation at high energies. Scattering resonances, which

replace discrete spectral data for problems on unbounded domains, can be defined (in

obstacle scattering) as poles of the meromorphic continuation of S(λ) – see [DyZw19a,

§4.4]. Since S(λ), λ > 0 captures observable phenomena, it is interesting to see how

those (complex) poles manifest themselves in its behaviour. The Breit–Wigner formula

(see [DyZw19a, §2.2]) is one such way. In high energy obstacle scattering it was proved

by Petkov–Zworski [PeZw99] and takes the following form:

σ′(λ) =
∑

|λj−λ|<1

1

π

| Imλj|
|λ− λj|2

+O(λn−1), (1.7)

where λj’s are the scattering resonances, that is the poles of S(λ). From the point

of view of the scattering asymptotics (1.4) we note that the sign of the Breit–Wigner

terms (the sum of Lorentzians on the right in (1.7)) is opposite of the overall trend.

In particular, if there exist λj’s with | Imλj| � (Reλj)
1−n, then σ′(λ) > 0 for λ near

Reλj. Strong trapping, such as that shown in Figure 2 (top figure), is known to produce

resonances with Imλj = O(|λj|−∞) – see [St99], [TZ98]. Consequently, whenever such

strong trapping occurs the scattering phase is not monotone.

The strong and parabolic trapping examples in Figures 2 (top two figures) show

the presence of Lorentzians in σ′ already at low energies. In the very weak trapping

illustrated in in the bottom Figure 2 there is some evidence of a low energy resonance

but the effect seems minimal.

1.3. Low energy asymptotics. The numerical methods used to compute σ′(λ) are

not effective at very low energies – see §4. To obtain σ(λ) by integration we used low

energy asymptotic formulae for σ′(λ). There has been recent progress on this subject

and it is natural to review it here.

The first result we are aware of was obtained by Hassell–Zelditch [HaZe99] (using

monotonicity of σ(λ) as a function of the obstacle [Ra78]) and stated that σ(λ) ∼
1
2

log λ. That was a by-product of their work on planar obstacles with the same scat-

tering phase (an analogue of the isospectral problem). This result was successively

improved by McGillivray [McG13], Strohmaier–Waters [StWa20] and Christiansen–

Datchev [ChDa22] and a more precise asymptotic formula is given by

σ′(λ) ∼ −2

λ

1

(−2 log 2λ+ C(O) + 2γ)2 + π2
(1.8)
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Figure 1. Scattering phase and the corresponding geometry: from top

to bottom, a star-shaped obstacle, a star-shaped obstacle with corners,

a non-trapping non-starshaped obstacle. We also indicate the compar-

isons with the Weyl law (1.5) and the (conjectural) three term Weyl for

obstacles with corners (1.6).
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Figure 2. Scattering phase and the corresponding geometry: from top

to bottom: strong trapping in a cavity, parabolic trapping from bouncing

ball orbits, hyperbolic trapping in the form one closed orbit. In the case

of strong trapping, we see numerical manifestations of (1.7). For the

two rectangles, we expect resonances with | Imλj| ∼ 1/|λj| so that (1.7)

is inconclusive. In the case of two or more discs, the resonances satisfy

| Imλj| > c (see [Va22] and references given there) and, as a result, at

high energies their effect is weak.
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Figure 3. The waves used to define the scattering matrix

with C(O) the logarithmic capacity of O (see below) and γ the Euler constant. One

way to define C(O) is to consider the Green function of O:

−∆G(x) = 0, x ∈ R2 \ O, G(x) = 0, x ∈ ∂O, G(x) ∼ log |x|, |x| → ∞,

Then

G(x) = log |x| − C(O) + o(1), |x| → ∞.
We only used the leading term to enhance the numerics.
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Career Fellowship EP/V001760/1 and Standard Grant EP/V051636/1, PM was par-

tially supported by EPSRC grant EP/R005591/1, and MZ was partially supported by

NSF grant DMS-1952939.

2. A formula for the derivative of the scattering phase

In order to compute σ(λ) we recall a definition of the scattering matrix in dimension

n = 2 – for motivation and a detailed presentation see [DyZw19a, §3.7, §4.4].

We start with perturbed plane waves – see (2.3) below. For that we let ω ∈ S1,

λ ∈ R and define u(λ, ·, ω) ∈ C∞(R2) as the unique outgoing solution to

(−∆− λ2)u = 0 in R2 \ O, u|∂O = −eiλ〈x,ω〉|∂O . (2.1)
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(We note that, to streamline notation, the convention is slightly different than in

[DyZw19a].) Here, by outgoing, we mean that there is b(λ, ·, ω) ∈ C∞(S1) such that

u(λ, x, ω) = e−
πi
4

√
2π/(λ|x|)eiλ|x|b(λ, x/|x|, ω) +O(|x|−3/2). (2.2)

We then define

e(λ, x, ω) := eiλ〈x,ω〉 + u(λ, x, ω). (2.3)

The scattering matrix, S(λ) : L2(S1) → L2(S1), is then given by S(λ) := I + A(λ),

where A(λ) is an integral operator defined as

A(λ)f(θ) :=

∫

S1
A(λ, θ, ω)f(ω)dω, A(λ, θ, ω) := b(λ, θ, ω). (2.4)

The scattering matrix S(λ) is unitary and extends meromorphically to the Riemann

surface of log λ.

It will be useful when computing the scattering phase to rewrite the integral kernel

A(λ, θ, ω) as an integral over ∂O:

Lemma 1. Let ν denote unit normal to ∂O pointing out of O. Then, in the notation

of (2.3), we have (with ds(x) the line measure on ∂O or ∂B(0, r))

A(λ, θ, ω) =
1

4πi

∫

∂O

e−iλ〈x,θ〉∂νe(λ, x, ω)ds(x). (2.5)

Proof. Green’s formula shows that, with e(x) := e(λ, x, ω) and O ⊂ B(0, R)

0 =

∫

B(0,R)\O

(
[(−∆− λ2)e(x)](e−iλ〈x,θ〉)− e(x)[(−∆− λ2)e−iλ〈x,θ〉)]

)
dx

=

∫

∂O

e−iλ〈x,θ〉∂νe(x)ds(x)−
∫

∂B(0,R)

(
∂re(x)e−iλ〈x,θ〉 − e(x)∂r[e

−iλ〈x,θ〉]
)
ds(x).

(2.6)

To compute the last term in (2.6), we use the formulae (2.2) and (2.3) together with

the stationary phase method (see [DyZw19a, Theorem 3.38]): for a ∈ C∞(S1),
∫

∂B(0,R)

a(x/|x|)e−iλ〈x,θ〉ds(x) =
√

2πR/λ(e−
iπ
4 a(−θ)eiλR + e

iπ
4 a(θ)e−iλR) +O(R−

1
2 ).

(2.7)

By applying (2.7) when θ 6= ω, and the x 7→ −x symmetry when ω = θ, we obtain∫
∂B(0,R)

〈x/|x|, ω + θ〉eiλ〈x,ω−θ〉ds(x) = O(R−
1
2 ). This and (2.3) give, with u(x) :=

u(λ, x, ω),
∫

∂B(0,R)

(
∂re(x)e−iλ〈x,θ〉 − e(x)∂r[e

−iλ〈x,θ〉]
)
ds(x) =

∫

∂B(0,R)

(∂ru(x) + iλ〈x/|x|, θ〉u(x)))e−iλ〈x,θ〉ds(x) +O(R−
1
2 ).
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In the notation of (2.2), we put B := e−πi/4
√

2π/λb(λ, x/|x|, ω) and then apply (2.7)

to see that this is expression is equal to

eiλRR−
1
2

∫

∂B(0,R)

(iλ+ iλ〈x/|x|, θ〉)Be−iλ〈x,θ〉ds(x) +O(R−
1
2 ) = 4πib(λ, θ, ω) +O(R−

1
2 ).

Combined with (2.6) and (2.4) this completes the proof of (2.5) by taking R→∞. �

Remarks. 1. For evaluating the traces in Lemma 2 numerically we note that, using a

positive parametrizaton [0, L)→ ∂O, s 7→ x = x(s), |ẋ| = 1, ν(s) = (ẋ2(s),−ẋ1(s)) (ν

is the outward normal),

∂ν(e
iλ〈x,ω〉) = iλ〈ẋ, ω⊥〉eiλ〈x,ω〉,

S1 3 ω = (cos t, sin t), ω⊥ := (− sin t, cos t), t ∈ [0, 2π).
(2.8)

2. We recall the following symmetry of e(λ, x, ω) [DyZw19a, Theorem 4.20]:

e(λ, x, ω) = e(−λ, x, ω).

Next, we calculate a formula for σ′(λ) in terms of e(λ, x, ω). The definitions give

σ′(λ) =
1

2πi
trS(λ)∗∂λS(λ) =

1

2πi
tr ∂λA(λ) +

1

2πi
trA(λ)∗∂λA(λ). (2.9)

We start with the first term on the right hand side of (2.9):

Lemma 2. We have

tr ∂λA(λ) =
1

4π

∫

S1

∫

∂O

e−iλ〈x,ω〉G(λ, x, ω)ds(x)dω, (2.10)

where, in the notation of (2.3),

G(λ, x, ω) := −〈x, ω〉∂νu(λ, x, ω) + ∂νv(λ, x, ω),

(−∆− λ2)v(λ, x, ω) = −2iλu(λ, x, ω), x ∈ R2 \ O,

v(λ, x, ω)|∂O = −〈x, ω〉eiλ〈x,ω〉|∂O .

(2.11)

Proof. The integral kernel of ∂λA(λ) is given by

∂λA(λ, θ, ω) =
1

4πi

∫

∂O

(
∂λ[e

−iλ〈x,θ〉]∂νe(λ, x, ω) + e−iλ〈x,θ〉∂ν∂λe(λ, x, ω)]
)
ds(x).

(2.12)

From (2.3) we see that ∂λe(λ, x, ω) = i〈x, ω〉eiλ〈x,ω〉 + iv(λ, x, ω), where v is defined in

the statement of the lemma. Hence, in the notation of (2.8), and with e := e(λ, x, ω),

the integrand in (2.12) for θ = ω is given by

i〈ẋ, ω⊥〉+ i(−〈x, ω〉∂νu(λ, x, ω) + ∂νv(λ, x, ω))e−iλ〈x,ω〉.

This gives (2.10) since
∫
∂O
〈ẋ, ω⊥〉ds = 0. �

We now move to the second term in (2.9):
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Lemma 3. We have

trA(λ)∗∂λA(λ) =
1

16π2

∫

S1

∫

S1
H(λ, ω, θ)F (λ, ω, θ)dωdθ, (2.13)

where in the notation of Lemma 2,

H :=

∫

∂O

eiλ〈x,θ〉
(
−iλ〈ẋ, ω⊥〉e−iλ〈x,ω〉 + ∂νu(λ, x, ω)

)
ds(x),

F :=

∫

∂O

e−iλ〈y,θ〉
[
(〈ẏ, ω⊥〉(λ〈y, θ − ω〉+ i)eiλ〈y,ω〉 − i〈y, θ〉∂νu(λ, y, ω) + i∂νv(λ, y, ω)

]
ds(y).

Proof. The integral kernel of A(λ)∗ is given by

A∗(λ, ω, θ) = − 1

4πi

∫

∂O

eiλ〈x,θ〉∂νe(λ, x, ω)ds(x),

and hence trA(λ)∗∂λA(λ) is given as an integral over ∂Ox × ∂Oy × S1
θ × S1

ω of

1
16π2 e

iλ〈x−y,θ〉∂νe(λ, x, ω) (−i〈y, θ〉∂νe(λ, y, ω) + ∂ν∂λe(λ, y, ω)) .

Using ∂λe(λ, x, ω) = i〈x, ω〉eiλ〈x,ω〉+iv(λ, x, ω) and the definition of e(λ, x, ω) completes

the proof. �

Remark. The integral over θ could be eliminated using Bessel functions. That however

introduces factors J0(λ|x − y|) and 〈y, x − y〉J1(λ|x − y|)/|x − y| and destroys the

product structure which only requires separate integration in x and y. Hence, it is not

numerically advantageous.

3. Analytic solution for the disc

In order to validate our numerical scheme, the scheme was tested agains the analytic

solution for O given by the unit disk. We record in this section the formulae for both

σ(λ) and u(λ, x, ω) in this case.

3.1. The scattering phase for the unit disk. To compute the scattering phase for

the disk, we use polar coordinates and separation of variables to find the scattering

matrix. In particular, in polar coordinates (r, θ), a solution to (−∆ − λ2)u = 0 with

u|∂B(0,1) with u(r, θ) =
∑

n e
inθun(r) satisfies

(
− ∂2r −

1

r
∂ru+

n2

r2
− λ2

)
un(r) = 0, un(1) = 0

and hence

un(r) = An

(
−
H

(2)
|n| (λ)

H
(1)
|n| (λ)

H
(1)
|n| (λr) +H

(2)
|n| (λr)

)
. (3.1)
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Recall [DLMF, §10.17(i)] that for λ, r > 0, n ≥ 0, we have

H(1)
n (λr) =

( 2

πλr

)1/2
ei(λr−

1
2
nπ− 1

4
π) +O(r−3/2),

H(2)
n (λr) =

( 2

πλr

)1/2
e−i(λr−

1
2
nπ− 1

4
π) +O(r−3/2).

Thus, H
(1)
|n| (λr) is outgoing and H

(2)
|n| (λr) is incoming and hence this implies that sin(nθ)

(n 6= 0) and cos(nθ) are eigenfunctions of S(λ) with eigenvalue

µn := (−1)n+1
H

(2)
|n| (λ)

H
(1)
|n| (λ)

.

In particular, using the Wronskian relation [DLMF, (10.5.5)] in the last line, we obtain

σ′(λ) =
( 1

2πi
log detS(λ)

)′

=
R

2πi

∞∑

n=−∞

(H
(2)
|n| )
′(λ)

H
(2)
|n| (λ)

−
(H

(1)
|n| )
′(λ)

H
(1)
|n| (λ)

= − 2

π2λ

∞∑

n=−∞

1

H
(1)
|n| (λ)H

(2)
|n| (λ)

. (3.2)

Remark. Note that we do not write σ(λ) directly since this would involve making a

choice of branch for the logarithm. We instead use the σ(0) = 0 to make this choice

when integrating σ′(λ).

3.2. The scattering amplitude for the unit disk. The the incoming portion of

e(λ) in (2.3) is given by the incoming portion of eiλ〈x,ω〉. Using the Jacobi–Anger

expansion, with x = r(cos θ, sin θ) we have

eiλ〈x,ω〉 = eiλr(cos θ cosω+sin θ sinω) = eiλr cos(θ−ω)

=
∞∑

n=0

δni
n
(
H(1)
n (λr) +H(2)

n (λr)
)

cos(n(θ − ω)),

where δ0 = 1
2

and δn = 1 for n > 0. Thus, from (3.1) we have

e(λ, rθ, ω) =
∞∑

n=0

δni
n
(
− H

(2)
n (λ)

H
(1)
n (λ)

H(1)
n (λr) +H(2)

n (λr)
)

cos(n(θ − ω)),

and hence

u(λ, rθ, ω) =
∞∑

n=0

δni
n
(

1− H
(2)
n (λ)

H
(1)
n (λ)

)
H(1)
n (λr) cos (n(θ − ω)) . (3.3)

We can now easily deduce explicit expression for v, ∂νu and ∂νv.
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4. Numerical scheme

In this section we describe the numerical scheme used to compute the scattering

phase.

4.1. Setup. To compute (2.10) and (2.13), we use the trapezoidal rule to approximate

the 1-d integrals along the angles θ and ω: for N > 0, ωl = 2πl/N for l = 0 · · ·N − 1,

and using the 2π-periodicity, we use the following approximations

tr ∂λA ≈
1

4π

2π

N

N−1∑

l=0

∫

∂O

e−λ〈ωl,x〉G(λ, x, ωl)ds(x),

where G is given in (2.11). For the second term we benefit from the factorization in

which we only compute two integrals over the boundary:

trA∗∂λA ≈
1

16π2

(
2π

N

)2 N−1∑

l=0

N−1∑

p=0

H(λ, ωl, θp)F (λ, ωl, θp),

where H and F are given in Lemma 3. It remains compute the normal derivatives of

u(λ, ·, ω) and v(λ, ·, ω) for ω ∈ (ωl)
N−1
l=0 .

To approximate u and v, we first need to reformulate both problems on a bounded

domain in R2 \O. We use the method of Perfectly Matched Layers (PML) (introduced

in [Be1994] for electromagnetic waves) to do this. More precisely, we use a radial

PML [CoMo98]: consider a disk BRPML
with RPML > RDOM such that O ( BRDOM

,

we reformulate both (2.1) and (2.11) using polar coordinates (r, θ) in BRPML
, and we

apply a complex scaling r̂ = r + i
λ

∫ r
0
γ(s)ds where γ is an increasing function defined

on [0, RPML) and equal to zero in [0, RDOM). Several choices can be made for γ, we

choose γ(r) := 1/(RPML − r) for r ∈ [RDOM, RPML) as advocated in [Ber*98]. We

denote JPML the Jacobian of the transformation from the Cartesian coordinates to the

complexified Cartesian coordinates.

The equations for u and v, (2.1) and (2.11) are solved with the Galerkin method

using Lagrange finite elements; i.e. we solve these equations in a finite-dimensional

subspace Vh ⊂ H1(BRPML
\ O) formed by piecewise-polynomial functions on a mesh,

and we denote h the mesh element size (see [ErGu22] for more information): we

find uh, vh ∈ Vh such that uh|∂O = −Ih(eiλ〈x,ω〉)|∂O , vh|∂O = −Ih(λ〈x, ω〉eiλ〈x,ω〉)|∂O

where Ih : C0(BRPML
\ O) → Vh is the Lagrange interpolation operator, uh|∂BPML

=

vh|∂BPML
= 0,

a(uh, wh) = 0 for all wh ∈ Vh,0, and a(vh, wh) = buh(wh) for all wh ∈ Vh,0,
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where Vh,0 is the subspace of functions in Vh whose value on ∂O ∪ ∂BPML is zero,

a(u,w) =

∫

BRDOM
\O

(∇u · ∇w − λ2uw)dxdy

+

∫

BRPML
\BRDOM

(J−TPML∇u · J
−T
PML∇w − λ

2uw)|detJPML|dxdy,

buh(w) = −2iλ

∫

BRPML

uhw|detJPML|dxdy.

In our numerical experiments, the approximation space Vh is spanned by P2 Lagrange

elements, i.e. continuous piecewise quadratic functions. To bound the error from dis-

cretization independently of λ when solving (2.1) and (2.11), we need h2pλ2p+1 = h4λ5

bounded [DuWu15], where h is the mesh size and p is the degree of the finite element

functions. To satisfy this condition, we set the number of points per wavelength to

µ× (1 + λ1/4), where µ is a constant. Differentiating uh and vh to take the Neumann

trace on ∂O, we obtain P1 Lagrange elements on the discretization of ∂O, which can

then be used to compute G(λ, x, ωl), H(λ, ωl, θp) and F (λ, ωl, θp).

Note that these approximations depend on λ and the angle wl in the Dirichlet con-

ditions, and thus require solving (2.1) and (2.11) for N different angles and hence N

different right-hand sides, for a given frequency λ. Thus, for a given λ, we factorize

the matrix stemming from the discretization (note that it is the same for both uh and

vh), and we use it to solve the discretized problems with several right-hand sides at the

same time to improve efficiency. The numerical computations were carried out with

FreeFEM [He12]. More precisely, we used its interface with PETSc [Ba*19] to solve

linear systems with MUMPS [Am*01, Am*06].

Remark. Since we only need the Neumann traces of u and v to compute the scattering

phase, it is quite natural to want to reformulate both problems (2.1) and (2.11) using

Boundary Integral Equations (BIE). While (2.1) can easily be reformulated with a

standard BIE, the presence of a right-hand side in (2.11) makes it less convenient to

usual boundary integral formulations. Nevertheless, it should be possible to represent

v differentiating Green’s third identity (which we can use to represent u), but it would

imply non-standard boundary integral operators. Thus, we preferred to use more

standard tools such as PML.

4.2. Convergence. When O is a disk, we use the analytical expression from (3.2),

with a truncated sum using |n| ≤ 5λ, to compute the relative error on σ′. In Table 1,

from left to right, the frequency λ is increasing. The tables at the top have RPML −
RDOM = 0.25, while tables at the bottom keep a number of mesh cells in the PML

region constant, RPML −RDOM = 5h.
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Figure 4. Considered geometries with their PML

For a fixed RPML−RDOM and λ increasing (tables at the top in Table 1), the error is

decreasing, which is consistent with [GLS21], which states that the error on u should

decrease in this case. We also observed that keeping a fixed number of mesh cells in

the PML region (tables at the bottom in Table 1) is enough to have the same level of

precision as with a fixed PML region. This is due to the particular choice of γ, and we

do not observe this behaviour with other usual complex scaling (taking γ as a linear

or quadratic function for example). The advantage is that, in this case, RPML−RDOM

decreases so that the computational cost is reduced compared to keeping RPML−RDOM

constant.

Table 2 gives the relative error on σ′ with N increasing, µ = 20, RDOM = 2 and

RPML − RDOM = 5h. We observe that we need to take N large enough to converge to

the same level of error as in Table 1, and N needs to be larger for larger λ: N = 30

for λ = 10 and N = 50 for λ = 10. This is consistent with the fact that u and v are

more and more oscillatory when λ increases, and we observed numerically that taking

N ∼ λ is sufficient to keep the error bounded independently of λ.

4.3. Main numerical results. The values of σ′ in Figure 1 are obtained for λ ≥ 3

with µ = 30, RPML − RDOM = 5h and N = 10λ. For 0.3 ≤ λ < 3, we computed σ′,

but this required the use of significantly larger µ: usually µ = 300 for 0.3 ≤ λ ≤ 2

and µ = 200 for 2 ≤ λ ≤ 3. Figure 2 was produced in the same way, except that we

took µ = 100 away from an interval of size 0.2 centered on the quasimode frequencies

(which are explicitly computeable using the eigenvalues of the Laplacian in the ellipse,

see [MGSS22, Section 1.1.3]). On the intervals near quasimode frequences we also
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µ Relative error on σ′

1 0.1519

5 0.0120

10 0.0038

15 0.0023

20 0.0015

λ = 10, RPML −RDOM = 0.25

µ Relative error on σ′

1 0.0258

5 0.0097

10 0.0030

15 0.0016

20 0.0008

λ = 20, RPML −RDOM = 0.25

µ Relative error on σ′

1 0.0779

5 0.0108

10 0.0038

15 0.0021

20 0.0015

λ = 10, RPML −RDOM = 5h

µ Relative error on σ′

1 0.0334

5 0.0096

10 0.0030

15 0.0015

20 0.0008

λ = 20, RPML −RDOM = 5h

Table 1. Relative error on σ′ for a disk with RDOM = 2 and N = 100.

µ N Relative error on σ′

20 20 0.0594

20 25 0.0025

20 30 0.0015

20 35 0.0015

20 40 0.0015

20 45 0.0015

20 50 0.0015

20 55 0.0015

20 60 0.0015

λ = 10

µ N Relative error on σ′

20 20 0.0618

20 25 0.0310

20 30 0.0309

20 35 0.0311

20 40 0.0307

20 45 0.0031

20 50 0.0008

20 55 0.0008

20 60 0.0008

λ = 20

Table 2. Relative error on σ′ for a disk with RDOM = 2 and RPML −
RDOM = 5h

needed to increase µ significantly, and we took µ = 300. For every geometry, we

refined the mesh around corners in order to obtain good precision.
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Press, 1997

[BGR82] C. Bardos, J.-C. Guillot and J. Ralston, La relation de Poisson pour l’équation des ondes
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[HöIII] L. Hörmander, The Analysis of Linear Partial Differential Operators III. Pseudo-Differential

Operators, Springer Verlag, 1985.

[Iv16] V. Ivrii, 100 years of Weyl law, Bull. Math. Sci. (2016) http://link.springer.com/journal/

13373

http://arxiv.org/abs/2210.05744
http://math.mit.edu/~dyatlov/res/
http://arxiv.org/abs/2105.07737
http://link.springer.com/journal/13373
http://link.springer.com/journal/13373


THE SCATTERING PHASE: SEEN AT LAST 17

[LSW21] D. Lafontaine, E. Spence and J. Wunsch, For most frequencies, strong trapping has a weak

effect in frequency-domain scattering, Comm. Pure. Appl. Math., 74(2021), 2025–2063.

[Ka78] T. Kato, Monotonicity theorems in scattering theory, Hadronic J. 1 (1978), 134–154.

[MaRa78-79] A. Majda and J. Ralston, An analogue of Weyl’s theorem for unbounded domains. I, II,

III, Duke Math. J. 45(1978), 183–196, 513–536, 46(1979), 725–731.

[MaRo15] R. Mazzeo, and J. Rowlett, A heat trace anomaly on polygons, Mathematical Proceedings

of the Cambridge Philosophical Society, 159(1015),303–319.

[McG13] I. McGillivray, The spectral shift function for planar obstacle scattering at low energy. Math.

Nachr. 286, 1208–1239 (2013).

[Me88] R. Melrose, Weyl asymptotics for the phase in obstacle scattering, Comm. Partial Differen-

tial Equations 13(1988), 1431–1439.

[DLMF] NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of

2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C.

W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds.

[PePo82] V. Petkov and G. Popov, Asymptotic behaviour of the scattering phase for nontrapping

obstacles, Ann. Inst. Fourier (Grenoble) 32(1982), 111–149.

[PeZw99] V. Petkov and M. Zworski, Breit–Wigner approximation and distribution of resonances,

Comm. Math. Phys. 204(1999), 329–351, Erratum, Comm. Math. Phys. 214(2000), 733–735.

[Ro94] D. Robert, A trace formula for obstacles problems and applications, Mathematical results in

quantum mechanics (Blossin, 1993), 283–292, Oper. Theory Adv. Appl., 70, Birkhäuser, Basel,
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