Assignment 7

1. (*Ahlfors, p.257, problem 1*) Prove directly that two circular annuli are conformally equivalent if and only if the ratio of their radii are equal.

2. (Ahlfors, p.257, problem 2) In the proof of theorem in the last lecture we constructed $g_j(z) = 2\partial_z \omega_j$ and then defined

$$\alpha_{kl} = i \int_{C_l} g_j(z) dz \,.$$

Show that $\alpha_{kl} = \alpha_{lk}$.

Hint: Integrate $\partial_z(\omega_k\omega_l)$ and $\partial_{\bar{z}}(\omega_k\omega_l)$ over the boundary using Green's formula written as follows

$$2\int_R \partial_{\bar{z}}g(z)dxdy = -i\int_{\partial R}g(z)dz\,,$$

or, which is equivalent, follow the (corrected) hint in the text and use Theorem 19 on page 164.