Assignment 5

1. (Ahlfors, p.227, problem 1) Show that in any region \(\Omega \) the family of holomorphic functions with *positive real part* is normal. Under what added conditions is it locally bounded?
 Hint: Consider the functions \(\exp(-f(z)) \).

2. (Ahlfors, p.227, problem 3) If \(f(z) \) is analytic in the whole plane, show that the family formed by all functions \(f(kz) \), with \(k \) constant, is normal in the annulus \(r_1 < |z| < r_2 \), if and only if \(f \) is a polynomial.

3. (Ahlfors, p.227, problem 4) If the family of analytic (or meromorphic) functions is *not* normal in \(\Omega \), show that there exists a point \(z_0 \) such that \(F \) is not normal in any neighbourhood of \(z_0 \).
 Hint: Use a compactness argument.

4. Ahlfors, p.232, problem 1) If \(z_0 \) is real and \(\Omega \) is symmetric with respect to the real axis prove that the function mapping \(\Omega \) one-to-one and onto \(D(0,1) \), \(f(z_0) = 0 \), \(f'(z_0) \) real, satisfies
 \[
 f(\bar{z}) = \overline{f(z)}.
 \]