Assignment 5

1. (Ahlfors, p.227, problem 1) Show that in any region Ω the family of holomorphic functions with positive real part is normal. Under what added conditions is it locally bounded?

Hint: Consider the functions $\exp(-f(z))$.

2. (Ahlfors, p.227, problem 3) If f(z) is analytic in the whole plane, show that the family formed by all functions f(kz), with k constant, is normal in the annulus $r_1 < |z| < r_2$, if and only if f is a polynomial.

3. (Ahlfors, p.227, problem 4) If the family of analytic (or meromorphic) functions is not normal in Ω , show that there exists a point z_0 such that \mathcal{F} is not normal in any neighbourhood of z_0 .

Hint: Use a compactness argument.

4. Ahlfors, p.232, problem 1) If z_0 is real and Ω is symmetric with respect to the real axis prove that the function mapping Ω one-to-one and onto D(0,1), $f(z_0) = 0$, $f'(z_0)$ real, satisfies

$$f(\bar{z}) = f(z) \,.$$