MATH 1B—SOLUTION SET FOR CHAPTERS 11.12, 9.1, 9.2

Problem 11.12.25. Use Taylor’s Inequality to determine the number of terms of
the Maclaurin series for e® that should be used to estimate €% to within 107°.

Solution. First of all, every derivative of e” is e”. Since e” is increasing, the maxi-
mum of every derivative of e* on [0,0.1] is €% itself.

Now, if we actually knew €', we wouldn’t need to estimate it! Still, we know
that it is well less than 2 (the square root of 3 is, and this is the 10** root of
something less than 3). Our error bound for truncating at the n‘" term is thus at
most
2.107n1

(n+1)!
We wish to ensure that this error is less than 107°. This will clearly be met for

n =4, and (with a bit more work) for n = 3. At n = 2 it won’t be met. Thus, we
have

n =

1 1.
&iz1+wun+§m1f+ém1f
~ 1.10517

Problem 11.12.26. How many terms of the Maclaurin series for In(14x) do you

need to use to estimate In1.4 to within 0.0017
Solution. First, In(1+xz) => "7, ﬂ We first must find the n** derivative

of In(1+ z). Well, L In(1+2) = 1%: It’s easy to show that the n'" derivative
(=D)™n!

eyt it’s true for the 0" derivative, and if it’s true for the n** then

it’s true for the next derivative as well. Thus, di—?; In(l+2z) = % These

functions have strictly decreasing absolute value on [0, 0.4], so we may take M = 1.
Thus,

1 -
Ofm 1S

0.4n+1
(n+1)!

ntlqin—n—1 . .
% Obviously we needn’t consider

anything below n = 2. At n = 2, we have %, which is clearly greater than

1073. At n = 3 we have %, which is still greater than 1073. AT n = 4 we
128-107°
3

R,(0.4) <

For simplicity, we can write this as

have , which is less than 1073. We must therefore keep everything out to
the n = 4 term, so we must keep 5 terms.

Problem 11.12.31. An electric dipole consists of two electric charges of equal
magnitude and opposite signs. If the charges are q and —q and are located at a
distance d from each other, then the electric field E at the point P in the figure is

-4 1
E= 12 (D +d)?
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By expanding this expression for E as a series of powers in %, show that E 1is
approzimately proportional to % when P is far from the dipole.

Solution. First, let’s write the expression in terms of %:

q q
E==%+——"——
D% " D2(1+4 £)2

Now, expand the second term on the right as a binomial series:

q q > (=2 d\"
Ezi — —_
g ()(5)

At this point, we argue that since d < D, we can reasonably approximate E by
truncating the series at two terms, leaving:

q d
EF~—=|(1+(-1)+2(—=
5 (1+ 0+ ()
_ 2qd
T D3
Problem 9.1.1. Show that y = x — ™' is a solution of the differential equation
zy +y=2z.
Solution. Here we just plug in:
oy +y=a(14+z %) +z—a"

:era:*lerfx*l

1

=2z
as desired.
Problem 9.1.2. Verify that y = sinx cosx — cosx is a solution of the initial-value
problem
Y + (tan )y = cos® z;y(0) = —1

on the interval —5 < x < 3.
Solution. First, y(0) = sin(0) cos(0) — cos(0) = —1, satisfying the initial condition.
Next, plugging in, we have cos? z —sin? z +sin z +sin® z —sin z = cos? z, as desired,
so the solution is good as long as tan x is defined (which imposes the range).
Problem 9.1.3.

(a) For what nonzero values of k does the function y = sinkt satisfy the differ-
ential equation y"” +9y =07

(b) For those values of k, verify that every member of the family of functions

y = Asinkt + Bcoskt

is also a solution.
Proof.

(a) Pluggin in the putative solution, we get:

—k%sinkt + 9sinkt =0

whence k2 =9, or k = +3.

(b) If y = Asin+3t + Bcos £3t, we have ¢y = +3Asin+3t + 3B cos 3¢, and

y" = —9Asin+3t — 9B cos £3¢. Thus certainly y” + 9y = 0, and these functions
also satisfy the differential equation.
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Problem 9.1.10. A function y(t) satisfies the differential equation

(a) What are the constant solutions of the equation?
(b) For what values of y is y increasing?
(c) For what values of y is y decreasing?

Solution.
(a) For the solution to be constant, we must have % = 0. This requires

y* —6y° +5y* =0
y*(y> —6y+5) =0
v y—5)(y—1)=0

Thus the constant solutions are y =0,y =1, and y =5

(b,c) The function y is increasing where % > 0, and decreasing where % <0
The factor 32 is greater than zero everywhere except at 0, where it is zero. The
factor y — 1 is negative on y < 1, positive on y > 1, and zero at 1. The factor
y — 5 is negative on y < 5, positive on y > 5, and zero at 5. Just keeping track
of the signs, we see that y is increasing on (—o00,0) U (0,1) U (5,00), decreasing
on (1,5), and constant on {0,1,5}. As an aside, we note that this means that the
equilibrium solution at 1 is stable, the equilibrium solution at 5 is unstable, and the
equilibrium solution at 0 is unstable under positive perturbations but stable under
negative perturbations (for most practical purposes, this simply means ‘unstable,”
as you usually can’t count on all perturbations being in a favorable direction.

Problem 9.1.11. FEzxplain why the function with the given graphs (not reproduced
here, see p.592 of Stewart) can’t be solutions of the differential equation

dy t 2
A -1
7 e'(y—1)

Solution.

(a) can’t work, because it has negative slope on portions of its solutions. The
slope, e(y — 1)2, is a nonnegative function. (b) can’t work, because it has positive
slope at y = 1, where the slope must be flat.

Note. On problems from 9.2, I won’t actually draw the direction fields; instead I’ll
merely refer to them.

Problem 9.2.1. A direction field for the differential equation y' = y(1 — 3y?) is
shown (p. 599)

(a) Sketch the graphs of the solutions that satisfy the given initial conditions:

(i) y(0) = 1

(i1) y(0) = —1

(iii) y(0) = =3

(iv) y(0) = 3

(b) Find all the equilibrium solutions.
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Solution.

(i) The solution asymptotically approaches y = 2 as you go in the +z direction,
and asymptotically approaches y = 0 as you go in the —z direction

(ii) The solution asymptotically approaches y = —2 as you go in the +x direction,
and asymptotically approaches y = 0 as you go in the —x direction.

(iii) The solution asymptotically approaches y = —2 as you go in the +az direc-
tion, and diverges towards —oo as you go in the —z direction.

(iv) The solution asymptotically approaches y = 2 as you go in the +z direction,
and diverges towards oo as you go in the —x direction.

(b) There are stable equilibrium solutions at y = 2 and y = —2, and an unstable
equilibrium solution at y = 0.

9.2.3-6. These questions require you to match direction fields with differential equa-
tions:

9.2.8:y =y—1

9.2.4: y =y* — 22

9.25y =y—=x

9.2.6y =y —a3

Solutions.

9.2.3: This is the only of the differential solutions to have an equilibrium solution
at y = 1. Tt thus corresponds to IV.

9.2.4: This should have zero slope where y = z, but not where y = —x (excluding
III). Moreover, the slope should change linearly with increasing z—it shouldn’t linger
near zero, then suddenly jump to high slopes (excluding I). This must correspond
to II.

9.2.5: This should have zero slope both where y =  and where y = —z. It must
correspond to III.,

9.2.6: By elimination, this must be I. It has the same points of zero slope, but
lingers near zero slope when x and y are both between —1 and 1, but takes off
sharply outside this region (to see why, consider the graph of y = x3.

9.2.10. Sketch a direction field for the differential equation y' = x?> — y?. Then
sketch three solution curves.

Solution. This has nearly already been sketched for you: 9.2.4 above is the same
function with x and y reversed!

My artistic skills are too limited for the solution curves—I’ll leave them to your
imagination!



