
MATH 1B—SOLUTION SET FOR CHAPTERS 11.12, 9.1, 9.2

Problem 11.12.25. Use Taylor’s Inequality to determine the number of terms of
the Maclaurin series for ex that should be used to estimate e0.1 to within 10−5.

Solution. First of all, every derivative of ex is ex. Since ex is increasing, the maxi-
mum of every derivative of ex on [0, 0.1] is e0.1 itself.

Now, if we actually knew e0.1, we wouldn’t need to estimate it! Still, we know
that it is well less than 2 (the square root of 3 is, and this is the 10th root of
something less than 3). Our error bound for truncating at the nth term is thus at
most

Rn ≤
2 · 10−n−1

(n + 1)!

We wish to ensure that this error is less than 10−5. This will clearly be met for
n = 4, and (with a bit more work) for n = 3. At n = 2 it won’t be met. Thus, we
have

e0.1 ≈ 1 + (0.1) +
1
2
(0.1)2 +

1
6
(0.1)3

≈ 1.10517

Problem 11.12.26. How many terms of the Maclaurin series for ln(1+x) do you
need to use to estimate ln 1.4 to within 0.001?

Solution. First, ln(1 + x) =
∑∞

n=1
(−1)n−1xn

n . We first must find the nth derivative
of ln(1 + x). Well, d

dx ln(1 + x) = 1
1+x . It’s easy to show that the nth derivative

of 1
1+x is (−1)nn!

(1+x)n+1 : it’s true for the 0th derivative, and if it’s true for the nth then

it’s true for the next derivative as well. Thus, dn

dxn ln(1 + x) = (−1)n−1n−1
(1+x)n . These

functions have strictly decreasing absolute value on [0, 0.4], so we may take M = 1.
Thus,

Rn(0.4) ≤ 0.4n+1

(n + 1)!

For simplicity, we can write this as 4n+110−n−1

(n+1)! . Obviously we needn’t consider

anything below n = 2. At n = 2, we have 64·10−3

6 , which is clearly greater than
10−3. At n = 3 we have 64·10−4

6 , which is still greater than 10−3. AT n = 4 we
have 128·10−5

3 , which is less than 10−3. We must therefore keep everything out to
the n = 4 term, so we must keep 5 terms.

Problem 11.12.31. An electric dipole consists of two electric charges of equal
magnitude and opposite signs. If the charges are q and −q and are located at a
distance d from each other, then the electric field E at the point P in the figure is

E =
q

D2
− q

(D + d)2
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By expanding this expression for E as a series of powers in d
D , show that E is

approximately proportional to 1
D3 when P is far from the dipole.

Solution. First, let’s write the expression in terms of d
D :

E =
q

D2
+

q

D2(1 + d
D )2

Now, expand the second term on the right as a binomial series:

E =
q

D2
+

q

D2

∞∑
n=0

(
−2
n

) (
d

D

)n

At this point, we argue that since d � D, we can reasonably approximate E by
truncating the series at two terms, leaving:

E ≈ q

D2

(
1 + (−1) + 2

(
d

D

))
=

2qd

D3

Problem 9.1.1. Show that y = x − x−1 is a solution of the differential equation
xy′ + y = 2x.

Solution. Here we just plug in:

xy′ + y = x(1 + x−2) + x− x−1

= x + x−1 + x− x−1

= 2x

as desired.

Problem 9.1.2. Verify that y = sinx cos x− cos x is a solution of the initial-value
problem

y′ + (tanx)y = cos2 x; y(0) = −1

on the interval −π
2 < x < π

2 .

Solution. First, y(0) = sin(0) cos(0)− cos(0) = −1, satisfying the initial condition.
Next, plugging in, we have cos2 x−sin2 x+sinx+sin2 x−sinx = cos2 x, as desired,
so the solution is good as long as tanx is defined (which imposes the range).

Problem 9.1.3.
(a) For what nonzero values of k does the function y = sin kt satisfy the differ-

ential equation y′′ + 9y = 0?
(b) For those values of k, verify that every member of the family of functions

y = A sin kt + B cos kt

is also a solution.

Proof.
(a) Pluggin in the putative solution, we get:

−k2 sin kt + 9 sin kt = 0

whence k2 = 9, or k = ±3.
(b) If y = A sin±3t + B cos±3t, we have y′ = ±3A sin±3t ± 3B cos±3t, and

y′′ = −9A sin±3t − 9B cos±3t. Thus certainly y′′ + 9y = 0, and these functions
also satisfy the differential equation.
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Problem 9.1.10. A function y(t) satisfies the differential equation

dy

dt
= y4 − 6y3 + 5y2

(a) What are the constant solutions of the equation?
(b) For what values of y is y increasing?
(c) For what values of y is y decreasing?

Solution.
(a) For the solution to be constant, we must have dy

dt = 0. This requires

y4 − 6y3 + 5y2 = 0

y2(y2 − 6y + 5) = 0

y2(y − 5)(y − 1) = 0

Thus the constant solutions are y = 0, y = 1, and y = 5
(b,c) The function y is increasing where dy

dt > 0, and decreasing where dy
dt < 0

The factor y2 is greater than zero everywhere except at 0, where it is zero. The
factor y − 1 is negative on y < 1, positive on y > 1, and zero at 1. The factor
y − 5 is negative on y < 5, positive on y > 5, and zero at 5. Just keeping track
of the signs, we see that y is increasing on (−∞, 0) ∪ (0, 1) ∪ (5,∞), decreasing
on (1, 5), and constant on {0, 1, 5}. As an aside, we note that this means that the
equilibrium solution at 1 is stable, the equilibrium solution at 5 is unstable, and the
equilibrium solution at 0 is unstable under positive perturbations but stable under
negative perturbations (for most practical purposes, this simply means ‘unstable,”
as you usually can’t count on all perturbations being in a favorable direction.

Problem 9.1.11. Explain why the function with the given graphs (not reproduced
here, see p.592 of Stewart) can’t be solutions of the differential equation

dy

dt
= et(y − 1)2

Solution.
(a) can’t work, because it has negative slope on portions of its solutions. The

slope, et(y − 1)2, is a nonnegative function. (b) can’t work, because it has positive
slope at y = 1, where the slope must be flat.

Note. On problems from 9.2, I won’t actually draw the direction fields; instead I’ll
merely refer to them.

Problem 9.2.1. A direction field for the differential equation y′ = y(1 − 1
4y2) is

shown (p. 599)
(a) Sketch the graphs of the solutions that satisfy the given initial conditions:
(i) y(0) = 1
(ii) y(0) = −1
(iii) y(0) = −3
(iv) y(0) = 3
(b) Find all the equilibrium solutions.
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Solution.
(i) The solution asymptotically approaches y = 2 as you go in the +x direction,

and asymptotically approaches y = 0 as you go in the −x direction
(ii) The solution asymptotically approaches y = −2 as you go in the +x direction,

and asymptotically approaches y = 0 as you go in the −x direction.
(iii) The solution asymptotically approaches y = −2 as you go in the +x direc-

tion, and diverges towards −∞ as you go in the −x direction.
(iv) The solution asymptotically approaches y = 2 as you go in the +x direction,

and diverges towards ∞ as you go in the −x direction.
(b) There are stable equilibrium solutions at y = 2 and y = −2, and an unstable

equilibrium solution at y = 0.

9.2.3-6. These questions require you to match direction fields with differential equa-
tions:

9.2.3: y′ = y − 1
9.2.4: y′ = y2 − x2

9.2.5 y′ = y − x
9.2.6 y′ = y3 − x3

Solutions.
9.2.3: This is the only of the differential solutions to have an equilibrium solution

at y = 1. It thus corresponds to IV.
9.2.4: This should have zero slope where y = x, but not where y = −x (excluding

III). Moreover, the slope should change linearly with increasing x–it shouldn’t linger
near zero, then suddenly jump to high slopes (excluding I). This must correspond
to II.

9.2.5: This should have zero slope both where y = x and where y = −x. It must
correspond to III.,

9.2.6: By elimination, this must be I. It has the same points of zero slope, but
lingers near zero slope when x and y are both between −1 and 1, but takes off
sharply outside this region (to see why, consider the graph of y = x3.

9.2.10. Sketch a direction field for the differential equation y′ = x2 − y2. Then
sketch three solution curves.

Solution. This has nearly already been sketched for you: 9.2.4 above is the same
function with x and y reversed!

My artistic skills are too limited for the solution curves—I’ll leave them to your
imagination!


