
Math 128A Spring 2003
Week 9 Solutions

Burden & Faires §5.1: 1a, 3a, 5, 7
Burden & Faires §5.2: 1ab, 2b, 5a, 7

Burden & Faires §5.3: 3a, 5ac, 7

Burden & Faires §5.1. The Elementary Theory of Initial-Value
Problems

1. Use Theorem 5.4 to show that the following initial-value problem has a unique solution, and find
the solution.

a.
y′ = y cos t, 0 ≤ t ≤ 1, y(0) = 1.

Solution. a. In order to apply Theorem 5.4, we must show that f(t, y) = y cos t is continuous
and satisfies a Lipschitz condition in the variable y on {(t, y) | 0 ≤ t ≤ 1, −∞ < y < ∞}.
Clearly f is continuous and we have∣∣∣∣∂f

∂y
(t, y)

∣∣∣∣ = |cos t| ≤ 1.

Thus f satisfies a Lipschitz condition with Lipschitz constant 1.
The solution to the equation is given by:

dy

dt
= y cos t∫

1
y

dy =
∫

cos t dt

ln |y| = sin t + C0

y = C1e
sin t

1 = C1e
0

y = esin t

3. For the following initial-value problem, show that the given equation implicitly defines a solution.
Approximate y(2) using Newton’s method.

a.

y′ = − y3 + y

(3y2 + 1)t
, 1 ≤ t ≤ 2, y(1) = 1; y3t + yt = 2

Solution. a. First we must find the derivative of y implicitly.

d

dt

[
y3t + yt

]
=

d

dt
[2]

3y2ty′ + y3 + ty′ + y = 0
(3y2 + 1)ty′ = −(y3 + y)

y′ = − y3 + y

(3y2 + 1)t
.
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Also, we have that (1)3(1) + (1)(1) = 2. Thus the equation does define an implicit solution to
the differential equation. Using Newton’s method we can approximate y(2) to be 0.6823278
by finding an approximate solution to 2y3 + 2y = 2.

5. Show that, for any constants a and b, the set D = {(t, y), | a ≤ t ≤ b, −∞ < y < ∞} is convex.

Proof. Suppose that (t1, y1) and (t2, y2) are points in D with t2 ≥ t1. We need to show that for
any 0 ≤ λ ≤ 1, that the point P = ((1 − λ)t1 + λt2, (1 − λ)y1 + λy2) also belongs to D. Now,
a ≤ t1 ≤ t1 + λ(t2 − t1) = (1− λ)t1 + λt2 = t2 − (1− λ)(t2 − t1) ≤ t2 ≤ b, so P is in D and thus D
is convex.

7. Picard’s method for solving the initial-value problem

y′ = f(t, y), a ≤ t ≤ b, y(a) = α,

is described as follows: Let y0(t) = α for each t in [a, b]. Define a sequence {yk(t)} of functions by

yk(t) = α +
∫ t

α

f(τ, yk−1(τ)) dτ, k = 1, 2, . . . .

a. Integrate y′ = f(t, y(t)), and use the initial condition to derive Picard’s method.

b. Generate y0(t), y1(t), y2(t), and y3(t) for the intial-value problem

y′ = −y + t + 1, 0 ≤ t ≤ 1, y(0) = 1.

c. Compare the result in part (b) to the Maclaurin series of the actual solution y(t) = t + e−t.

Solution. a. ∫ t

a

y′(t) dt =
∫ t

a

f(t, y) dt

y(t)− y(a) =
∫ t

a

f(t, y) dt

y(t)− α =
∫ t

a

f(t, y) dt

y(t) = α +
∫ t

a

f(t, y) dt

b.

y0(t) = 1

y1(t) = 1 +
∫ t

0

f(τ, y0(τ)) dτ

= 1 +
∫ t

0

f(τ, 1) dτ

= 1 +
∫ t

0

−1 + τ + 1 dτ

= 1 +
[
1
2
τ2

]t

0

= 1 +
1
2
t2
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y2(t) = 1 +
∫ t

0

f(τ, y1(τ)) dτ

= 1 +
∫ t

0

f(τ, 1 +
1
2
τ2) dτ

= 1 +
∫ t

0

−(1 +
1
2
τ2) + τ + 1 dτ

= 1 +
∫ t

0

τ − 1
2
τ2 dτ

= 1 +
[
1
2
τ2 − 1

6
τ3

]t

0

= 1 +
1
2
t2 − 1

6
t3

y3(t) = 1 +
∫ t

0

f(τ, y2(τ)) dτ

= 1 +
∫ t

0

f(τ, 1 +
1
2
τ2 − 1

6
τ3) dτ

= 1 +
∫ t

0

−(1 +
1
2
τ2 − 1

6
τ3) + τ + 1 dτ

= 1 +
∫ t

0

τ − 1
2
τ2 +

1
6
τ3 dτ

= 1 +
[
1
2
τ2 − 1

6
τ3 +

1
24

τ4

]t

0

= 1 +
1
2
t2 − 1

6
t3 +

1
24

t4

c. The Maclaurin series is given by

t + e−t = t + (1− t +
1
2
t2 − 1

6
t3 +

1
24

t4 − 1
120

t5 + . . . )

= 1 +
1
2
t2 − 1

6
t3 +

1
24

t4 − 1
120

t5 + . . . ,

so we see that y3(t) gives the first four terms of the Maclaurin series.

Burden & Faires §5.2. Euler’s Method

1. Use Euler’s method to approximate the solutions for each of the following initial-value problems.

a.
y′ = te3t − 2y, 0 ≤ t ≤ 1, y(0) = 0, with h = 0.5

b.
y′ = 1 + (t− y)2, 2 ≤ t ≤ 3, y(2) = 1, with h = 0.5
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Solution. a.

w0 = 0.0000000
t0 = 0.000

w1 = w0 + hf(t0, w0)
= 0 + 0.5[(0)e3(0) − 2(0)]
= 0.0000000

t1 = 0.500
w2 = 0 + 0.5[(0.5)e3(0.5) − 2(0)]

= 1.1204223
t2 = 1.000

b.

w0 = 1.0000000
t0 = 2.000

w1 = 1 + 0.5[1 + (2− 1)2]
= 2.0000000

t1 = 2.500
w2 = 2 + 0.5[1 + (2.5− 2)2]

= 2.6250000
t2 = 3.000

2. The actual solution to the initial-value problem in Exercise 1b is given here. Compare the actual
error at each step to the error bound.

b.

y(t) = t +
1

1− t

Solution. The actual values of the function are as follows:

y(2.000) = 1.0000000
y(2.500) = 1.8333333
y(3.000) = 2.5000000.

This gives actual errors:

|w0 − y(2.000)| = 0.0000000
|w1 − y(2.500)| = 0.1666667
|w2 − y(3.000)| = 0.1250000.

The differential equation does not satisfy a Lipschitz condition as required by Theorem 5.9,
so we cannot obtain an error bound for it.

5. Given the initial-value problem

y′ =
2
t
y + t2et, 1 ≤ t ≤ 2, y(1) = 0,

with exact solution y(t) = t2(et − e):

a. Use Euler’s method with h = 0.1 to approximate the solution, and compare it with the actual
values of y.
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Solution. a.

w0 = 0.000000
t0 = 1.0

y(t0) = 0.000000

w1 = 0.000000 + 0.1
[

2
1.0

0.000000 + (1.0)2e(1.0)

]
= 0.271828

t1 = 1.1
y(t1) = 0.345920

w2 = 0.271828 + 0.1
[

2
1.1

0.271828 + (1.1)2e(1.1)

]
= 0.684756

t2 = 1.2
y(t2) = 0.866643

w3 = 0.684756 + 0.1
[

2
1.2

0.684756 + (1.2)2e(1.2)

]
= 1.27698

t3 = 1.3
y(t3) = 1.60722

w4 = 1.27698 + 0.1
[

2
1.3

1.27698 + (1.3)2e(1.3)

]
= 2.09355

t4 = 1.4
y(t4) = 2.62036

w5 = 2.09355 + 0.1
[

2
1.4

2.09355 + (1.4)2e(1.4)

]
= 3.18745

t5 = 1.5
y(t5) = 3.96767

w6 = 3.18745 + 0.1
[

2
1.5

3.18745 + (1.5)2e(1.5)

]
= 4.62082

t6 = 1.6
y(t6) = 5.72096

w7 = 4.62082 + 0.1
[

2
1.6

4.62082 + (1.6)2e(1.6)

]
= 6.46640

t7 = 1.7
y(t7) = 7.96387
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w8 = 6.46640 + 0.1
[

2
1.7

6.46640 + (1.7)2e(1.7)

]
= 8.80912

t8 = 1.8
y(t8) = 10.7936

w9 = 8.80912 + 0.1
[

2
1.8

8.80912 + (1.8)2e(1.8)

]
= 11.7480

t9 = 1.9
y(t9) = 14.3231

w10 = 11.7480 + 0.1
[

2
1.9

11.7480 + (1.9)2e(1.9)

]
= 15.3982

t10 = 2.0
y(t10) = 18.6831

7. Given the initial-value problem

y′ = −y + t + 1, 0 ≤ t ≤ 5, y(0) = 1,

with exact solution y(t) = e−t + t:

a. Approximate y(5) using Euler’s method with h = 0.2, h = 0.1, and h = 0.05.

b. Determine the optimal value of h to use in computing y(5), assuming δ = 10−6 and that Eq.
(5.14) is valid.

Solution. a. The exact value of y(5) is 5.00674. Using algorithm 5.1, with h = 0.2, we get y(5) ≈
5.00378, with h = 0.1, we get y(5) ≈ 5.00515, and with h = 0.005, we get y(5) ≈ 5.00592.

b. On 0 ≤ t ≤ 5, we have y′′(t) = d2

dt2 [e−t + t] = d
dt [−e−t + 1] = e−t ≤ 1. Thus the optimum

value is

h =

√
2δ

M
=

√
2× 10−6

1
= 0.0014142.

Burden & Faires §5.3: 3a, 5ac, 7

Burden & Faires §5.3. Higher-Order Taylor Methods

3. Use Taylor’s method of order two and four to approximate the solution for the following initial-value
problem.

a.
y′ = y/t− (y/t)2, 1 ≤ t ≤ 1.2, y(1) = 1, with h = 0.1

Solution. a. For the second order Taylor’s method we have the difference equation:

w0 = α

wi+1 = wi + h

(
wi

ti
− w2

i

t2i

)
+

h2

2

(
−w2

i

t3i
+ 2

w3
i

t4i

)
.
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Thus, w0 = 1.0000000, w1 = 1.0050000, and w2 = 1.0160294. For the fourth order Taylor’s
method we have the difference equation:

w0 = α

wi+1 = wi + h

(
wi

ti
− w2

i

t2i

)
+

h2

2

(
−w2

i

t3i
+ 2

w3
i

t4i

)
+

h3

6

(
w2

i

t4i
− 6

w4
i

t6i

)
+

h4

24

(
−2

w2
i

t5i
− 2

w3
i

t6i
+ 12

w4
i

t7i
+ 24

w5
i

t8i

)
.

Thus, w0 = 1.0000000, w1 = 1.0043000, and w2 = 1.0149771. The actual solution is approxi-
mately y(t0) = 1.0000000, y(t1) = 1.0042790, and y(t2) = 1.0149522.

5. Given the initial-value problem

y′ =
2
t
y + t2et, 1 ≤ t ≤ 2, y(1) = 0,

with the exact solution y(t) = t2(et − e):

a. Use Taylor’s method of order two with h = 0.1 to approximate the solution, and compare it
with the actual values of y.

b. Use the answers generated in part (a) and linear interpolation to approximate y at the following
values, and compare them to the actual values of y.

i. y(1.04)

ii. y(1.55)

iii. y(1.97)

Solution. a. Taylor’s method of order two is given by the difference equation:

w0 = 0.0

wi+1 = wi + h

(
2
t
y + t2et

)
+

h2

2

(
2
t2

y + 4tet + t2et

)
.

Thus, the solution is approximated by wi with exact value y(ti):

i ti wi y(ti)
0 1.00 0.0000000 0.0000000
1 1.10 0.3397852 0.3459199
2 1.20 0.8521434 0.8666425
3 1.30 1.581770 1.607215
4 1.40 2.580997 2.620360
5 1.50 3.910985 3.967666
6 1.60 5.643081 5.720962
7 1.70 7.860382 7.963874
8 1.80 10.65951 10.79362
9 1.90 14.15268 14.32308
10 2.00 18.46999 18.68310
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b. Using linear interpolation, we have

y(1.04) ≈ 0.6y(1.00) + 0.4y(1.10)
≈ 0.6(0.0000000) + 0.4(0.3397852)
= 0.1359141

y(1.55) ≈ 0.5y(1.50) + 0.5y(1.60)
≈ 0.5(3.910985) + 0.5(5.643081)
= 4.777033

y(1.97) ≈ 0.3y(1.90) + 0.7y(2.00)
≈ 0.3(14.15268) + 0.7(18.46999)
= 17.17480.

The actual values are given by

y(1.04) = 0.1199875
y(1.55) = 4.788635
y(1.97) = 17.27930.

7. A projectile of mass m = 0.11kg shot vertically upward with initial velocity v(0) = 8m/s is slowed
due to the force of gravity, Fg = −mg, and due to air resistance, Fr = −kv|v|, where g = 9.8m/s2

and k = 0.002kg/m. The differential equation for the velocity v is given by

mv′ = −mg − kv|v|.

a. Find the velocity after 0.1, 0.2, . . . , 1.0s.

b. To the nearest tenth of a second, determine when the projectile reaches its maximum height
and begins falling.

Solution. a. Using Taylor’s method of order two, we get the following.

i ti wi

0 0.0 8.0000000
1 0.1 6.9108826
2 0.2 5.8501200
3 0.3 4.8129058
4 0.4 3.7948239
5 0.5 2.7917670
6 0.6 1.7998655
7 0.7 0.8154250
8 0.8 −0.1651307
9 0.9 −1.1449490
10 1.0 −2.1216520

b. Thus the projectile reaches its maximum height and begins falling at 0.8s to the nearest tenth
of a second.
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