Math 128A Spring 2003 Week 9 Solutions

Burden & Faires §5.1: 1a, 3a, 5, 7 Burden & Faires §5.2: 1ab, 2b, 5a, 7 Burden & Faires §5.3: 3a, 5ac, 7

Burden & Faires §5.1. The Elementary Theory of Initial-Value Problems

1. Use Theorem 5.4 to show that the following initial-value problem has a unique solution, and find the solution.

a.

$$y' = y \cos t, \quad 0 \le t \le 1, \quad y(0) = 1.$$

Solution. a. In order to apply Theorem 5.4, we must show that $f(t, y) = y \cos t$ is continuous and satisfies a Lipschitz condition in the variable y on $\{(t, y) | 0 \le t \le 1, -\infty < y < \infty\}$. Clearly f is continuous and we have

$$\left|\frac{\partial f}{\partial y}(t, y)\right| = \left|\cos t\right| \le 1$$

Thus f satisfies a Lipschitz condition with Lipschitz constant 1. The solution to the equation is given by:

$$\frac{dy}{dt} = y \cos t$$

$$\int \frac{1}{y} dy = \int \cos t \, dt$$

$$\ln |y| = \sin t + C_0$$

$$y = C_1 e^{\sin t}$$

$$1 = C_1 e^0$$

$$y = e^{\sin t}$$

3. For the following initial-value problem, show that the given equation implicitly defines a solution. Approximate y(2) using Newton's method.

a.

$$y' = -\frac{y^3 + y}{(3y^2 + 1)t}, \quad 1 \le t \le 2, \quad y(1) = 1; \quad y^3t + yt = 2$$

Solution. a. First we must find the derivative of y implicitly.

$$\frac{d}{dt} \begin{bmatrix} y^3 t + yt \end{bmatrix} = \frac{d}{dt} \begin{bmatrix} 2 \end{bmatrix}$$

$$3y^2 ty' + y^3 + ty' + y = 0$$

$$(3y^2 + 1)ty' = -(y^3 + y)$$

$$y' = -\frac{y^3 + y}{(3y^2 + 1)t}$$

.

Also, we have that $(1)^3(1) + (1)(1) = 2$. Thus the equation does define an implicit solution to the differential equation. Using Newton's method we can approximate y(2) to be 0.6823278 by finding an approximate solution to $2y^3 + 2y = 2$.

5. Show that, for any constants a and b, the set $D = \{(t, y), | a \le t \le b, -\infty < y < \infty\}$ is convex.

Proof. Suppose that (t_1, y_1) and (t_2, y_2) are points in D with $t_2 \ge t_1$. We need to show that for any $0 \le \lambda \le 1$, that the point $P = ((1 - \lambda)t_1 + \lambda t_2, (1 - \lambda)y_1 + \lambda y_2)$ also belongs to D. Now, $a \le t_1 \le t_1 + \lambda(t_2 - t_1) = (1 - \lambda)t_1 + \lambda t_2 = t_2 - (1 - \lambda)(t_2 - t_1) \le t_2 \le b$, so P is in D and thus D is convex.

7. Picard's method for solving the initial-value problem

$$y' = f(t, y), \quad a \le t \le b, \quad y(a) = \alpha,$$

is described as follows: Let $y_0(t) = \alpha$ for each t in [a, b]. Define a sequence $\{y_k(t)\}$ of functions by

$$y_k(t) = \alpha + \int_{\alpha}^{t} f(\tau, y_{k-1}(\tau)) d\tau, \quad k = 1, 2, \dots$$

- a. Integrate y' = f(t, y(t)), and use the initial condition to derive Picard's method.
- b. Generate $y_0(t)$, $y_1(t)$, $y_2(t)$, and $y_3(t)$ for the initial-value problem

$$y' = -y + t + 1, \quad 0 \le t \le 1, \quad y(0) = 1$$

c. Compare the result in part (b) to the Maclaurin series of the actual solution $y(t) = t + e^{-t}$.

Solution. a.

$$\int_{a}^{t} y'(t) dt = \int_{a}^{t} f(t, y) dt$$
$$y(t) - y(a) = \int_{a}^{t} f(t, y) dt$$
$$y(t) - \alpha = \int_{a}^{t} f(t, y) dt$$
$$y(t) = \alpha + \int_{a}^{t} f(t, y) dt$$

 $\mathbf{b}.$

$$y_0(t) = 1$$

$$y_1(t) = 1 + \int_0^t f(\tau, y_0(\tau)) d\tau$$

= $1 + \int_0^t f(\tau, 1) d\tau$
= $1 + \int_0^t -1 + \tau + 1 d\tau$
= $1 + \left[\frac{1}{2}\tau^2\right]_0^t$
= $1 + \frac{1}{2}t^2$

$$y_{2}(t) = 1 + \int_{0}^{t} f(\tau, y_{1}(\tau)) d\tau$$

$$= 1 + \int_{0}^{t} f(\tau, 1 + \frac{1}{2}\tau^{2}) d\tau$$

$$= 1 + \int_{0}^{t} -(1 + \frac{1}{2}\tau^{2}) + \tau + 1 d\tau$$

$$= 1 + \int_{0}^{t} \tau - \frac{1}{2}\tau^{2} d\tau$$

$$= 1 + \left[\frac{1}{2}\tau^{2} - \frac{1}{6}\tau^{3}\right]_{0}^{t}$$

$$= 1 + \frac{1}{2}t^{2} - \frac{1}{6}t^{3}$$

$$y_{3}(t) = 1 + \int_{0}^{t} f(\tau, y_{2}(\tau)) d\tau$$

$$= 1 + \int_{0}^{t} f(\tau, 1 + \frac{1}{2}\tau^{2} - \frac{1}{6}\tau^{3}) d\tau$$

$$= 1 + \int_{0}^{t} -(1 + \frac{1}{2}\tau^{2} - \frac{1}{6}\tau^{3}) + \tau + 1 d\tau$$

$$= 1 + \int_{0}^{t} \tau - \frac{1}{2}\tau^{2} + \frac{1}{6}\tau^{3} d\tau$$

$$= 1 + \left[\frac{1}{2}\tau^{2} - \frac{1}{6}\tau^{3} + \frac{1}{24}\tau^{4}\right]_{0}^{t}$$

$$= 1 + \frac{1}{2}t^{2} - \frac{1}{6}t^{3} + \frac{1}{24}t^{4}$$

c. The Maclaurin series is given by

$$t + e^{-t} = t + (1 - t + \frac{1}{2}t^2 - \frac{1}{6}t^3 + \frac{1}{24}t^4 - \frac{1}{120}t^5 + \dots)$$

= $1 + \frac{1}{2}t^2 - \frac{1}{6}t^3 + \frac{1}{24}t^4 - \frac{1}{120}t^5 + \dots,$

so we see that $y_3(t)$ gives the first four terms of the Maclaurin series.

Burden & Faires §5.2. Euler's Method

1. Use Euler's method to approximate the solutions for each of the following initial-value problems.

a.

$$y' = te^{3t} - 2y, \quad 0 \le t \le 1, \quad y(0) = 0, \text{ with } h = 0.5$$

b.

$$y' = 1 + (t - y)^2$$
, $2 \le t \le 3$, $y(2) = 1$, with $h = 0.5$

Solution. a.

$$w_{0} = 0.0000000$$

$$t_{0} = 0.000$$

$$w_{1} = w_{0} + hf(t_{0}, w_{0})$$

$$= 0 + 0.5[(0)e^{3(0)} - 2(0)]$$

$$= 0.0000000$$

$$t_{1} = 0.500$$

$$w_{2} = 0 + 0.5[(0.5)e^{3(0.5)} - 2(0)]$$

$$= 1.1204223$$

$$t_{2} = 1.000$$

 $\mathbf{b}.$

1.0000000 w_0 = 2.000 t_0 = $1 + 0.5[1 + (2 - 1)^2]$ w_1 = 2.0000000= = 2.500 t_1 $= 2 + 0.5[1 + (2.5 - 2)^2]$ w_2 2.6250000= t_2 = 3.000

2. The actual solution to the initial-value problem in Exercise 1b is given here. Compare the actual error at each step to the error bound.

b.

$$y(t) = t + \frac{1}{1-t}$$

Solution. The actual values of the function are as follows:

$$y(2.000) = 1.0000000$$

 $y(2.500) = 1.8333333$
 $y(3.000) = 2.5000000.$

This gives actual errors:

$$|w_0 - y(2.000)| = 0.0000000$$

$$|w_1 - y(2.500)| = 0.1666667$$

$$|w_2 - y(3.000)| = 0.1250000.$$

The differential equation does not satisfy a Lipschitz condition as required by Theorem 5.9, so we cannot obtain an error bound for it. $\hfill \Box$

5. Given the initial-value problem

$$y' = \frac{2}{t}y + t^2 e^t, \quad 1 \le t \le 2, \quad y(1) = 0,$$

with exact solution $y(t) = t^2(e^t - e)$:

a. Use Euler's method with h = 0.1 to approximate the solution, and compare it with the actual values of y.

Solution. a.

$$\begin{split} w_0 &= 0.00000 \\ t_0 &= 1.0 \\ y(t_0) &= 0.00000 \\ \end{split}$$

$$w_{8} = 6.46640 + 0.1 \left[\frac{2}{1.7} 6.46640 + (1.7)^{2} e^{(1.7)} \right]$$

$$= 8.80912$$

$$t_{8} = 1.8$$

$$y(t_{8}) = 10.7936$$

$$w_{9} = 8.80912 + 0.1 \left[\frac{2}{1.8} 8.80912 + (1.8)^{2} e^{(1.8)} \right]$$

$$= 11.7480$$

$$t_{9} = 1.9$$

$$y(t_{9}) = 14.3231$$

$$w_{10} = 11.7480 + 0.1 \left[\frac{2}{1.9} 11.7480 + (1.9)^{2} e^{(1.9)} \right]$$

$$= 15.3982$$

$$t_{10} = 2.0$$

$$y(t_{1}0) = 18.6831$$

7. Given the initial-value problem

$$y' = -y + t + 1, \quad 0 \le t \le 5, \quad y(0) = 1,$$

with exact solution $y(t) = e^{-t} + t$:

- a. Approximate y(5) using Euler's method with h = 0.2, h = 0.1, and h = 0.05.
- b. Determine the optimal value of h to use in computing y(5), assuming $\delta = 10^{-6}$ and that Eq. (5.14) is valid.
- Solution. a. The exact value of y(5) is 5.00674. Using algorithm 5.1, with h = 0.2, we get $y(5) \approx 5.00378$, with h = 0.1, we get $y(5) \approx 5.00515$, and with h = 0.005, we get $y(5) \approx 5.00592$.
 - b. On $0 \le t \le 5$, we have $y''(t) = \frac{d^2}{dt^2}[e^{-t} + t] = \frac{d}{dt}[-e^{-t} + 1] = e^{-t} \le 1$. Thus the optimum value is

$$h = \sqrt{\frac{2\delta}{M}} = \sqrt{\frac{2 \times 10^{-6}}{1}} = 0.0014142.$$

Burden & Faires §5.3: 3a, 5ac, 7

Burden & Faires §5.3. Higher-Order Taylor Methods

3. Use Taylor's method of order two and four to approximate the solution for the following initial-value problem.

a.

 $y' = y/t - (y/t)^2$, $1 \le t \le 1.2$, y(1) = 1, with h = 0.1

Solution. a. For the second order Taylor's method we have the difference equation:

$$w_0 = \alpha$$

$$w_{i+1} = w_i + h\left(\frac{w_i}{t_i} - \frac{w_i^2}{t_i^2}\right) + \frac{h^2}{2}\left(-\frac{w_i^2}{t_i^3} + 2\frac{w_i^3}{t_i^4}\right).$$

Thus, $w_0 = 1.0000000$, $w_1 = 1.0050000$, and $w_2 = 1.0160294$. For the fourth order Taylor's method we have the difference equation:

$$\begin{split} w_0 &= \alpha \\ w_{i+1} &= w_i + h\left(\frac{w_i}{t_i} - \frac{w_i^2}{t_i^2}\right) + \frac{h^2}{2}\left(-\frac{w_i^2}{t_i^3} + 2\frac{w_i^3}{t_i^4}\right) + \frac{h^3}{6}\left(\frac{w_i^2}{t_i^4} - 6\frac{w_i^4}{t_i^6}\right) \\ &+ \frac{h^4}{24}\left(-2\frac{w_i^2}{t_i^5} - 2\frac{w_i^3}{t_i^6} + 12\frac{w_i^4}{t_i^7} + 24\frac{w_i^5}{t_i^8}\right). \end{split}$$

Thus, $w_0 = 1.0000000$, $w_1 = 1.0043000$, and $w_2 = 1.0149771$. The actual solution is approximately $y(t_0) = 1.0000000$, $y(t_1) = 1.0042790$, and $y(t_2) = 1.0149522$.

5. Given the initial-value problem

$$y' = \frac{2}{t}y + t^2 e^t, \quad 1 \le t \le 2, \quad y(1) = 0,$$

with the exact solution $y(t) = t^2(e^t - e)$:

- a. Use Taylor's method of order two with h = 0.1 to approximate the solution, and compare it with the actual values of y.
- b. Use the answers generated in part (a) and linear interpolation to approximate y at the following values, and compare them to the actual values of y.
 - i. y(1.04) ii. y(1.55) iii. y(1.97)

Solution. a. Taylor's method of order two is given by the difference equation:

$$w_0 = 0.0$$

$$w_{i+1} = w_i + h\left(\frac{2}{t}y + t^2e^t\right) + \frac{h^2}{2}\left(\frac{2}{t^2}y + 4te^t + t^2e^t\right).$$

Thus, the solution is approximated by w_i with exact value $y(t_i)$:

i	t_i	w_i	$y(t_i)$
0	1.00	0.0000000	0.0000000
1	1.10	0.3397852	0.3459199
2	1.20	0.8521434	0.8666425
3	1.30	1.581770	1.607215
4	1.40	2.580997	2.620360
5	1.50	3.910985	3.967666
6	1.60	5.643081	5.720962
7	1.70	7.860382	7.963874
8	1.80	10.65951	10.79362
9	1.90	14.15268	14.32308
10	2.00	18.46999	18.68310

b. Using linear interpolation, we have

$$\begin{array}{rcl} y(1.04) &\approx& 0.6y(1.00) + 0.4y(1.10) \\ &\approx& 0.6(0.000000) + 0.4(0.3397852) \\ &=& 0.1359141 \\ y(1.55) &\approx& 0.5y(1.50) + 0.5y(1.60) \\ &\approx& 0.5(3.910985) + 0.5(5.643081) \\ &=& 4.777033 \\ y(1.97) &\approx& 0.3y(1.90) + 0.7y(2.00) \\ &\approx& 0.3(14.15268) + 0.7(18.46999) \\ &=& 17.17480. \end{array}$$

The actual values are given by

=	0.1199875
=	4.788635
=	17.27930.
	=

7. A projectile of mass m = 0.11kg shot vertically upward with initial velocity v(0) = 8m/s is slowed due to the force of gravity, $F_g = -mg$, and due to air resistance, $F_r = -kv|v|$, where g = 9.8m/s² and k = 0.002kg/m. The differential equation for the velocity v is given by

$$mv' = -mg - kv|v|$$

- a. Find the velocity after $0.1, 0.2, \ldots, 1.0s$.
- b. To the nearest tenth of a second, determine when the projectile reaches its maximum height and begins falling.

Solution. a. Using Taylor's method of order two, we get the following.

i	t_i	w_i
0	0.0	8.0000000
1	0.1	6.9108826
2	0.2	5.8501200
3	0.3	4.8129058
4	0.4	3.7948239
5	0.5	2.7917670
6	0.6	1.7998655
7	0.7	0.8154250
8	0.8	-0.1651307
9	0.9	-1.1449490
10	1.0	-2.1216520

b. Thus the projectile reaches its maximum height and begins falling at 0.8s to the nearest tenth of a second. $\hfill \Box$